CBSE Class 10 Maths Solutions 30/1/1

QUESTION PAPER CODE 30/1/1 EXPECTED ANSWER/VALUE POINTS

SECTION A

1. Let the point A be (x, y)

$$
\begin{array}{llr}
\therefore & \frac{1+\mathrm{x}}{2}=2 \text { and } \frac{4+\mathrm{y}}{2}=-3 & \frac{1}{2} \\
\Rightarrow & \mathrm{x}=3 \text { and } \mathrm{y}=-10 & \\
\therefore & \text { Point } A \text { is }(3,-10) & \frac{1}{2}
\end{array}
$$

2. Since roots of the equation $x^{2}+4 x+k=0$ are real
$\Rightarrow \quad 16-4 \mathrm{k} \geq 0$
$\Rightarrow \quad \mathrm{k} \leq 4$

OR

Roots of the equation $3 x^{2}-10 x+k=0$ are reciprocal of each other
$\Rightarrow \quad$ Product of roots $=1$
$\Rightarrow \quad \frac{\mathrm{k}}{3}=1 \Rightarrow \mathrm{k}=3$
3. $\tan 2 \mathrm{~A}=\cot \left(90^{\circ}-2 \mathrm{~A}\right)$

$$
\begin{array}{lll}
\therefore & 90^{\circ}-2 \mathrm{~A}=\mathrm{A}-24^{\circ} & \frac{1}{2} \\
\Rightarrow & \mathrm{~A}=38^{\circ} & \frac{1}{2}
\end{array}
$$

OR
$\sin 33^{\circ}=\cos 57^{\circ}$
$\therefore \quad \sin ^{2} 33^{\circ}+\sin ^{2} 57^{\circ}=\cos ^{2} 57^{\circ}+\sin ^{2} 57^{\circ}=1$
4. Numbers are $12,15,18, \ldots, 99$

$$
\begin{aligned}
& \therefore \quad 99=12+(n-1) \times 3 \\
& \Rightarrow \quad n=30
\end{aligned}
$$

5. $\mathrm{AB}=1+2=3 \mathrm{~cm}$
$\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$
$\therefore \quad \frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{ADE})}=\frac{\mathrm{AB}^{2}}{\mathrm{AD}^{2}}=\frac{9}{1}$
$\therefore \quad \operatorname{ar}(\triangle \mathrm{ABC}): \operatorname{ar}(\triangle \mathrm{ADE})=9: 1$
6. Any one rational number between $\sqrt{2}$ (1.41 approx.) and $\sqrt{3}$ (1.73 approx.)
e.g., 1.5, 1.6, 1.63 etc.

SECTION B

7. Using Euclid's Algorithm

$$
\begin{aligned}
7344 & =1260 \times 5+1044 \\
1260 & =1044 \times 1+216 \\
1044 & =216 \times 4+180 \\
216 & =180 \times 1+36 \\
180 & =36 \times 5+0
\end{aligned}
$$

HCF of 1260 and 7344 is 36.

OR

Using Euclid's Algorithm

$$
\begin{aligned}
& a=4 q+r, 0 \leq r<4 \\
\Rightarrow \quad a & =4 q, a=4 q+1, a=4 q+2 \text { and } a=4 q+3
\end{aligned}
$$

Now $\mathrm{a}=4 \mathrm{q}$ and $\mathrm{a}=4 \mathrm{q}+2$ are even numbers.
Therefore when a is odd, it is of the form
$\mathrm{a}=4 \mathrm{q}+1$ or $\mathrm{a}=4 \mathrm{q}+3$ for some integer q.
8. $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{21}+120$

$$
\begin{aligned}
& =(3+20 \times 12)+120 \\
& =363 \\
\therefore \quad & 363=3+(n-1) \times 12 \\
\Rightarrow \quad & n=31
\end{aligned}
$$ or 31 st term is 120 more than a_{21}.

OR

$\mathrm{a}_{1}=\mathrm{S}_{1}=3-4=-1 \quad \frac{1}{2}$
$\mathrm{a}_{2}=\mathrm{S}_{2}-\mathrm{S}_{1}=\left[3(2)^{2}-4(2)\right]-(-1)=5 \quad \frac{1}{2}$
$\therefore \mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=6$

Hence $a_{n}=-1+(n-1) \times 6=6 n-7$

Alternate method:

$$
\begin{aligned}
& S_{n}=3 n^{2}-4 n \\
\therefore \quad & S_{n-1}=3(n-1)^{2}-4(n-1)=3 n^{2}-10 n+7
\end{aligned}
$$

Hence $\mathrm{a}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}-1}$

$$
\begin{aligned}
& =\left(3 n^{2}-4 n\right)-\left(3 n^{2}-10 n+7\right) \\
& =6 n-7
\end{aligned}
$$

9.

Let the required point be $(a, 0)$ and required ratio $\mathrm{AP}: \mathrm{PB}=\mathrm{k}: 1 \quad \frac{1}{2}$

$$
\begin{aligned}
\therefore \quad \mathrm{a} & =\frac{4 \mathrm{k}+1}{\mathrm{k}+1} \\
0 & =\frac{5 \mathrm{k}-3}{\mathrm{k}+1} \\
\Rightarrow \quad \mathrm{k} & =\frac{3}{5} \text { or required ratio is } 3: 5
\end{aligned}
$$

$$
\text { Point } \mathrm{P} \text { is }\left(\frac{17}{8}, 0\right)
$$

10. Total number of outcomes $=8$

Favourable number of outcomes $(\mathrm{HHH}, \mathrm{TTT})=2$

Prob. $($ getting success $)=\frac{2}{8}$ or $\frac{1}{4}$
$\therefore \quad$ Prob. (losing the game) $=1-\frac{1}{4}=\frac{3}{4}$.
11. Total number of outcomes $=6$.
(i) Prob. (getting a prime number $(2,3,5))=\frac{3}{6}$ or $\frac{1}{2}$
(ii) Prob. (getting a number between 2 and $6(3,4,5))=\frac{3}{6}$ or $\frac{1}{2}$.
12. System of equations has infinitely many solutions

$$
\begin{align*}
& \therefore \quad \frac{c}{12}=\frac{3}{c}=\frac{3-c}{-c} \\
& \Rightarrow \quad c^{2}=36 \Rightarrow c=6 \text { or } c=-6 \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\text { Also }-3 c=3 c-c^{2} \Rightarrow c=6 \text { or } c=0 \tag{2}
\end{equation*}
$$

From equations (1) and (2)

$$
\mathrm{c}=6
$$

SECTION C

13. Let us assume $\sqrt{2}$ be a rational number and its simplest form be $\frac{a}{b}$, a and b are coprime positive integers and $\mathrm{b} \neq 0$.

So $\quad \sqrt{2}=\frac{\mathrm{a}}{\mathrm{b}}$
$\Rightarrow \quad a^{2}=2 b^{2}$
Thus a^{2} is a multiple of 2
$\Rightarrow \quad$ a is a multiple of 2 .
Let $\mathrm{a}=2 \mathrm{~m}$ for some integer m

$$
\therefore \quad \mathrm{b}^{2}=2 \mathrm{~m}^{2}
$$

Thus b^{2} is a multiple of 2
$\Rightarrow \mathrm{b}$ is a multiple of 2
Hence 2 is a common factor of a and b.
This contradicts the fact that a and b are coprimes
Hence $\sqrt{2}$ is an irrational number.
14. Sum of zeroes $=k+6$

Product of zeroes $=2(2 k-1)$
Hence $\mathrm{k}+6=\frac{1}{2} \times 2(2 \mathrm{k}-1)$
$\Rightarrow \quad \mathrm{k}=7$
15. Let sum of the ages of two children be x yrs and father's age be y yrs.
$\therefore \quad y=3 x$
and $y+5=2(x+10)$
Solving equations (1) and (2)

$$
x=15
$$

and $y=45$
Father's present age is 45 years.
OR
Let the fraction be $\frac{x}{y}$
$\therefore \quad \frac{\mathrm{x}-2}{\mathrm{y}}=\frac{1}{3}$
and $\frac{x}{y-1}=\frac{1}{2}$
Solving (1) and (2) to get $x=7, y=15$.
$\therefore \quad$ Required fraction is $\frac{7}{15}$
16. Let the required point on y-axis be $(0, b)$

$$
\begin{aligned}
& \therefore \quad(5-0)^{2}+(-2-b)^{2}=(-3-0)^{2}+(2-b)^{2} \\
& \Rightarrow \quad 29+4 b+b^{2}=13+b^{2}-4 b \\
& \Rightarrow \quad b=-2
\end{aligned}
$$

$\therefore \quad$ Required point is $(0,-2)$

OR

$$
\begin{array}{ll}
\mathrm{AP}: \mathrm{PB}=1: 2 & \frac{1}{2} \\
\mathrm{x}=\frac{4+5}{3}=3 \text { and } \mathrm{y}=\frac{2-8}{3}=-2 & \frac{1}{2}+\frac{1}{2}
\end{array}
$$

Thus point P is $(3,-2)$.
Point (3, -2) lies on $2 \mathrm{x}-\mathrm{y}+\mathrm{k}=0$

$$
\begin{aligned}
& \Rightarrow \quad 6+2+\mathrm{k}=0 \\
& \Rightarrow \quad \mathrm{k}=-8
\end{aligned}
$$

17. LHS $=\sin ^{2} \theta+\operatorname{cosec}^{2} \theta+2 \sin \theta \operatorname{cosec} \theta+\cos ^{2} \theta+\sec ^{2} \theta+2 \cos \theta \sec \theta$

$$
=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+\operatorname{cosec}^{2} \theta+\sec ^{2} \theta+\frac{2 \sin \theta}{\sin \theta}+2 \frac{\cos \theta}{\cos \theta} .
$$

$$
=1+1+\cot ^{2} \theta+1+\tan ^{2} \theta+2+2
$$

$$
=7+\cot ^{2} \theta+\tan ^{2} \theta=\text { RHS }
$$

OR

$$
\begin{aligned}
\text { LHS } & =\left(1+\frac{1}{\tan \mathrm{~A}}-\operatorname{cosec} \mathrm{A}\right)(1+\tan \mathrm{A}+\sec \mathrm{A}) \\
& =\frac{1}{\tan \mathrm{~A}}(\tan \mathrm{~A}+1-\sec \mathrm{A})(1+\tan \mathrm{A}+\sec \mathrm{A}) \\
& =\frac{1}{\tan \mathrm{~A}}\left[(1+\tan \mathrm{A})^{2}-\sec ^{2} \mathrm{~A}\right] \\
& =\frac{1}{\tan \mathrm{~A}}\left[1+\tan ^{2} \mathrm{~A}+2 \tan \mathrm{~A}-1-\tan ^{2} \mathrm{~A}\right] \\
& =2=\text { RHS }
\end{aligned}
$$

Alternate method

$$
\begin{aligned}
\text { LHS } & =\left(1+\frac{\cos \mathrm{A}}{\sin \mathrm{~A}}-\frac{1}{\sin \mathrm{~A}}\right)\left(1+\frac{\sin \mathrm{A}}{\cos \mathrm{~A}}+\frac{1}{\cos \mathrm{~A}}\right) \\
& =(\sin \mathrm{A}+\cos \mathrm{A}-1)(\cos \mathrm{A}+\sin \mathrm{A}+1) \cdot \frac{1}{\cos \mathrm{~A} \sin \mathrm{~A}} \\
& =\left[(\sin \mathrm{A}+\cos \mathrm{A})^{2}-1\right] \times \frac{1}{\sin \mathrm{~A} \cos \mathrm{~A}} \\
& =(1+2 \sin \mathrm{~A} \cos -1) \times \frac{1}{\sin A \cos \mathrm{~A}}
\end{aligned}
$$

$$
=2=\text { RHS }
$$

18.

Join OT and OQ.

$$
\mathrm{TP}=\mathrm{TQ}
$$

$\therefore \mathrm{TM} \perp \mathrm{PQ}$ and bisects PQ
Hence $\mathrm{PM}=4 \mathrm{~cm}$

Therefore $\mathrm{OM}=\sqrt{25-16}=\sqrt{9}=3 \mathrm{~cm}$.
Let $\mathrm{TM}=\mathrm{x}$
From \triangle PMT, $\quad P^{2}=x^{2}+16$
From $\triangle \mathrm{POT}, \quad \mathrm{PT}^{2}=(\mathrm{x}+3)^{2}-25$
Hence $x^{2}+16=x^{2}+9+6 x-25$
$\Rightarrow 6 \mathrm{x}=32 \Rightarrow \mathrm{x}=\frac{16}{3}$
Hence $\mathrm{PT}^{2}=\frac{256}{9}+16=\frac{400}{9}$
$\therefore \quad \mathrm{PT}=\frac{20}{3} \mathrm{~cm}$.
19. $\Delta \mathrm{ACB} \sim \Delta \mathrm{ADC}$ (AA similarity)

$$
\begin{equation*}
\Rightarrow \quad \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{AD}}{\mathrm{CD}} \tag{1}
\end{equation*}
$$

Also $\Delta \mathrm{ACB} \sim \Delta \mathrm{CDB}$ (AA similarity)
$\Rightarrow \quad \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{CD}}{\mathrm{BD}}$
Using equations (1) and (2)

$$
\begin{aligned}
\frac{\mathrm{AD}}{\mathrm{CD}} & =\frac{\mathrm{CD}}{\mathrm{BD}} \\
\Rightarrow \quad \mathrm{CD}^{2} & =\mathrm{AD} \times \mathrm{BD}
\end{aligned}
$$

OR

Correct Figure

$$
\begin{aligned}
& \mathrm{AQ}^{2}=\mathrm{CQ}^{2}+\mathrm{AC}^{2} \\
& \mathrm{BP}^{2}=\mathrm{CP}^{2}+\mathrm{BC}^{2} \\
& \therefore \mathrm{AQ}^{2}+\mathrm{BP}^{2}=\left(\mathrm{CQ}^{2}+\mathrm{CP}^{2}\right)+\left(\mathrm{AC}^{2}+\mathrm{BC}^{2}\right) \\
& =\mathrm{PQ}^{2}+\mathrm{AB}^{2}
\end{aligned}
$$

20. $\mathrm{AC}=\sqrt{64+36}=10 \mathrm{~cm}$.
$\therefore \quad$ Radius of the circle $(r)=5 \mathrm{~cm}$.

Area of shaded region $=$ Area of circle $-\operatorname{Ar}(\mathrm{ABCD})$

$$
\begin{array}{lr}
=3.14 \times 25-6 \times 8 & 1 \\
=78.5-48 & \\
=30.5 \mathrm{~cm}^{2} & \frac{1}{2}
\end{array}
$$

21. Length of canal covered in $30 \mathrm{~min}=5000 \mathrm{~m}$.
\therefore Volume of water flown in $30 \mathrm{~min}=6 \times 1.5 \times 5000 \mathrm{~m}^{3}$
If 8 cm standing water is needed
then area irrigated $=\frac{6 \times 1.5 \times 5000}{.08}=562500 \mathrm{~m}^{2}$.
22. Modal class is $30-40$

$$
\begin{aligned}
& \therefore \quad \text { Mode }=l+\left(\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}}\right) \times \mathrm{h} \\
& \quad=30+\left(\frac{16-10}{32-10-12}\right) \times 10 \\
& \quad=36 .
\end{aligned}
$$

SECTION D

23. Let the smaller tap fills the tank in x hrs
$\therefore \quad$ the larger tap fills the tank in $(\mathrm{x}-2)$ hrs.
Time taken by both the taps together $=\frac{15}{8} \mathrm{hrs}$.
Therefore $\frac{1}{x}+\frac{1}{x-2}=\frac{8}{15}$
$\Rightarrow \quad 4 x^{2}-23 x+15=0$
$\Rightarrow \quad(4 x-3)(x-5)=0$

$$
x \neq \frac{3}{4} \quad \therefore x=5
$$

Smaller and larger taps can fill the tank seperately in 5 hrs and 3 hrs resp.

OR

Let the speed of the boat in still water be $\mathrm{x} \mathrm{km} / \mathrm{hr}$ and speed of the stream be $\mathrm{y} \mathrm{km} / \mathrm{hr}$.
Given $\frac{30}{x-y}+\frac{44}{x+y}=10$
and $\frac{40}{x-y}+\frac{55}{x+y}=13$

Solving (i) and (ii) to get

$$
\begin{equation*}
x+y=11 \tag{iii}
\end{equation*}
$$

and $\quad x-y=5$
Solving (iii) and (iv) to get $\mathrm{x}=8, \mathrm{y}=3$.
Speed of boat $=8 \mathrm{~km} / \mathrm{hr} \&$ speed of stream $=3 \mathrm{~km} / \mathrm{hr}$.
24. $\mathrm{S}_{4}=40 \Rightarrow 2(2 \mathrm{a}+3 \mathrm{~d})=40 \Rightarrow 2 \mathrm{a}+3 \mathrm{~d}=20$
$\mathrm{S}_{14}=280 \Rightarrow 7(2 \mathrm{a}+13 \mathrm{~d})=280 \Rightarrow 2 \mathrm{a}+13 \mathrm{~d}=40$

Solving to get d = 2
and $\mathrm{a}=7$

$$
\begin{aligned}
\therefore \quad \mathrm{Sn} & =\frac{\mathrm{n}}{2}[14+(\mathrm{n}-1) \times 2] \\
& =\mathrm{n}(\mathrm{n}+6) \text { or }\left(\mathrm{n}^{2}+6 \mathrm{n}\right)
\end{aligned}
$$

25. LHS $=\frac{\sin \mathrm{A}-\cos \mathrm{A}+1}{\sin \mathrm{~A}+\cos \mathrm{A}-1}$

Dividing num. \& deno. by $\cos \mathrm{A}$

$$
\begin{aligned}
& =\frac{\tan \mathrm{A}-1+\sec \mathrm{A}}{\tan \mathrm{~A}+1-\sec \mathrm{A}} \\
& =\frac{\tan \mathrm{A}-1+\sec \mathrm{A}}{(\tan \mathrm{~A}-\sec \mathrm{A})+\left(\sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}\right)} \\
& =\frac{\tan \mathrm{A}-1+\sec \mathrm{A}}{(\tan \mathrm{~A}-\sec \mathrm{A})(1-\sec \mathrm{A}-\tan \mathrm{A})}
\end{aligned}
$$

$$
=\frac{-1}{\tan A-\sec A}=\frac{1}{\sec A-\tan A}=\text { RHS }
$$

26.

Correct Figure

Let the speed of the boat be $\mathrm{y} \mathrm{m} / \mathrm{min}$
$\therefore \mathrm{CD}=2 \mathrm{y}$
$\tan 60^{\circ}=\sqrt{3}=\frac{100}{x} \Rightarrow x=\frac{100}{\sqrt{3}}$
$\tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{100}{x+2 y} \Rightarrow x+2 y=100 \sqrt{3}$
$\therefore y=\frac{100 \sqrt{3}}{3}=57.73$
or speed of boat $=57.73 \mathrm{~m} / \mathrm{min}$.
OR

Correct Figure

Let $\mathrm{BC}=\mathrm{x}$ so $\mathrm{AB}=80-\mathrm{x}$
where AC is the road.

$$
\tan 60^{\circ}=\sqrt{3}=\frac{h}{x} \Rightarrow h=x \sqrt{3}
$$

$$
\begin{equation*}
\text { and } \tan 30^{\circ}=\frac{1}{\sqrt{3}}=\frac{\mathrm{h}}{80-\mathrm{x}} \Rightarrow \mathrm{~h} \sqrt{3}=80-\mathrm{x} \tag{1}
\end{equation*}
$$

Solving equation to get

$$
\begin{aligned}
& x=20, h=20 \sqrt{3} \\
& \therefore A B=60 \mathrm{~m}, B C=20 \mathrm{~m} \text { and } \mathrm{h}=20 \sqrt{3} \mathrm{~m} .
\end{aligned}
$$

27. Correct construction of $\triangle \mathrm{ABC}$.

Correct construction of triangle similar to triangle ABC .
28.

Volume of the bucket $=12308.8 \mathrm{~cm}^{3}$
Let $\mathrm{r}_{1}=20 \mathrm{~cm}, \mathrm{r}_{2}=12 \mathrm{~cm}$
$\therefore \quad \mathrm{V}=\frac{\pi \mathrm{h}}{3}\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{1} \mathrm{r}_{2}\right)$
$\therefore \quad 12308.8=\frac{3.14 \times \mathrm{h}}{3}(400+144+240)$
$\Rightarrow \mathrm{h}=\frac{12308.8 \times 3}{3.14 \times 784}=15 \mathrm{~cm}$
Now $l^{2}=\mathrm{h}^{2}+\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)^{2}=225+64=289$

$$
\begin{equation*}
\Rightarrow \quad l=17 \mathrm{~cm} . \tag{1}
\end{equation*}
$$

Surface area of metal sheet used $=\pi r_{2}^{2}+\pi l\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)$

$$
\begin{align*}
& =3.14(144+17 \times 32) \\
& =2160.32 \mathrm{~cm}^{2} . \tag{1}
\end{align*}
$$

29. Correct given, to prove, figure and construction

$$
\frac{1}{2} \times 4=2
$$

Correct proof.
30. Class

$0-10$	f_{1}	f_{1}
$10-20$	5	$5+f_{1}$
$20-30$	9	$14+f_{1}$
$30-40$	12	$26+f_{1}$
$40-50$	f_{2}	$26+f_{1}+f_{2}$
$50-60$	3	$29+f_{1}+f_{2}$
$60-70$	2	$31+f_{1}+f_{2}$
	$\frac{40}{4}$	

Correct Table 1

Median $=32.5 \Rightarrow$ median class is $30-40$.
Now $32.5=30+\frac{10}{12}\left(20-14-\mathrm{f}_{1}\right)$
$\Rightarrow \mathrm{f}_{1}=3$
Also $31+\mathrm{f}_{1}+\mathrm{f}_{2}=40$
$\Rightarrow f_{2}=6$

OR

Less than type distribution is as follows

Marks
Less than $5 \quad 2$
Less than $10 \quad 7$
Less than 1513
Less than 2021
Less than 2531
Less than 3056
Less than $35 \quad 76$
Less than 4094
Less than 4598

Less than 50

Correct Table $1 \frac{1}{2}$

Plotting of points $(5,2),(10,7)(15,13),(20,21),(25,31),(30,56)$,

$$
(35,76),(40,94),(45,98),(50,100)
$$

Joining to get the curve

Getting median from graph (approx. 29)

