CBSE Class 10 Maths Solutions

30/3/1

QUESTION PAPER CODE 30/3/1 EXPECTED ANSWER/VALUE POINTS

SECTION A

1. $(x+5)^{2}=2(5 x-3) \Rightarrow x^{2}+31=10$

$$
\mathrm{D}=-124
$$

2. $\frac{27}{2^{3} \cdot 5^{4} \cdot 3^{2}}=\frac{3}{2^{3} \cdot 5^{4}}$

It will terminate after 4 decimal places
$429=3 \times 11 \times 13$
3. $\mathrm{S}_{10}=\frac{10}{2}[2 \times 6+9 \times 6]$

$$
=330
$$

4. $\mathrm{AB}=5$

$$
\begin{array}{ll}
\Rightarrow \sqrt{(x-0)^{2}+(-4-0)^{2}}=5 & \frac{1}{2} \\
x^{2}+16=25 & \frac{1}{2} \\
x= \pm 3 &
\end{array}
$$

5. Length of chord $=2 \sqrt{\mathrm{a}^{2}-\mathrm{b}^{2}} 1$
6. $P Q=5 \mathrm{~cm}$
$\tan \theta=\frac{\mathrm{PQ}}{\mathrm{PR}}=\frac{5}{9}$
OR
$\sec \alpha=\sqrt{1+\tan ^{2} \alpha}$

$$
=\sqrt{1+\frac{25}{144}}=\frac{13}{12}
$$

SECTION B

7. Diagonals of parallelogram bisect each other

$$
\begin{aligned}
\therefore \quad & \left(\frac{3+\mathrm{a}}{2}, \frac{1+\mathrm{b}}{2}\right)=\left(\frac{5+4}{2}, \frac{1+3}{2}\right) \\
& 3+\mathrm{a}=9,1+\mathrm{b}=4
\end{aligned}
$$

So $\quad a=6, b=3$

OR

P divides AB in the ratio $1: 2$

$$
\therefore \text { Coordinates of } \mathrm{P} \text { are }\left(\frac{0-4}{3}, \frac{8+0}{2}\right)=\left(\frac{-4}{3}, \frac{8}{3}\right)
$$

$$
\therefore \text { Coordinates of } \mathrm{Q} \text { are }\left(\frac{0-2}{3}, \frac{16+0}{3}\right)=\left(\frac{-2}{3}, \frac{16}{3}\right)
$$

8. $3 x-5 y=4$
$9 x-2 y=7$
$9 x-15 y=12$
$9 x-2 y=7$
$-\quad+\quad-$

$$
-13 y=5 \Rightarrow y=-5 / 13
$$

From (1), $\mathrm{x}=9 / 13 \therefore$ solution is $\left(\frac{9}{13}, \frac{-5}{13}\right)$
9. $\operatorname{HCF}(65,117)=13$
$13=65 n-117$

Solving, we get, $\mathrm{n}=2$

OR

$$
\begin{array}{ll}
\text { Required minimum distance } & =\operatorname{LCM}(30,36,40) \\
30=2 \times 3 \times 5 & =2^{3} \times 3^{2} \times 5 \\
36=2^{2} \times 3^{2} & =360 \mathrm{~cm} \\
40=2^{3} \times 5 &
\end{array}
$$

10. Composite numbers on a die are 4 and 6
$\therefore \quad \mathrm{P}($ composite number $)=\frac{2}{6}$ or $\frac{1}{3}$
1
Prime numbers are 2, 3 and 5
$\therefore \quad \mathrm{P}($ prime number $)=\frac{3}{6}$ or $\frac{1}{2}$

Square of a number can't be negative
$\therefore \quad$ The equation has no solution.
12. Total number of possible outcomes $=34$

Favourable number of outcomes is $(7,14,21,28$ and 35$)=5$
$P($ multiple of 7$)=\frac{5}{34}$

SECTION C

13.

$$
\begin{aligned}
& \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2} \\
& \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2} \\
& \mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{BD}^{2}-\mathrm{CD}^{2} \\
& =(3 \mathrm{CD})^{2}-\mathrm{CD}^{2} \\
& =8 \mathrm{CD}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =8 \times\left(\frac{1}{4} \mathrm{BC}\right)^{2} \\
& \Rightarrow 2 \mathrm{AB}^{2}-2 \mathrm{AC}^{2}=\mathrm{BC}^{2} \\
& \text { or } 2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}
\end{aligned}
$$

OR

Correct Figure

$\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$

$$
\therefore \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}
$$

$$
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{2 \mathrm{BD}}{2 \mathrm{QM}} \text { or } \frac{\mathrm{BD}}{\mathrm{QM}}
$$

Also $\angle \mathrm{B}=\angle \mathrm{Q}$

$$
\therefore \Delta \mathrm{ABD} \sim \Delta \mathrm{PQM}
$$

$$
\text { So } \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}}
$$

14.

$$
2 \frac{1}{2}
$$

$$
\begin{aligned}
& x ^ { 3 } - 3 x + 1 \longdiv { x ^ { 5 } - 4 x ^ { 3 } + x | ^ { 2 } + 3 x + 1 } (x ^ { 2 } - 1 \\
& \begin{array}{l}
-x^{k}+3 x+1 \\
-x x^{3}+8 x-1
\end{array}
\end{aligned}
$$

Since remainder $\neq 0 \therefore \mathrm{~g}(\mathrm{x})$ is not a factor of $\mathrm{p}(\mathrm{x})$
15.

Coordinates of mid points are
$\mathrm{D}(1,2)$

E (1, 0)
$\mathrm{F}(0,1)$

Area of $\triangle \mathrm{DEF}=\frac{1}{2}[1(0-1)+1(1-2)+0]$
$=\frac{1}{2}(-2)=1$ sq. unit
Correct graph
Solution is

$$
x=2, y=3
$$

17. Let us assume that $\sqrt{3}$ be a rational number

$$
\begin{array}{rlr}
\sqrt{3}= & \frac{\mathrm{p}}{\mathrm{q}} \text { where } \mathrm{p} \text { and } \mathrm{q} \text { are co-primes and } \mathrm{q} \neq 0 & \frac{1}{2} \\
\Rightarrow & \mathrm{p}^{2}=3 \mathrm{q}^{2} \\
\therefore & 3 \text { divides } \mathrm{p}^{2} \\
& \text { i.e., } 3 \text { divides } \mathrm{p} \text { also } \\
& \text { Let } \mathrm{p}=3 \mathrm{~m}, \text { for some integer } \mathrm{m} & \ldots(1) \\
& \text { From }(1), 9 \mathrm{~m}^{2}=3 \mathrm{q}^{2} \\
\Rightarrow & \mathrm{q}^{2}=3 \mathrm{~m}^{2} \\
\therefore & 3 \text { divides } \mathrm{q}^{2} \text { i.e., } 3 \text { divides } \mathrm{q} \text { also } & \ldots(3)
\end{array}
$$

From (2) and (3), we get that 3 divides p and q both which is a contradiction to the fact that p and q are co-primes.
Hence our assumption is wrong
$\therefore \sqrt{3}$ is irrational

OR

$1251-1=1250,9377-2=9375,15628-3=15625$
Required largest number $=\operatorname{HCF}(1250,9375,15625)$

$$
\left.\begin{array}{l}
1250=2 \times 5^{4} \\
9375=3 \times 5^{4} \\
6250=2 \times 5^{5}
\end{array}\right\}
$$

18. $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are interior angles of $\triangle \mathrm{ABC}$
$\therefore \quad \mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$
(i) $\sin \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)=\sin \left(\frac{180^{\circ}-\mathrm{A}}{2}\right)$

$$
=\sin \left(90^{\circ}-\frac{\mathrm{A}}{2}\right)
$$

$$
=\cos \frac{\mathrm{A}}{2}
$$

(ii) $\tan \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)=\tan \left(\frac{90^{\circ}}{2}\right)$ $\left(\because \angle \mathrm{A}=90^{\circ}\right)$

$$
\begin{aligned}
& =\tan 45^{\circ} \\
& =1
\end{aligned}
$$

OR

$$
\tan (\mathrm{A}+\mathrm{B})=1 \therefore \mathrm{~A}+\mathrm{B}=45^{\circ}
$$

$$
\tan (\mathrm{A}-\mathrm{B})=\frac{1}{\sqrt{3}} \therefore \mathrm{~A}-\mathrm{B}=30^{\circ}
$$

Solving, we get $\angle \mathrm{A}=37 \frac{1^{\circ}}{2}$ or 37.5°
$\angle \mathrm{B}=7 \frac{1^{\circ}}{2}$ or 7.5°
19.

Let TR be xcm and TP be ycm

OT is \perp bisector of PQ

So $P R=4 \mathrm{~cm}$
$\ln \triangle \mathrm{OPR}, \mathrm{OP}^{2}=\mathrm{PR}^{2}+\mathrm{OR}^{2}$

$$
\therefore \mathrm{OR}=3 \mathrm{~cm}
$$

$\ln \triangle \mathrm{PRT}, \mathrm{y}^{2}=\mathrm{x}^{2}+4^{2}$
$\ln \Delta \mathrm{OPT},(\mathrm{x}+3)^{2}=5^{2}+\mathrm{y}^{2}$
$\therefore(\mathrm{x}+3)^{2}=5^{2}+\mathrm{x}^{2}+16 \quad[$ using (1)]
Solving we get $\mathrm{x}=\frac{16}{3} \mathrm{~cm}$

From (1), $y^{2}=\frac{256}{9}+16=\frac{400}{9}$
So $\mathrm{y}=\frac{20}{3} \mathrm{~cm}$

OR
$\triangle \mathrm{ROC} \cong \Delta \mathrm{QOC}$
$\therefore 2 \angle 1+2 \angle 4+2 \angle 5+2 \angle 8=360$
$\Rightarrow \angle 1+\angle 4+\angle 5+\angle 8=180^{\circ}$

$$
\begin{aligned}
& \text { So, } \angle \mathrm{DOC}+\angle \mathrm{AOB}=180^{\circ} \\
& \text { and } \angle \mathrm{AOD}+\angle \mathrm{BOC}=180^{\circ} .
\end{aligned}
$$

20. Volume of water flowing through canal in 30 minutes

$$
=5000 \times 6 \times 1.5=45000 \mathrm{~m}^{3} \quad 1 \frac{1}{2}
$$

$$
\begin{aligned}
\text { Area } & =45000 \div \frac{8}{100} \\
& =562500 \mathrm{~m}^{2}
\end{aligned}
$$

21.

Number of days	Number of students (fi)	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$
$0-6$	10	3	30
$6-12$	11	9	99
$12-18$	7	15	105
$18-24$	4	21	84
$24-30$	4	27	108
$30-36$	3	33	99
$36-42$	1	39	39
Total	40		564
$\overline{\mathrm{x}}=\frac{\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\Sigma \mathrm{f}_{\mathrm{i}}}=\frac{564}{40}$			
$=14.1$			

22. Total area cleaned $=2 \times$ Area of sector

$$
\begin{aligned}
& =2 \times \frac{\pi r^{2} \theta}{260^{\circ}} \\
& =2 \times \frac{22}{7} \times 21 \times 21 \times \frac{120^{\circ}}{360^{\circ}} \\
& =924 \mathrm{~cm}^{2}
\end{aligned}
$$

23.

Correct Figure

$\mathrm{PB}-\mathrm{PA}=7 \mathrm{~m}$

Let AP be $\mathrm{x} \mathrm{m} \quad \therefore \mathrm{PB}=(\mathrm{x}+7) \mathrm{m}$

$$
\begin{aligned}
& \mathrm{AB}^{2}=\mathrm{PB}^{2}+\mathrm{AB}^{2} \\
& \therefore 13^{2}=(\mathrm{x}+7)^{2}+\mathrm{x}^{2} \\
& \mathrm{x}^{2}+7 \mathrm{x}-60=0 \\
& =(\mathrm{x}+12)(\mathrm{x}-5)=0 \\
& \therefore \mathrm{x}=5,-12 \text { Rejected }
\end{aligned}
$$

\therefore Situation is possible
\therefore Distance of pole from gate $A=5 \mathrm{~m}$
and distance of pole from gate $\mathrm{B}=12 \mathrm{~m}$.
24. $m a_{m}=n a_{n}$
$\Rightarrow \quad \mathrm{ma}+\mathrm{m}(\mathrm{m}-1) \mathrm{d}=\mathrm{na}+\mathrm{n}(\mathrm{n}-1) \mathrm{d}$
$\Rightarrow \quad(\mathrm{m}-\mathrm{n}) \mathrm{a}+\left(\mathrm{m}^{2}-\mathrm{m}-\mathrm{n}^{2}+\mathrm{n}\right) \mathrm{d}=0$
$(\mathrm{m}-\mathrm{n}) \mathrm{a}+[(\mathrm{m}-\mathrm{n})(\mathrm{m}+\mathrm{n})-(\mathrm{m}-\mathrm{n}) \mathrm{d}]=0$
Dividing by $(\mathrm{m}-\mathrm{n})$
So, $\quad a+(m+n-1) d=0$
or $\quad a_{m+n}=0$
OR

Let first three terms be $a-d$, a and $a+d$

$$
a-d+a+a+d=18
$$

So $\quad a=6$

$$
(\mathrm{a}-\mathrm{d})(\mathrm{a}+\mathrm{d})=5 \mathrm{~d}
$$

$\Rightarrow \quad 6^{2}-d^{2}=5 \mathrm{~d}$
or $\quad d^{2}+5 d-36=0$

$$
(d+9)(d-4)=0
$$

so $d=-9$ or 4

For $\mathrm{d}=-9$ three numbers are 15,6 and -3
25. Correct construction of $\triangle \mathrm{ABC}$

Correct construction of triangle similar to $\triangle \mathrm{ABC}$
26. (a) Total surface area of block

$$
\begin{aligned}
& =\text { TSA of cube }+ \text { CSA of hemisphere }- \text { Base area of hemisphere } \\
& =6 \mathrm{a}^{2}+2 \pi \mathrm{r}^{2}-\pi \mathrm{r}^{2} \\
& =6 \mathrm{a}^{2}+\pi \mathrm{r}^{2} \\
& =\left(6 \times 6^{2}+\frac{22}{7} \times 2.1 \times 2.1\right) \mathrm{cm}^{2} \\
& =(216+13.86) \mathrm{cm}^{2} \\
& =229.86 \mathrm{~cm}^{2}
\end{aligned}
$$

(b) Volume of block

$$
\begin{aligned}
& =6^{3}+\frac{2}{3} \times \frac{22}{7} \times(2.1)^{3} \\
& =(216+19.40) \mathrm{cm}^{3} \\
& =235.40 \mathrm{~cm}^{3}
\end{aligned}
$$

OR
Volume of frustum $=12308.8 \mathrm{~cm}^{3}$

$$
\begin{aligned}
\therefore \quad & \frac{1}{3} \pi \mathrm{~h}\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{1} \mathrm{r}_{2}\right)=12308.8 \\
\Rightarrow \quad & \frac{1}{3} \times 3.14 \times \mathrm{h}\left(20^{2}+12^{2}+20 \times 12\right)=12308.8 \\
& \mathrm{~h}=\frac{12308.8 \times 3}{784 \times 3.14} \\
& \mathrm{~h}=15 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{equation*}
l=\sqrt{15^{2}+(20-12)^{2}}=17 \mathrm{~cm} . \tag{1}
\end{equation*}
$$

Area of metal sheet used $=\pi l\left(r_{1}+r_{2}\right)+\pi r_{2}^{2}$

$$
\begin{aligned}
& =3.14\left[17 \times 32+12^{2}\right] \\
& =3.14 \times 688 \mathrm{~cm}^{2} \\
& =2160.32 \mathrm{~cm}^{2}
\end{aligned}
$$

27. Correct figure, given, to prove and construction

Correct proof.
OR

Correct figure, given, to prove and construction
Correct proof.
28. $1+\sin ^{2} \theta=3 \sin \theta \cos \theta$

Dividing by $\cos ^{2} \theta$
$\sec ^{2} \theta+\tan ^{2} \theta=3 \tan \theta$
$\Rightarrow \quad 1+\tan ^{2} \theta+\tan ^{2} \theta=3 \tan \theta$
$\Rightarrow 2 \tan ^{2} \theta-3 \tan \theta+1=0$
$(\tan \theta-1)(2 \tan \theta-1)=0$
So $\tan \theta=1$ or $\frac{1}{2}$

Alternate method

$1+\sin ^{2} \theta=3 \sin \theta \cos \theta$
$\sin ^{2} \theta+\cos ^{2} \theta+\sin ^{2} \theta-3 \sin \theta \cos \theta=0$
Dividing by $\cos ^{2} \theta$
$\Rightarrow 2 \tan ^{2} \theta-3 \tan \theta+1=0$
$\Rightarrow \quad(\tan \theta-1)(2 \tan \theta-1)=0$
So $\tan \theta=1$ or $\frac{1}{2}$

29. Class interval

More than or equal to 20
More than or equal to 30
More than or equal to 40
More than or equal to 50
More than or equal to 60
More than or equal to 70
More than or equal to 80

Cumulative Frequency

100
90
82
70
46
40
15

Plotting of points $(20,100),(30,90),(40,82),(50,70),(60,46),(70,40)$ and $(80,15)$

Let $A B=h$ be the height of tower

$$
\begin{aligned}
& \ln \triangle \mathrm{ABC}, \frac{\mathrm{~h}}{\mathrm{x}}=\tan 60^{\circ} \\
& \mathrm{h}=\mathrm{x} \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& \ln \triangle A B D, \frac{h}{x+40}=\tan 30^{\circ} \\
& \Rightarrow \mathrm{h} \sqrt{3}=\mathrm{x}+40 \\
& 3 \mathrm{x}=\mathrm{x}+40 \\
& \therefore \mathrm{x}=20
\end{aligned}
$$

So, height of tower $=\mathrm{h}=20 \sqrt{3} \mathrm{~m}$
$=20 \times 1.732 \mathrm{~m}$

$$
=34.64 \mathrm{~m}
$$

