CBSE Class 10 Science Solution PDF

31/1/1

<u>SET 31/ 1 / 1</u>

Q.No	Value Point/Expected Answer	Value	Total Marks
1.	Section 'A' Detect the presence or direction of current.	1	1
2.	It burns completely/ burns without smoke / high calorific value.	1	1
3.	Section 'B' Modern periodic table consists of groups and periods. Where number of valence electrons determines the group and number of shells determines the period .	1, 1	
	OR		
	 (a) Group - 14, Period - 3 (b) Silicon Non - metallic / poor conductor of electricity (or any other property) 	1/2 + 1/2 1/2 1/2	2
4.	 Aerobic / Presence of oxygen Product – CO₂ and H₂O Anaerobic / Absence of oxygen Product – lactic acid 	Y2 Y2 Y2 Y2 Y2	2
5.	 Power of accommodation – Ability of eye lens to adjust its focal length. Curvature increases/lens becomes thick 	1 1	2
6.	 SECTION C White silver chloride turns grey in sunlight 2AgCl Sunlight 2 Ag + Cl₂ Decomposition reaction / Photolytic decomposition 	1 1 1	
	OR		
	a) Displacement reaction $Zn + 2 AgNO_3 \longrightarrow Zn (NO_3)_2 + 2 Ag$	½ 1	
	b) Double displacement reaction 2 KI + Pb (NO ₃) ₂ → PbI ₂ + 2KNO ₃ (deduct ¹ / ₂ mark for non balanced equation)	½ 1	3

7.	 Acid – Hydrochloric acid/HCl Base – Sodium hydroxide/NaOH Neutral Salt When it forms brown crystals combined with impurities Drying up of seas 	1/2 1/2 1/2 1/2 1/2	3
8.	 i. A₂O - Valency of group one is 1 and of oxygen is 2 ii. AX₃ - Valency of group 13 is 3 and of halogen is 1 iii. AB₂- Valency of element A of group 2 is 2 and of element B of group seventeen is 1. 	1/2+1/2 1/2+1/2 1/2+1/2	3
9.	 Arteries – No valves/thick walled/carry oxygenated blood/carry blood away from heart. Veins – Presence of valves/thin walled/carry deoxygenated blood/carry blood towards heart. Capillaries – very fine/mixed blood/found in tissues/sites for material exchange. 	1 1 1	3
10.	Receptor Cells of eyes/retina	½х6	3
11.	Plant hormones – Chemical substances which help the plant to coordinate growth and development i) Auxins/ Gibberellins ii) Cytokinins iii) Abscisic Acid / ABA iv) Auxins/ Gibberellins	1 ½ x4	3
12.	 Pea Plant / Garden pea / Pisum sativum F₁ - All tall; F₂- Tall and short Ratio - Tall : Short	1 ½ + ½ 1	
12	Acquired TraitsInherited Traits1. These traits are not transferred from one generation to the next generation1. These traits are transferred from one generation to the next2. They do not bring about change in DNA Example: Acquiring any skill2. They bring about changes in DNA Example: Eye colour (or any other relevant point and example)	1 1 1	3
13.			

	by losing electrons	ions by gaining electrons	1x3	
	 b) i) Metals have loosely bound electrons / I ii) Molten iron produced during reaction j 	Loose electrons easily / free electrons oins the cracked machine parts.	1 1	5
17.	 C₂H₅OH, Ethanol/Ethyl a Good solvent; used in me i) 2C₂H₅OH + 2 Na → 	alcohol edicines (Any other) $2C_2H_5ONa + H_2$	$\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	
	Sodium ethoxide		1/2	
	ii) C_2H_5OH Hot Conc. H	$H_2SO_4 \rightarrow CH_2 = CH_2 + H_2O$	1	
	Ethene Ethene		1/2	
		OR		
	• CH ₄ /Simplest hyd	lrocarbon	1/2	
	H ·x C	H	1	
	• Covalent bonds		1/2	
	i) No ions or charge ii) Due to weak cova	ed particles are formed alent bonds	1	
	• Carbon dioxic $CH_4 + 2O_2$ —	de and water are produced/ \rightarrow CO ₂ + 2H ₂ O	1	5
18.	 Pollination – Transfer of pollen fro Type of Pollination – 	m anther / stamen to stigma of the flower	1	
	a) Self pollination – Transfer of pol in the same flower	llen from anther / stamen to stigma occurs	1/2 + 1/2	
	b) Cross pollination – Pollen is trar to stigma of another flower	sferred from anther / stamen of one flower	½ + ½	
	 Agents of pollination – Wind, Wate A tube grows out of the pollen grait 	er, Insects and Animals (any 2)	1/2 + 1/2	
	female germ cell in the ovary to car	use fertilization	1	
		OR		
(a)	 Female reproductive system Name of parts – 		1/2	

(b)	 1: Fallopian tube/Oviduct 2: Ovary 3: Uterus 4: Cervix 5: Vagina Method to avoid pregnancy Advantages Proper gap between two pregnancies Avoiding unwanted pregnancy Keeping population under control 	½ x 5 ½	5
19.	i) u = -60 cm f = -30 cm v = ? $\frac{1}{f} = \frac{1}{v} \cdot \frac{1}{u}$ $\therefore \frac{1}{v} = \frac{1}{f} + \frac{1}{u}$ $= \frac{1}{(-30 cm)} + \frac{1}{(-60 cm)} = \frac{-3}{60}$ $\therefore v = -20 cm$ $m = v/u = \frac{-20 cm}{-60 cm} = \frac{1}{3}$ ii) Nature: Virtual Position: - 20 cm from lens on the same side as the object Size: - Diminished Erect/Inverted: - Erect (iii) (iii)	1 1 1 1 2 2 2 2 2 2 2 2 2 2 2	5
20.	a)		

	$=\frac{6}{24} \ge 4 = 1 \text{ V}$	1	5
	d) $\mathbf{P} = \mathbf{V}\mathbf{I}$		
	$= 5 \text{ V x} \frac{6}{1000} \text{ A} = 1.25 \text{ W}$		
21.	 A coil of many turns of insulated copper wire wrapped closely in the shape of a cylinder 	1	
	•		
		1	
	ii)	299	
		1	
	- Distinguishing footures		
	Solenoid Bar Magnet	7	
	1)Field disappear on stopping the current 1) No effect of current on field	-11	
	2) Strength of the field can be changed by 2) Strength cannot be changed		
	changing the current		
	3) Direction can be reversed by changing 3) Direction is fixed and cannot be	11	
	the direction of current through it. reversed.		
	(Any two features	s) 2	5

22.	 Section E Test Tube A It changes the colour from blue to red Hydrochloric acid turns blue litmus red. 	½ ½ 1	
	OR		
	 Brisk effervescence is produced Na₂CO₃ + 2HCl → 2 NaCl + H₂O + CO₂ 	1 1	2
23.	 In test tube A As distilled water contains no salts 	1 1	2
24.	In the second se	1 ½ x 2	
	Drawing in proper sequence Labelling – Bud	1 1	2
25.	 Substance taken: KOH Function: It absorbs CO₂ produced by the germinating seeds Consequence: The water level rises in the test tube dipped in the beaker / partial vacuum is created. 	¹ / ₂ ¹ / ₂	2