SET 31/ 1 / 2

$\begin{gathered} \text { Q. } \\ \text { No } \end{gathered}$	Value Point/Expected Answer	Value	Total Marks
1.	SECTION-A - Ampere - Flow of 1 coulomb of charge per second $/ 1$ ampere $=\frac{1 \text { coulomb }}{1 \text { second }}$	$\begin{array}{\|l\|} \hline 1 / 2 \\ 1 / 2 \end{array}$	1
2.	- Methane - 75%	$\begin{array}{\|l\|} \hline 1 / 2 \\ 1 / 2 \end{array}$	1
3.	SECTION-B Name - sodium Symbol-Na Electronic configuration - 2, 8, 1 OR (a) $\mathrm{Na}, \mathrm{Si}, \mathrm{Cl}$ - The properties of these three elements are not similar to each other, so no Doberieneir's triads. (b) $\mathrm{Be}, \mathrm{Mg}, \mathrm{Ca}$ - The properties are similar to each other, so it is Dobereiner's triad. / $\begin{aligned} & \text { Atomic mass of } \mathrm{Mg}=\frac{\text { Atomic mass of } B e+\text { Atomic mass of } \mathrm{Ca}}{2} \\ & =\frac{9+40}{2}+\frac{49}{2}=24.5 \end{aligned}$	$1 / 2$ $1 / 2$ 1 1 1	2
4.	O_{2} is carried by haemoglobin of red blood corpuscles / cells. CO_{2} is carried by plasma of the blood.		2
5.	Structure - Fibrous, jelly like structure Role - To change the curvature of eye lens / to change the focal length of eye lens.		2
6.	SECTION-C - Acid - $\mathrm{H}_{2} \mathrm{CO}_{3}$ Base - NaOH - $\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$	

	- Compound is basic in nature. pH value - ranges between 7 and 10	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	3
7.	i. $\quad \mathrm{A}_{2} \mathrm{O}$ - Valency of group one is 1 and of oxygen is 2 ii. $\quad \mathrm{AX}_{3}-$ Valency of group 13 is 3 and of halogen is 1 iii. $\quad A B_{2}$ - Valency of element A of group 2 is 2 and of element B of group seventeen is 1 .	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$	3
8.	- White silver chloride turns grey in sunlight - $2 \mathrm{AgCl} \xrightarrow{\text { Sunlight }} 2 \mathrm{Ag}+\mathrm{Cl}_{2}$ - Decomposition reaction / Photolytic decomposition OR a) Displacement reaction $\mathrm{Zn}+2 \mathrm{AgNO}_{3} \longrightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$ b) Double displacement reaction $2 \mathrm{KI}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{PbI}_{2}+2 \mathrm{KNO}_{3}$ (deduct $1 / 2$ mark for non balanced equation)	1 1 1 $1 / 2$ 1 $1 / 2$ 1	3
9.	Transpiration - Loss of water in vapour form through the surface of leaf / stomata of leaf / aerial parts of the plant. Experiment setup : - Take a potted plant and water it. - Cover the plant / branch with a transparent plastic sheet. - Place it in bright sunlight for half an hour. - Moisture in the form of droplets is observed inside the plastic sheet.	1 $1 / 2 \times 4$	3
10.	Feedback mechanism - Mechanism by which the amount of any chemical increases or decreases resulting in secretion of the related hormone. Example - when sugar level rises, insulin secretion increases. when sugar level falls, insulin secretion reduces.	1 1	3
11.	Plant hormones - Chemical substances which help the plant to coordinate growth and development i) Auxins/ Gibberellins ii) Cytokinins iii) Abscisic Acid / ABA iv) Auxins/ Gibberellins	1 $1 / 2 \times 4$	3

	CARNIVORES HERBIVORES PRODUCERS SUNLIGHT	2	3
15.	Rainbow - A natural spectrum of sunlight appearing in the sky after a rain shower	1 2	3
16.	SECTION - C - $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, Ethanol/Ethyl alcohol - Good solvent; used in medicines (Any other) i) $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{Na} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}+\mathrm{H}_{2}$ Sodium ethoxide ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow[443 \mathrm{~K}]{\text { Hot Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} \rightarrow \mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O}$ Ethene OR - $\mathrm{CH}_{4} /$ Simplest hydrocarbon	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 \\ & 1 / 2 \\ & 1 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$	

	- Covalent bonds i) No ions or charged particles are formed ii) Due to weak covalent bonds - Carbon dioxide and water are produced/ $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	$\begin{array}{\|l\|} \hline 1 / 2 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	5
17. (a) (b)	i) $\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$ ii) $2 \mathrm{HgS}+3 \mathrm{O}_{2} \xrightarrow{\text { Heat }} 2 \mathrm{HgO}+2 \mathrm{SO}_{2}$ iii) $3 \mathrm{MnO}_{2}+4 \mathrm{Al} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{Mn}$ Alloys are homogeneous mixture of two or more metals or a metal and a non metal Properties : Alloys are stronger / harder / have low melting point / more resistant to corrosion / some are magnetic in nature. (Any two)	1 1 1 1 $1 / 2+1 / 2$	5
18.	$\begin{aligned} & \mathrm{u}=-30 \mathrm{~cm} \quad \mathrm{f}=-30 \mathrm{~cm} \quad \mathrm{v}=? \quad \mathrm{~m}=? \\ & \frac{1}{f}=\frac{1}{v}-\frac{1}{u} \\ & \therefore \frac{1}{v}=\frac{1}{f}+\frac{1}{u} \\ & =\frac{1}{(-30 \mathrm{~cm})}+\frac{1}{(-30 \mathrm{~cm})} \\ & \begin{aligned} & \frac{1}{v}=-\frac{1}{30}-\frac{1}{30} \\ &=\frac{-2}{30} \\ & \therefore v=-15 \mathrm{~cm} \\ & m=\frac{v}{u} \\ &=\frac{(-15 \mathrm{~cm})}{(-30 \mathrm{~cm})}=-\frac{1}{2} \end{aligned} \end{aligned}$ (ii) Nature - virtual Position -15 cm away from the lens, on the same side as the object Size - diminished Erect / inverted - erect	$1 / 2$ 1 $1 / 2$	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
b) \(\mathrm{I}=\frac{V}{R}\)
\[
=\frac{6 \mathrm{~V}}{24 \Omega}=0.25 \mathrm{~A}
\] \\
c) (i) For electric lamp:
\[
\begin{aligned}
\& \mathrm{V}=\mathrm{IR} \\
\& =\frac{6}{24} \times 20=5 \mathrm{~V}
\end{aligned}
\] \\
(ii) For Conductor:
\[
\begin{aligned}
\& \mathrm{V}=\mathrm{IR} \\
\& =\frac{6}{24} \times 4=1 \mathrm{~V}
\end{aligned}
\] \\
d)
\[
\begin{aligned}
\mathrm{P} \& =\mathrm{VI} \\
\& =5 \mathrm{~V} \mathrm{x} \frac{6}{24} \mathrm{~A}=1.25 \mathrm{~W}
\end{aligned}
\]
\end{tabular} \& 1 \& 5 \\
\hline 20. \& \begin{tabular}{l}
- A coil of many turns of insulated copper wire wrapped closely in the shape of a cylinder \\
(i) \\
ii)
\end{tabular} \& 1

1 \& \\
\hline
\end{tabular}

	- Distinguishing features - (Any two features)	2	5
21.	- Pollination - Transfer of pollen from anther / stamen to stigma of the flower - Type of Pollination - a) Self pollination - Transfer of pollen from anther / stamen to stigma occurs in the same flower b) Cross pollination - Pollen is transferred from anther / stamen of one flower to stigma of another flower - Agents of pollination - Wind, Water, Insects and Animals (any 2) - A tube grows out of the pollen grain and travels through the style, to reach the female germ cell in the ovary to cause fertilization OR - Female reproductive system - Name of parts - 1: Fallopian tube/Oviduct 2: Ovary 3: Uterus 4: Cervix 5: Vagina - Method to avoid pregnancy - Advantages - Proper gap between two pregnancies - Avoiding unwanted pregnancy - Keeping population under control	1 $1 / 2+1 / 2$ $1 / 2+1 / 2$ $1 / 2+1 / 2$ 1 $1 / 2$ $1 / 2 \times 5$ $1 / 2$ $1 / 2 \times 3$	5

22.	- Substance taken: KOH - Function: It absorbs CO_{2} produced by the germinating seeds Consequence: The water level rises in the test tube dipped in the beaker / partial vacuum is created.	$\begin{aligned} & \hline 1 / 2 \\ & 1 / 2 \\ & 1 \\ & 1 \end{aligned}$	2
23.	(Any one diagram with any two labellings) OR Drawing in proper sequence Labelling - Bud	1 $1 / 2 \times 2$	2
24.	Precautions: 1) Lens should be held in vertical position with its faces parallel to the screen 2) Clear and sharpest image should be obtained by adjusting the position of lens 3) Three observations should be taken at least. 4) Base of lens, screen and measuring scale should be in straight line (or any other)	$1 / 2 \times 4$	2
25.	- Potential difference (V) is directly proportional to current (I) or $\mathrm{V} \propto \mathrm{I}$ - Method: Finding slope of the graph OR - Measure the zero error - Value of zero error should be adjusted to the observed values	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1 1	

			2
26.	- In test tube A - As distilled water contains no salts	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2
27.	- Test Tube A - It changes the colour from blue to red Hydrochloric acid turns blue litmus red. OR - Brisk effervescence is produced - $\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$	$1 / 2$ $1 / 2$ 1 1 1	2

