<u>Marking Scheme – 2017-18</u>

CHEMISTRY (043)/ CLASS XII

<u>56/1</u>

Q.No	Value Points	Marks
1	Shows metal deficiency defect / It is a mixture of Fe ²⁺ and Fe ³⁺ /Some Fe ²⁺ ions are	1
	replaced by Fe ³⁺ / Some of the ferrous ions get oxidised to ferric ions.	
2	Selectivity of a catalyst	1
3	Coordination Number = 6 , Oxidation State = +2	1/2, 1/2
4	Benzyl chloride ;	1/2
	Due to resonance, stable benzyl carbocation is formed.	1/2
5	3,3 - Dimethylpentan-2-ol	1
6	$\Delta T_f = K_f m$	
	$= K_f w_2 x1000$	1/2
	$M_2x w_1$	
	$= 1.86 \times 60 \times 1000$	
	180x250	1/2
	= 2.48 K	1/2
	$\Delta T_f = T_f^{\circ} - T_f$	
	$2.48 = 273.15 - T_f$	
	$T_f = 270.67 \text{ K} / 270.52 \text{ K} / - 2.48 ^{\circ}\text{C}$	1/2
7	$Rate = \frac{1}{4} \frac{\Delta (NO2)}{\Delta (t)} = -\frac{1}{2} \frac{\Delta (N_2 O_5)}{\Delta (t)}$	1/2
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{\Delta (N_2 O_5)}{\Delta (t)}$	1/2
	Rate of disappearance of N ₂ O ₅ ($-\frac{\Delta (N_2O_5)}{\Delta(t)}$) = 1.4 × 10 ⁻³ M/s	1
	(Deduct half mark	
	if unit is wrong or not written)	
8	(a)PH ₃	1/2
	(b)NH ₃	1/2
	(c)NH ₃	1/2
	(d)BiH ₃	1/2
9	(a)CH ₃ CHO (i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ $\underline{\text{CrO}_3}$ CH ₃ COCH ₃	1
	(b)	
	· CH	
	COOH KMnO ₄ -KOH	
	$H_{*}O^{+}$	1
	V 1130 , V	
	(or any other correct method)	
	OR	
9	(a) because the carboxyl group is deactivating and the catalyst aluminium	1
	chloride (Lewis acid) gets bonded to the carboxyl group	
	(b) Nitro group is an electron withdrawing group (-I effect) so it stabilises the	1
	carboxylate anion and strengthens the acid / Due to the presence of an	
	electron withdrawing Nitro group (-I effect).	

		1
	(a)	
10.	$5Fe^{2+} + MnO_4 \Gamma + 8H^+ \longrightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$	
	313 , 11113 4 , 311	1
	(b)	
	$2MnO_4^- + H_2O + \Gamma \longrightarrow 2MnO_2 + 2OH^- + IO_3^-$	1
11	(Half mark to be deducted in each equation for not balancing)	4
11	(a) As compared to other colligative properties, its magnitude is large even for very dilute solutions / macromolecules are generally not stable at higher	1
	temperatures and polymers have poor solubility / pressure measurement is	
	around the room temperature and the molarity of the solution is used	
	instead of molality.	1
	 (b) Because oxygen is more soluble in cold water or at low temperature. (c) Due to dissociation of KCl / KCl (aq) → K⁺ + Cl⁻, i is nearly equal to 2 	1
12		
	$d = \frac{z M}{a^3 N_A}$	1/2
	$= 4 \times 40$	
	$= \frac{4 \times 40}{(4 \times 10^{-8})^3 \times 6.022 \times 10^{23}}$	1/2
	$= 4.15 \text{ g/cm}^3$	1/2
	No of unit cells = total no of atoms /4	½ ½
	$= \left[\frac{4}{40} \times 6.022 \times 10^{23}\right] / 4$ $= 1.5 \times 10^{22}$	1/2
	$=1.5 \times 10^{22}$	/2
	(Or any other correct method)	
13	k = 0.603 / 30	1/2
	$k_2 = 0.693 / 20,$ $k_1 = 0.693/40$	/2 1/ ₂
		/2
	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	1/2
	$k_2/k_1 = 2$	
	$\log 2 = \frac{E_a}{2.303 \times 8.314} \left[\frac{320 - 300}{320 \times 300} \right]$	1/2
14	Ea = 27663.8 J/mol or 27.66 kJ/ mol (a)Peptisation occurs / Colloidal solution of Fe(OH) ₃ is formed	1
14	(a)Peptisation occurs / Colloidal solution of Fe(OH) ₃ is formed (b)Coagulation occurs	1
	(c)Demulsification or breaks into constituent liquids	1
15	$4\text{Au(s)} + 8\text{CN}^{-}(\text{aq}) + 2\text{H}_{2}\text{O}(\text{aq}) + \text{O}_{2}(\text{g}) \rightarrow$	1
	4[Au(CN) ₂] ⁻ (aq) + 4OH ⁻ (aq)	
	$2[Au(CN)_2]^-(aq) + Zn(s) \rightarrow 2Au(s) + [Zn(CN)_4]^{2-}(aq)$	1
		1
	(No marks will be deducted for not balancing)	
	NaCN leacher gold/NaCN acts as a leasing agent / semplaying agent	
	NaCN leaches gold/NaCN acts as a leacing agent / complexing agent Zn acts as reducing agent / Zn displaces gold.	1/2
4.5		1/2
16	(a) The comparatively high value for Mn shows that $Mn^{2+}(d^5)$ is particularly	1
	stable / Much larger third ionisation energy of Mn (where the required change is from	

	d^5 to d^4)	
		1
	(b)Due to higher number of unpaired electrons.	1
	(c)Absence of unpaired d- electron in Sc ³⁺ whereas in Ti ³⁺ there is one unpaired	1
	electron or Ti ³⁺ shows d-d transition.	
17	\	1
	(a) (i) / OH	
	(a) (i) / OH (b)	
		1
	CH ₃	
	(c)	1
	CH ₃	
	CH ₂	
	or V	
18	(a)	
	A= CH ₃ CH ₂ CHO	1/2
	$B = CH_3COCH_2CH_3$	1/2
	$C = (CH_3)_2 CHCHO$	1/2
	D= CH ₃ CH ₂ CH ₂ CH ₃	1/2
	(b) B	1
10		
19.	(i)	
	OH .	
	CH ₂ -C-OCH ₃	1
	(ii) C ₆ H ₅ CH(OH)CH ₃	1
	(iii) $C_2H_5I + C_6H_5OH$ (No splitting of marks)	1
20.	a) To impart antiseptic properties	1
	b) 2-3% solution of iodine in alcohol – water mixture / iodine dissolved in	1/2 , 1/2
	alcohol, used as an antiseptic/ applied on wounds.	1
24	c) Sodium benzoate / Aspartame	1/
21	(a)Carbohydrates that give large number of monosaccharide units on hydrolysis / large number of monosaccharides units joined together by glycosidic linkage	1/2
	Starch/ glycogen/ cellulose (or any other)	
	(b)Proteins that lose their biological activity / proteins in which secondary and	1/2
	tertiary structures are destroyed	1/2
	Curdling of milk (or any other)	1/2
	(c)Amino acids which cannot be synthesised in the body.	1/2
	Valine / Leucine (or any other)	1/2
	OR	
21	(a)Saccharic acid / COOH-(CHOH)₄-COOH	1
	(b) Due to the presence of carboxyl and amino group in the same molecule / due to	1
	formation of zwitter ion or dipolar ion.	-
	(c) α - helix has intramolecular hydrogen bonding while β pleated has intermolecular	1
	hydrogen bonding / α- helix results due to regular coiling of polypeptide chains	-
	while in β pleated all polypeptide chains are stretched and arranged side by side.	
22	(a) $Fe_4[Fe\ (CN)_6]_3$	1
	(b) Ionisation isomerism	1
	(c) sp^3d^2 , 4	1/2, 1/2
23	(a) Concerned about environment, caring, socially alert, law abiding citizen (or any	
	other 2 values)	1/2 , 1/2
1		

	 (b) Low density polythene is highly branched while high density polythene is linear. (c) As it is non-biodegradable. (d) Which can be degraded by microorganisms, eg <i>PHBV(or any other correct example)</i> 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
24	a) (i) In +3 oxidation state of phosphorus tends to disproportionate to higher and lower oxidation states / Oxidation state of P in H_3PO_3 is +3 so it undergoes disproportionation but in H_3PO_4 it is +5 which is the highest oxidation state, so it	1
	cannot. (ii) F cannot show positive oxidation state as it has highest electronegativity/	1
	Because Fluorine cannot expand its covalency / As Fluorine is a small sized atom, it cannot pack three large sized Cl atoms around it.	1
	(iii) Oxygen has multiple bonding whereas sulphur shows catenation / Due to	
	$p\pi$ - $p\pi$ bonding in oxygen whereas sulphur does not / Oxygen is diatomic therefore held by weak intermolecular force while sulphur is polyatomic held by	
	strong intermolecular forces. b) (i) (ii)	
	F H	1, 1
	Xe CI	
	F	
24	OR a) (i) A = NO ₂ , B = N ₂ O ₄	1/2, 1/2
	(ii)	
	N N N N N N N N N N	1/2 , 1/2
	(iii) Because NO_2 dimerises to N_2O_4 / NO_2 is an odd electron species.	1
	b) HI > HBr > HCl > HF	1
	c) $XeF_4 + SbF_5 \rightarrow [XeF_3]^+ [SbF_6]^-$ (a) $Sn + 2 H^+ \rightarrow Sn^{2+} + H_2$ (Equation must be balanced)	1
25		1
	$E = E^{\circ} - \frac{0.059}{2} \log \frac{[Sn^{2+}]}{[H^{+}]^{2}}$	1/2
	$= [0 - (-0.14)] - 0.0295 \log \frac{(0.004)}{(0.02)^2}$	1/2
	= 0.14 - 0.0295 log 10 = 0.11 V / 0.1105 V	1
	(b) (i) Due to overpotential/ Overvoltage of O₂(ii) The number of ions per unit volume decreases.	1
	OR	1
25	a) $\Delta G^{\circ} = - nFE^{\circ}$ -43600 = - 2 × 96500 × E°	1/2
	$E^{\circ} = 0.226 \text{ V}$ $E = E^{\circ} - 0.059/2 \log \left(\left[H^{+} \right]^{2} \left[C \Gamma \right]^{2} / \left[H_{2} \right] \right)$	1/2
	$= 0.226 - 0.059/2 \log[(0.1)^{2} \times (0.1)^{2}] / 1$ $= 0.226 - 0.059/2 \log 10^{-4}$	½ ½
	= 0.220 -0.009 /2 log 10	1

	= 0.226 + 0.118 = 0.344 V (Deduct half mark if unit is wrong or not written)	
		1
	b) Cells that convert the energy of combustion of fuels (like hydrogen, methane,	
	methanol, etc.) directly into electrical energy are called fuel cells.	1/2 ,1/2
	Advantages: High efficiency, non polluting (or any other suitable advantage)	, - ,
26	(a)(i) Ar/ R-CONH ₂ + Br ₂ + 4 NaOH \rightarrow Ar/ R-NH ₂ + 2NaBr + Na ₂ CO ₃ + 2 H ₂ O (ii)	1
	$C_6H_5NH_2 + NaNO_2 + 2HCl \xrightarrow{273-278K} C_6H_5N_2Cl + NaCl + 2H_2O$	1
	(or any other correct equation)	
	(iii)	
	0 0	
	N-H KOH $N-R$	
	0 0	
	0	
	$N-R$ $\xrightarrow{NaOH(aq)}$ $+R-NH_3$	
	C ONa	1
	ii ö	
	(b)(i)Because of the combined factors of inductive effect and solvation or	
	hydration effect	1
	Try diamon Gireot	-
	(ii)Due to resonance stabilisation or structural representation / resonating	
	structures.	4
		1
	OR	
26	(a) (i) C ₆ H ₅ NHCOCH ₃	1
	(ii) $C_6H_5SO_2N(CH_3)_2$	1
	(iii) C ₆ H ₆	1
	(b) Add chloroform in the presence of KOH and heat, Aniline gives a offensive smell	1
	while N,N dimethylaniline does not. (or any other correct test)	-
	(c) $C_2H_5NH_2 < C_6H_5NHCH_3 < C_6H_5NH_2$	
	(C)O21 151VI 125 C6F151VITCF135 C6F151VIT2	
		1