CBSE Class 10 Maths Solutions 30/1/1

QUESTION PAPER CODE 30/1/1

EXPECTED ANSWER/VALUE POINTS

SECTION A

Let the point A be (x, y)

$$\therefore \quad \frac{1+x}{2} = 2 \text{ and } \frac{4+y}{2} = -3$$

$$\Rightarrow$$
 x = 3 and y = -10

$$\therefore \quad \text{Point A is } (3, -10)$$

Since roots of the equation $x^2 + 4x + k = 0$ are real

$$\Rightarrow 16 - 4k \ge 0$$

$$\Rightarrow k \le 4$$

$$\frac{1}{2}$$

$$\Rightarrow \quad k \le 4$$

OR

Roots of the equation $3x^2 - 10x + k = 0$ are reciprocal of each other

$$\Rightarrow$$
 Product of roots = 1 $\frac{1}{2}$

$$\Rightarrow \quad \frac{k}{3} = 1 \Rightarrow k = 3$$

 $\tan 2 A = \cot (90^{\circ} - 2A)$

$$\therefore 90^{\circ} - 2A = A - 24^{\circ}$$

$$\Rightarrow A = 38^{\circ}$$

OR

 $\sin 33^{\circ} = \cos 57^{\circ}$

$$\sin^2 33^\circ + \sin^2 57^\circ = \cos^2 57^\circ + \sin^2 57^\circ = 1$$

30/1/1 **(1)**

30/1/1

4. Numbers are 12, 15, 18, ..., 99 $\frac{1}{2}$

$$\therefore$$
 99 = 12 + (n - 1) × 3

$$\Rightarrow \quad n = 30$$

5.
$$AB = 1 + 2 = 3 \text{ cm}$$

 $\Delta ABC \sim \Delta ADE$

$$\therefore \frac{\operatorname{ar}(ABC)}{\operatorname{ar}(ADE)} = \frac{AB^2}{AD^2} = \frac{9}{1}$$

 \therefore ar(\triangle ABC) : ar(\triangle ADE) = 9 : 1

6. Any one rational number between $\sqrt{2}$ (1.41 approx.) and $\sqrt{3}$ (1.73 approx.) 1 e.g., 1.5, 1.6, 1.63 etc.

SECTION B

7. Using Euclid's Algorithm

$$7344 = 1260 \times 5 + 1044$$

$$1260 = 1044 \times 1 + 216$$

$$1044 = 216 \times 4 + 180$$

$$216 = 180 \times 1 + 36$$

$$180 = 36 \times 5 + 0$$

HCF of 1260 and 7344 is 36.
$$\frac{1}{2}$$

OR

$$a = 4q + r, 0 \le r < 4$$

Using Euclid's Algorithm

$$\Rightarrow$$
 a = 4q, a = 4q + 1, a = 4q + 2 and a = 4q + 3.

Now
$$a = 4q$$
 and $a = 4q + 2$ are even numbers. $\frac{1}{2}$

Therefore when a is odd, it is of the form

$$a = 4q + 1$$
 or $a = 4q + 3$ for some integer q. $\frac{1}{2}$

(2) 30/1/1

1

8.
$$a_n = a_{21} + 120$$

= $(3 + 20 \times 12) + 120$
= 363

1

$$\therefore$$
 363 = 3 + (n - 1) × 12

$$\Rightarrow$$
 n = 31

or 31st term is 120 more than a_{21} .

OR

$$a_1 = S_1 = 3 - 4 = -1$$

$$a_2 = S_2 - S_1 = [3(2)^2 - 4(2)] - (-1) = 5$$

$$\therefore d = a_2 - a_1 = 6$$

Hence
$$a_n = -1 + (n - 1) \times 6 = 6n - 7$$

Alternate method:

$$S_n = 3n^2 - 4n$$

$$S_n - SH - 4H$$

1

$$S_{n-1} = 3(n-1)^2 - 4(n-1) = 3n^2 - 10n + 7$$
Hence $a_n = S_n - S_{n-1}$

$$= (3n^2 - 4n) - (3n^2 - 10n + 7)$$

$$= 6n - 7$$

9.

Let the required point be (a, 0) and required ratio AP: PB = k: 1

P(a, 0) 1

$$\therefore \quad a = \frac{4k+1}{k+1}$$

$$0 = \frac{5k - 3}{k + 1}$$

$$\Rightarrow$$
 k = $\frac{3}{5}$ or required ratio is 3:5

Point P is
$$\left(\frac{17}{8}, 0\right)$$

30/1/1

10.	Total number of outcomes = 8	$\frac{1}{2}$
	Favourable number of outcomes (HHH, TTT) = 2	$\frac{1}{2}$

Favourable number of outcomes (HHH,
$$TTT$$
) = 2

Prob. (getting success) =
$$\frac{2}{8}$$
 or $\frac{1}{4}$ $\frac{1}{2}$

$$\therefore \text{ Prob. (losing the game)} = 1 - \frac{1}{4} = \frac{3}{4}.$$

11. Total number of outcomes = 6.

(i) Prob. (getting a prime number
$$(2, 3, 5)$$
) = $\frac{3}{6}$ or $\frac{1}{2}$

(ii) Prob. (getting a number between 2 and 6 (3, 4, 5)) =
$$\frac{3}{6}$$
 or $\frac{1}{2}$.

12. System of equations has infinitely many solutions

$$\therefore \quad \frac{c}{12} = \frac{3}{c} = \frac{3-c}{-c}$$

$$\Rightarrow c^2 = 36 \Rightarrow c = 6 \text{ or } c = -6 \qquad \dots (1)$$

Also
$$-3c = 3c - c^2 \Rightarrow c = 6 \text{ or } c = 0$$
 ...(2)

From equations (1) and (2)

$$c = 6.$$

SECTION C

Let us assume $\sqrt{2}$ be a rational number and its simplest form be $\frac{a}{b}$, a and b are coprime positive 13. integers and $b \neq 0$.

So
$$\sqrt{2} = \frac{a}{b}$$

$$\Rightarrow a^2 = 2b^2$$

Thus a² is a multiple of 2

$$\Rightarrow$$
 a is a multiple of 2. $\frac{1}{2}$

Let a = 2 m for some integer m

(4) 30/1/1

30/1/1

$$b^2 = 2m^2$$

Thus b^2 is a multiple of 2

$$\Rightarrow$$
 b is a multiple of 2

Hence 2 is a common factor of a and b.

This contradicts the fact that a and b are coprimes

Hence
$$\sqrt{2}$$
 is an irrational number. $\frac{1}{2}$

14. Sum of zeroes =
$$k + 6$$

Product of zeroes =
$$2(2k - 1)$$

Hence
$$k + 6 = \frac{1}{2} \times 2(2k - 1)$$

$$\Rightarrow$$
 k = 7

15. Let sum of the ages of two children be x yrs and father's age be y yrs.

$$y = 3x \qquad \qquad \dots (1)$$

and
$$y + 5 = 2(x + 10)$$
 ...(2)

Solving equations (1) and (2)

$$x = 15$$

and y = 45

OR

Let the fraction be $\frac{x}{y}$

$$\therefore \quad \frac{x-2}{y} = \frac{1}{3} \qquad \dots (1)$$

and
$$\frac{x}{y-1} = \frac{1}{2}$$
 ...(2)

Solving (1) and (2) to get x = 7, y = 15.

$$\therefore \quad \text{Required fraction is } \frac{7}{15}$$

30/1/1 (5)

16. Let the required point on y-axis be
$$(0, b)$$

$$\therefore (5-0)^2 + (-2-b)^2 = (-3-0)^2 + (2-b)^2$$

$$\Rightarrow$$
 29 + 4b + b² = 13 + b² - 4b

$$\Rightarrow$$
 b = -2

$$\therefore \quad \text{Required point is } (0, -2) \qquad \qquad \frac{1}{2}$$

OR

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

$$AP : PB = 1 : 2$$

$$x = \frac{4+5}{3} = 3$$
 and $y = \frac{2-8}{3} = -2$

 $\frac{1}{2}$

1

1

Thus point P is
$$(3, -2)$$
.

Point
$$(3, -2)$$
 lies on $2x - y + k = 0$

$$\Rightarrow 6 + 2 + k = 0$$

$$\Rightarrow$$
 k = -8.

17. LHS =
$$\sin^2 \theta + \csc^2 \theta + 2\sin \theta \csc \theta + \cos^2 \theta + \sec^2 \theta + 2\cos \theta \sec \theta$$

$$= (\sin^2 \theta + \cos^2 \theta) + \csc^2 \theta + \sec^2 \theta + \frac{2\sin \theta}{\sin \theta} + 2\frac{\cos \theta}{\cos \theta}.$$

$$= 1 + 1 + \cot^2 \theta + 1 + \tan^2 \theta + 2 + 2$$

$$= 7 + \cot^2 \theta + \tan^2 \theta = RHS$$

OR

LHS =
$$\left(1 + \frac{1}{\tan A} - \csc A\right) (1 + \tan A + \sec A)$$

$$= \frac{1}{\tan A} (\tan A + 1 - \sec A) (1 + \tan A + \sec A)$$

$$= \frac{1}{\tan A} [(1 + \tan A)^2 - \sec^2 A]$$

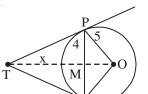
$$= \frac{1}{\tan A} [1 + \tan^2 A + 2 \tan A - 1 - \tan^2 A]$$

= 2 = RHS

(6) 30/1/1

Alternate method

LHS =
$$\left(1 + \frac{\cos A}{\sin A} - \frac{1}{\sin A}\right) \left(1 + \frac{\sin A}{\cos A} + \frac{1}{\cos A}\right)$$


$$= (\sin A + \cos A - 1)(\cos A + \sin A + 1) \cdot \frac{1}{\cos A \sin A}$$

$$= \left[(\sin A + \cos A)^2 - 1 \right] \times \frac{1}{\sin A \cos A}$$

$$= (1 + 2\sin A\cos - 1) \times \frac{1}{\sin A\cos A}$$

$$= 2 = RHS$$

18.

$$TP = TQ$$

$$\therefore$$
 TM \perp PQ and bisects PQ

Hence PM = 4 cm

Therefore OM =
$$\sqrt{25-16} = \sqrt{9} = 3 \text{ cm}.$$
 $\frac{1}{2}$

 $\frac{1}{2}$

Let TM = x

From
$$\triangle PMT$$
, $PT^2 = x^2 + 16$

From
$$\triangle POT$$
, $PT^2 = (x + 3)^2 - 25$

Hence
$$x^2 + 16 = x^2 + 9 + 6x - 25$$

$$\Rightarrow 6x = 32 \Rightarrow x = \frac{16}{3}$$

Hence
$$PT^2 = \frac{256}{9} + 16 = \frac{400}{9}$$

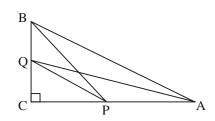
$$\therefore PT = \frac{20}{3} \text{ cm.}$$

30/1/1 (7)

19. \triangle ACB ~ \triangle ADC (AA similarity)

$$\Rightarrow \frac{AC}{BC} = \frac{AD}{CD} \qquad ...(1)$$

Also $\triangle ACB \sim \triangle CDB$ (AA similarity)


$$\Rightarrow \frac{AC}{BC} = \frac{CD}{BD} \qquad ...(2)$$

Using equations (1) and (2)

$$\frac{AD}{CD} = \frac{CD}{BD}$$

$$\Rightarrow$$
 CD² = AD × BD

OR

Correct Figure

$$AQ^2 = CQ^2 + AC^2$$

1

$$BP^2 = CP^2 + BC^2 \qquad \qquad \frac{1}{2}$$

$$AQ^2 + BP^2 = (CQ^2 + CP^2) + (AC^2 + BC^2)$$

$$= PQ^2 + AB^2.$$

20. AC =
$$\sqrt{64 + 36} = 10$$
 cm.

$$\therefore$$
 Radius of the circle (r) = 5 cm.

Area of shaded region = Area of circle – Ar(ABCD) $\frac{1}{2}$

$$= 3.14 \times 25 - 6 \times 8$$

$$= 78.5 - 48$$

$$= 30.5 \text{ cm}^2.$$
 $\frac{1}{2}$

21. Length of canal covered in 30 min = 5000 m.

∴ Volume of water flown in 30 min =
$$6 \times 1.5 \times 5000 \text{ m}^3$$

If 8 cm standing water is needed

(8) 30/1/1

then area irrigated =
$$\frac{6 \times 1.5 \times 5000}{.08}$$
 = 562500 m².

 $1+\frac{1}{2}$

22. Modal class is 30-40

 $\frac{1}{2}$

$$\therefore \quad \text{Mode} = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

$$= 30 + \left(\frac{16-10}{32-10-12}\right) \times 10$$

2

 $\frac{1}{2}$

SECTION D

23. Let the smaller tap fills the tank in x hrs

 \therefore the larger tap fills the tank in (x-2) hrs.

Time taken by both the taps together = $\frac{15}{8}$ hrs.

Therefore
$$\frac{1}{x} + \frac{1}{x-2} = \frac{8}{15}$$

2

$$\Rightarrow 4x^2 - 23x + 15 = 0$$

 $\frac{1}{2}$

$$\Rightarrow (4x - 3)(x - 5) = 0$$

$$x \neq \frac{3}{4}$$
 $\therefore x = 5$

1

Smaller and larger taps can fill the tank seperately in 5 hrs and 3 hrs resp.

 $\frac{1}{2}$

OR

Let the speed of the boat in still water be x km/hr and speed of the stream be y km/hr.

Given
$$\frac{30}{x - y} + \frac{44}{x + y} = 10$$

1

and
$$\frac{40}{x-y} + \frac{55}{x+y} = 13$$

1

30/1/1 (9)

Solving (i) and (ii) to get

$$x + y = 11$$
 ...(iii)

and
$$x - y = 5$$
 ...(iv)

Solving (iii) and (iv) to get
$$x = 8$$
, $y = 3$. 1+1

Speed of boat = 8 km/hr & speed of stream = 3 km/hr.

24.
$$S_4 = 40 \Rightarrow 2(2a + 3d) = 40 \Rightarrow 2a + 3d = 20$$

$$S_{14} = 280 \Rightarrow 7(2a + 13d) = 280 \Rightarrow 2a + 13d = 40$$

Solving to get
$$d = 2$$

and
$$a = 7$$

$$\frac{1}{2}$$

$$Sn = \frac{n}{2}[14 + (n-1) \times 2]$$

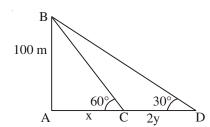
$$= n(n+6) \text{ or } (n^2 + 6n)$$

25. LHS =
$$\frac{\sin A - \cos A + 1}{\sin A + \cos A - 1}$$

Dividing num. & deno. by cos A

$$= \frac{\tan A - 1 + \sec A}{\tan A + 1 - \sec A}$$

$$= \frac{\tan A - 1 + \sec A}{(\tan A - \sec A) + (\sec^2 A - \tan^2 A)}$$


$$= \frac{\tan A - 1 + \sec A}{(\tan A - \sec A)(1 - \sec A - \tan A)}$$

$$= \frac{-1}{\tan A - \sec A} = \frac{1}{\sec A - \tan A} = RHS$$

(10) 30/1/1

1

26.

Correct Figure

1

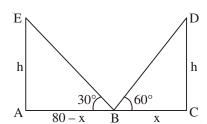
Let the speed of the boat be y m/min

$$\therefore$$
 CD = 2y

$$\tan 60^\circ = \sqrt{3} = \frac{100}{x} \implies x = \frac{100}{\sqrt{3}}$$

$$\tan 30^\circ = \frac{1}{\sqrt{3}} = \frac{100}{x + 2y} \implies x + 2y = 100\sqrt{3}$$

$$y = \frac{100\sqrt{3}}{3} = 57.73$$


1

1

or speed of boat = 57.73 m/min.

OR

Let BC = x so AB = 80 - x

Correct Figure

where AC is the road.

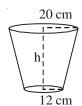
$$\tan 60^\circ = \sqrt{3} = \frac{h}{x} \Rightarrow h = x\sqrt{3}$$

and
$$\tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{h}{80 - x} \Rightarrow h\sqrt{3} = 80 - x$$

Solving equation to get

$$x = 20, h = 20\sqrt{3}$$

:. AB = 60 m, BC = 20 m and h =
$$20\sqrt{3}$$
 m.


27. Correct construction of $\triangle ABC$.

2

Correct construction of triangle similar to triangle ABC. 2

30/1/1 **(11)**

Volume of the bucket = 12308.8 cm^3

Let $r_1 = 20$ cm, $r_2 = 12$ cm

$$\therefore V = \frac{\pi h}{3} (r_1^2 + r_2^2 + r_1 r_2)$$

$$\therefore 12308.8 = \frac{3.14 \times h}{3} (400 + 144 + 240)$$

$$\Rightarrow h = \frac{12308.8 \times 3}{3.14 \times 784} = 15 \text{ cm}$$

Now
$$l^2 = h^2 + (r_1 - r_2)^2 = 225 + 64 = 289$$

$$\Rightarrow l = 17 \text{ cm}.$$

Surface area of metal sheet used = $\pi r_2^2 + \pi l (r_1 + r_2)$

$$= 3.14 (144 + 17 \times 32)$$
$$= 2160.32 \text{ cm}^2.$$

29. Correct given, to prove, figure and construction

$$\frac{1}{2} \times 4 = 2$$

2

1

1

Correct proof.

30.	Class	Frequency	Cumulative freq.		
	0-10	\mathbf{f}_1	$\mathbf{f_1}$		
	10-20	5	$5 + f_1$		
	20-30	9	$14 + f_1$		
	30-40	12	$26 + f_1$		
	40-50	f_2	$26 + f_1 + f_2$		
	50-60	3	$29 + f_1 + f_2$		
	60-70	2	$31 + f_1 + f_2$	Correct Table	1
		40			

Median = $32.5 \Rightarrow$ median class is 30-40.

$$\frac{1}{2}$$

Now
$$32.5 = 30 + \frac{10}{12}(20 - 14 - f_1)$$

$$\Rightarrow f_1 = 3$$

Also
$$31 + f_1 + f_2 = 40$$

$$\Rightarrow f_2 = 6$$

(12) 30/1/1

30/1/1

OR

Less than type distribution is as follows

Marks	No. of students							
Less than 5	2							
Less than 10	7							
Less than 15	13							
Less than 20	21							
Less than 25	31							
Less than 30	56							
Less than 35	76							
Less than 40	94							
Less than 45	98							
Less than 50	100	Correct Table	$1\frac{1}{2}$					
Plotting of points (5, 2), (10, 7) (15, 13), (20, 21), (25, 31), (30, 56),								
(35, 76), (40, 94), (45, 98), (50, 100)								
Joining to get the curve								
Getting median from graph (approx. 29)								

30/1/1 (13)