CBSE Class 10 Science Solution PDF

31/3/3

MARKING SCHEME – SCIENCE (Code No.31/3/3) SET-III

Q.N	Key Points	Marks	Grand Marks
1	1000 watt of power is used for 1 hour / commercial unit of $\frac{1000}{1000}$	1	1
2	Lack of decomposers in aquarium	1	1
3	Causes i) gradual weakening of the ciliary muscles ii) diminishing flexibility of the eye lens. (No diagram given in t.b. or reference books. Diagram for lens used use a bifocal lens)	1 1	2
4	$Na \xrightarrow{+} 0 \xrightarrow{\times} 2[Na^{+}] \left[: \overset{*}{0} \xrightarrow{*} \right]$	2	2
5	Reflex ActionWalking- Reflex action is involuntary action- Walking is voluntary action- It is controlled by spinal cord- It is controlled by brain / cerebellum	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	2
	ORPepsinTrypsin-Secreted by the- Secreted by thestomachPancreas- It acts in acidic- It acts in basic mediummedium- It acts in basic medium	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	2
			2
6	 Nuclear fission. When the nucleus of heavy atom is bombarded with low energy neutrons, can be split apart into lighter nuclei. When this is done, a tremendous amount of energy is released. i) It releases 10 millions times / tremendous amount of 	$1/_2 + 1/_2$	
	 i) It feleases to minious times / tremendous amount of energy produced by other fossil fuels. ii) It can be used to generate clean electricity iii) Self sustainable chain reaction (any two) 	1+1	3
7	Forests are rich reservoir of biodiversity containing a large number of plants and animals. Approaches towards conservation of forests: a) Help of local people should be taken / local people should	1	
	 b) Indiscriminate destruction of forest should be strictly prohibited. c) Planting of trees should be increased. d) Destruction of forests should not be done for making, roads, dams and hotels etc. 	¹ / ₂ x 4	3
8	Bending of light due to the variation in ontical density	1/2	
	 The starlight, on entering into earth's atmosphere 	1/2	

	So the $P < Q < R$		
	(From activity to inference award 1 mark)		
	OR		
	Cinnabar / (HgS)	1	
	$2HgS + 3O_2 \rightarrow 2HgO + 2SO_2$	1	
	$2 \text{Ho}\Omega \xrightarrow{\Delta} 2 \text{Ho}(1) + \Omega_2$		
	21160 + 2116(1) + 02	1	
	(Complete process explained in the form of sentence full credit may be given.)	1	
			3
11	An element's valency is determined by the number of electrons in its outer most shell.	1	
	Electronic configuration:		
	Atomic No. = 15		
	Electronic configuration of element $X = 2,8,5$ Valency of Element $X = 8 - 5 = 3$	1	
	Hence the valency of element X is 3	1	3
12.	Respirator Pigment responsible for O ₂ transport	1	
	Consequences:	1.1	
	- Can affect the O ₂ supplying capacity of blood to the	1 + 1	
	tissues	1000	2
	- Causes anaemia.		3
13	a) Speciation: It refers to the process by which new species	1	
	are formed from the pre-existing species		
	i) Geographical isolation		
	ii) Genetic drift	1/2	
	iii) Natural selection		
	(b) Natural selection is the process by which organisms	11/2	
	having some special features are at an advantage for better		
	survival in the changed environment. (Or explanation with the		
	neip of the any example)		
	OR	1	
	• E concretion all plants with round souds	$\frac{1}{1/2} + \frac{1}{2}$	
	 F1 generation – all plants with round and wrinkled seeds 	/2 1 /2	
	 T2 generation – plants with found and wrinkled seeds. Tall / dwarf plants 		
	• Tail / uwall plains Vellow / green seeds	$\frac{1}{2} + \frac{1}{2}$	
	White / numle flowers		3
	(any two)		
14	The first step in the breakdown of glucose. Glucose is	1	
	converted to pyruvate.		
	- Pyruvate in the absence of O ₂ may be converted to	1	
	ethanol, CO_2 and energy		
	- Pyruvate in the shortage of O_2 may be converted to	1	
	lactic acid and energy.		
	UK		

	Ghacose (6-carbon) (3-carbon) (3-carbon) (14-carbon) (Absence of oxygen (in yeast) Ethanoi + Carbon dioxide + Eoe (2-carbon molecule) ck of oxygen (in our uscle cells) [3-carbon molecule]	ntr	3
15	Cerebrum	Cerebellum		
	1) It is a part of fore brain	1) It is a part of hind brain	$\frac{1}{2} + \frac{1}{2}$	
	2) It initiates intelligence, memory, voluntary	2) It maintains posture and equilibrium	$\frac{1}{2} + \frac{1}{2}$	
	3) Main thinking part of the brain.	 Controls voluntary actions like walking in a straight line, 	$\frac{1}{2} + \frac{1}{2}$	
		picking up a pencil,	the Countil	2
1.6		riding a bicycle etc.		3
16	 Carbon compounds con ore called hydrocarbons 	ntaining only carbon and hydroge	en ¹ / ₂	1.0
	Example: Alkane / Alkene	/ Alkyne / any other	1/2	100
	(h)	(any o	ne)	
	(0)		10	
	Saturated Hydrocarbons	Unsaturated Hydrocarbons	3000	
	Consists of Only Single	Consists of Double and		
	Bonds	Triple bonds		
	н н нссн н н	H H H H - C = C - HEthene	2	
	EthaneHHHHIIHCCCHIIHHHPropane	$H-C \equiv C-H$ Ethyne		
	 (c) (i) CH3 – OH Methanol / Methyl ale 	cohol		
	(ii) $CH_3 - C_0$ Ethanal / Acetaldeh	vde		
	CHar C - CHa	<i></i>		
	(iii) O Propanone / aceton	e		
I.	I		I	1 I

	$\begin{array}{c} O \\ H_3 - C - OH \end{array}$		5
	Ethanoic Acid / Acetic acid	½ x 4	
17	(a) Exchange of ions in a reaction between two.	1	
	(b) $Na_2SO_4 + BaCl_2 \longrightarrow BaSO_4 + 2 NaCl$	1	
	(If the answer is descriptive form award marks)		
	(b) (i) Combination reaction: A combination reaction is a reaction where two or more elements or compounds combine to form a single compound.	$\frac{1}{2} + \frac{1}{2}$	
	(ii) $CaO + H_2O \rightarrow Ca(OH)_2$ Quick lime Calcium Hydroxide	1/2	
	Chemical name of the product formed - (calcium hydroxide (slaked lime)	1/2	
	 (111) Observations of the reactions: Reaction takes place vigorously Large amount of heat is released. 	$\frac{1}{2} + \frac{1}{2}$	5
	(a) Activity : Take a pinch of lead nitrate powder in a test tube. Heat it over the flame.	4	
	Test lubo holdor Boling lube Lead ritrate	1	
	(¹ / ₂ marks for labeling)		
	(b) Observation :Emission of brown fumes observed	$\frac{1}{2} + \frac{1}{2}$	
	 Reddish brown colour of residue (any one) 		
	(c) $\begin{array}{c} 2Pb(NO_3)_2(s) \xrightarrow{Heat} & 2PbO(s) + 4NO_2(g) \\ Lead nitrate & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	1+1	5
18	 (a) Virtual Erect Diminished On the same side of the object 	½ x 4	
	(b) Focal Length = 20cm. u = -x cm	1	

	$\mathbf{v} = \frac{x}{3}$ $\frac{1}{2} - \frac{1}{2} = \frac{1}{2}$	1	
	v u f x = 80 cm	1	5
19	(a) • In series - $R_S = R_1 + R_2 + R_3$.	1/2	
	• In parallel - $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	1/2	
	Resistance is at minimum - $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}$	1	
	$\frac{1}{12} + \frac{1}{12} = \frac{2}{12} = 6\Omega$	C	
	Resistance is maximum - $R_S = R_1 + R_2$	1	
	$R_s = 12 + 12 = 24 \Omega$ $P = \frac{v^2}{R}$	1	29
	Power ration in parallel and series = 4:1	.0	
	(b) $\frac{P_{\min}}{P_{\max}} = \frac{V^2 / R_{\min}}{V^2 / R_{\max}} = \frac{R_{\max}}{R_{\min}} = \frac{24}{6} = \frac{4}{1}$	2	
	OR		
	(a) $R \alpha l$ $R \alpha \frac{1}{A}$ $R \alpha \frac{l}{A}$ $R = \alpha \frac{l}{A}$		
	$\rho = \frac{RA}{l} = \frac{ohm \times m^2}{m}$ $= ohm \times m$	¹ / ₂ x 6	
	(b)		
	$\rho = \frac{RA}{l}$	1/2	
		1/2	

	$100 \times 3 \times 10^{-7}$			
	=5		1	5
	$=60 \times 10^{-7} ohm \times m$			
20	 (a) The rule is Fleming's left han If the finger points in the dire and the second finger in the difield and the second finger in then the thumb will point in t the force acting on the conduct 	nd rule. ction of the magnetic field lirection of the magnetic the direction of current he direction of motion or ctor	1 2	
	(b) Electric motor.			
			1990	
			Constant	
	1	5		
	Splite rings P and QP X Ade D'and YI		10	29
	*-140040-	<u>к</u>	2	5
21	a) Reproduction- The process of prones of its own kind.	roducing ofsprings / young	1	
	Types			
	i) Asexual		1	
	ii) Sexual		1	
	b)	M-14-11 1 O		
	1) Only one parent is required	Two parents are required		
	1) Only one parent is required	i wo parents are required	1	
	2) It is a fast process of	Slower process of reproduc		
	reproduction.	than in unicellular organism		
		a · 1· 1 · 1		
	3) No specialized cells are	Specialized cells are require	1	
	required for reproduction.		1	
		(Any two points)		
	OR			
	a) STD- A disease that can be trans	mitted through sexual		
	contact.			

	• Viral – i)Warts ii) AIDS	1	
	• Bacterial- i) Gonorrhoea ii) Syphilis	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	
	b) Contraception: The method of preventing unwanted pregnencies,	1/2 1 /2 1/2	
	i) To prevent unwanted pregnancies	½ x3	
	11) I o control population rise / birth rate		
	iv)Proper gap between successive births		
	v)For the better health of mother		
	(Any three)		5
22	a) Saffranin is used to stain the material for better view.b) Glycerine is used to avoid drying of peel.OR	1 1	
	i) Take a thin peel of leaf on a glass slide.	1/2	
	ii) Stain it with saffranin	1/2	
	iii) Remove extra stain	1/2	
	iv) Put a drop of glycerin and cover it with cover slip	1/2	2
23	i) Conical flask is not air tight.		
	iii) Germinating seeds may be dry.	1+1	2
	(any two)	1.16	
24	a) 0.15V is the least count	1/2	
	b) The reading shown is 1.8V	$\frac{1}{2}$	2
	c) $R = 20\Omega \text{ V}=1.8 \text{ V} \text{ I}=\frac{v}{R} = \frac{1.8}{20} = .09 amp$	1	2
25	 i. Fix a concave mirror on a stand and place it near a source of bright light ii. Place a screen fitted on a stand in front of the mirror iii. Move the screen back and forth, until a sharp and clear image of a distance object line a tree is obtained on the screen iv. Mark the position of mirror and screen on the scale and note the distance between them 	¹ ⁄ ₂ x4	
	OR The student should take the following precaution (a) Precaution - (i)See that the pins are in a straight line and atleast 3cm apart. (ii)Angle of incidence should be between 30 ⁰ to 60 ⁰ . (iii) Glass slab should always remain inside the boundary. (any two)	1/2 1/2	
	(b) Conclusion -	$\frac{1}{2}$	
	(i) The emergent ray is parallel to incident ray	,2	2
	(ii) Lateral displacement takes place.		
	(iii) Angle of incidence = Angle of emergence		
26	(any two)		
26	Ethanoic acid		

	a) Odour – it smells like vinegar	1/2	
	b) It is soluble in water	1/2	
	c) Blue litmus to red	1/2	2
	d) NaHCO ₃ + CH ₃ COOH \rightarrow CH ₃ COONa + H ₂ O + CO ₂	1/2	
27	• Putting Cu strips in FeSO ₄ no reaction	1/2	
	• Putting Al strips in FeSO ₄ change in colour	1/2	
	observed	1/2	
	Displacement reaction	1/2	
	• Al+FeSO ₄ \rightarrow Al ₂ (SO ₄) ₃ +Fe		
	(OR)		
	1) Do not point the mouth of boiling tube at your		
	neighbours or yourself / point the test tube away from		
	the body		
	2) Hold the test tube in inclined position	1+1	
	3) Hold the test tube with Tongs		2
	(Any two)	1000	2