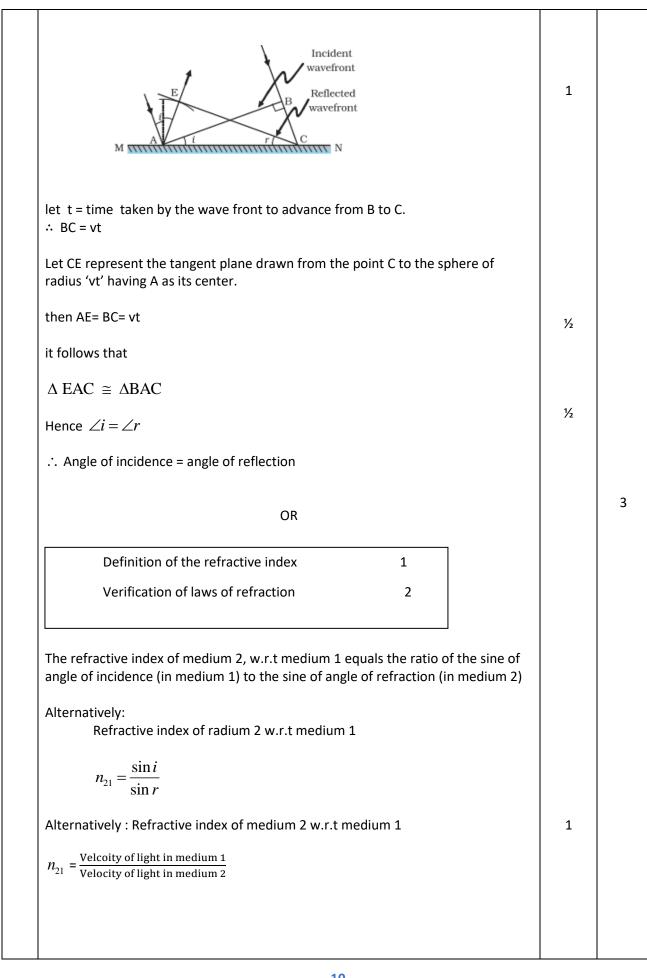
	MARKING SCHEME – PHYSICS				
	55/1/1	1			
Q. No.	Value Points/ Expected answers	Marks	Total Marks		
1	W. P. D. C. Charles Vo. Michigan				
		1	1		
	[Note: i) Deduct ½ mark, if arrows are not shown.				
	ii) do not deduct any mark, if charges on the plates are not shown]	1	1		
2	No Change	1	1		
3	Threshold frequency equals the minimum frequency of incident radiation (light) that can cause photoemission from a given photosensitive surface. (Alternatively) The frequency below which the incident radiations cannot cause the		1		
	photoemission from photosensitive surface. OR Intensity of radiation is proportional to (/ equal to) the number of energy quanta	1			
	(photons) per unit area per unit time.				
4	$d\mu_r$ = tan 30° = $\frac{1}{\sqrt{3}}$ (where $d\mu_r$ is the retractive index of rarer	1/2			
	medium w.r.t denser medium)	1/2			
	[Note- Also accept if a student solves it as follows) $\mu = tan i_p$	/2			
	$\mu = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$ $\therefore \nu = \frac{3 \times 10^{\circ}}{\frac{1}{\sqrt{5}}} = 3\sqrt{3} \times 10^{\circ} \text{ m/s}$	1/2	1		
	(Note: Award this one mark if a student just writes the formula but does not solve it.)	1/2			
5	The waves beyond 30 MHz frequency penetrate through the Ionosphere/ are not reflected back.	1			
	OR The second First Second Firs	1/ **	1		
	Transmitted Power and Frequency SECTION - B	1/2 + 1/2			
6	SECTION - D				
	Calculation of Power dissipation in two combinations 1 +1				
	$R_1 = \frac{V^2}{P_1}$, $R_2 = \frac{V^2}{P_2}$,	1/2			
	$P_{s} = \frac{V^{2}}{Rs} = \frac{P_{1}P_{2}}{P_{1}+P_{2}}$ $\frac{1}{P_{s}} = \frac{1}{P_{1}} + \frac{1}{P_{2}}$	1/2			
	$\frac{1}{Rp} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{P_1 + P_2}{V^2}$				
	$Rp R_1 R_2 V^2$	1/2			

	$\therefore P_p = \frac{V^2}{R_P} = P_1 + P_2$	1/2	2
7	Calculation of focal length ½ Lens maker's formula ½ Calculation of radius of curvature 1		
	$f = \frac{1}{P} = \frac{1}{-5} m = -\frac{100}{5} cm = -20 cm$	1/2	
	$\frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1/2	
	μ_2 = 1.5, μ_1 = 1.4, R_1 = - R R_2 = R		
	$\frac{1}{-20} = \left(\frac{1.5}{1.4} - 1\right) \left(-\frac{1}{R} - \frac{1}{R}\right)$	1/2	
	$\frac{1}{-20} = \left(\frac{0.1}{1.4}\right) \left(-\frac{2}{R}\right)$ $R = \frac{20}{7} \text{ cm } (= 2.86 \text{ cm})$	1/2	2
	OR		
	Formula ½ Substitution and calculation 1½		
	$\mu = \frac{\sin\frac{(A+D_m)}{2}}{\sin A/2}$	1/2	
	$\mu = \frac{\mu_2}{\mu_1} = \frac{1.6}{\frac{4}{5}\sqrt{2}} = \frac{8}{4\sqrt{2}} = \sqrt{2}$	1/2	
	$\sqrt{2} = \frac{\sin(\frac{60 + D_m}{2})}{\sin 60/2} = \frac{\sin(\frac{60 + D_m}{2})}{\sin 30}$		
	$\therefore \sin(\frac{60 + D_m}{2}) = \sqrt{2} \cdot \frac{1}{2} = \sin 45^0$	1/2	
	$\therefore \frac{60+D_m}{2} = 45^{\circ}$	1/2	
	$\therefore D_{m} = 30^{0}$		2
8	Formula ½ Calculation of ratio of radii 1½		
		1/2	

	$radius r = \frac{mv}{qB} = \frac{\sqrt{2mk}}{qB}$		
	$K_{\alpha} = K_{\text{proton}}$		
	$M_{\alpha} = 4 \text{ m}_{p}$	1/2	
	$q_{\alpha} = 2q_{p}$		
	$r_{lpha} = rac{\sqrt{2m_{lpha} K}}{q_{lpha} B}$		
	$\frac{r_{\alpha}}{r_{p}} = \frac{\overline{q_{\alpha} B}}{\frac{\sqrt{2m_{p} K}}{q_{p} B}}$	1/2	
	$\overline{m_{\alpha}}$ $\overline{a_{n}}$		
	$= \sqrt{\frac{m_{\alpha}}{m_{p}}} \times \sqrt{\frac{q_{p}}{q_{\alpha}}}$	1/2	2
	$=\sqrt{4} \times \frac{1}{2} = 1$	/2	2
	= V + X ½ = 1		
9			
	Statement of Bohr's quantization condition 1/2		
	Calculation of shortest wavelength 1		
	Identification of part of electromagnetic spectrum 1/2		
	Electron revolves around the nucleus only in those orbits for which the angular	1/2	
	momentum is some integral of $h/2\pi$. (where h is planck's constant)		
	(Also give full credit it a student write mathematically mvr = $\frac{nh}{2\pi}$)		
	Zit		
	$\frac{1}{\lambda} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$	1/2	
	$\lambda = \langle n_f^2 - n_i^2 \rangle$	/2	
	For Brackett Series,		
	Shortest wavelength is for the transition of electrons from		
	$n_i = \infty$ to $n_f = 4$		
	$\frac{1}{\lambda} = R\left(\frac{1}{4^2}\right) = \frac{R}{16}$		
	$\lambda = 4^{2}$ 16	1/2	
	$\lambda = \frac{16}{R}$ m	/2	
	R .		
	= 1458.5 nm on substitution of value of R		
	[Note: Don't deduct any mark for this part, when a student does not substitute		
	the value of R, to calculate the numerical value of λ]	1/	
	Infrared region OR	1/2	
	ON .		
	Statement of the Formula for r _n ½		
	Statement of the formula for v _n ½		
	Obtaining formula for T _n ½		
	Getting expression for T_2 (n = 2) $\frac{1}{2}$		
	$h^2 \epsilon$		
	Radius $r_n = \frac{h^2 \epsilon_0}{\pi m e^2} n^2$	1/2	
	ithte		

	$2\pi e^2$ 1		
	$velocity \ v_n = \frac{2\pi e^2}{4\pi \varepsilon_0 h} \frac{1}{n}$	1/2	
	Time period $T = 2\pi r_n - 4\varepsilon_0^2 h^3 n^3$		
	Time period $T_n=rac{2\pi r_n}{v_n}=rac{4arepsilon_0^2 h^3 n^3}{me^4}$	1/2	
	For first excited state of hydrogen atom n=2	/2	
	$T_2 = \frac{32\varepsilon_0^2 h^3}{me^4}$	1/2	
	me ·		
	On calculation we get $T_2 \approx 1.22 X 10^{-15} s$.		2
	(However, do not deduct the last ½ mark if a student does not calculate the		
	numerical value of T_2)		
	Alternatively		
	10.0		
	$r_n = (0.53 n^2) A^0 = 0.53 X 10^{-10} n^2$	1/2	
	$v_n = (\frac{c}{137 n})$	1/2	
	2-(0.52)		
	$T_n = \frac{2\pi(0.53)}{\left(\frac{c}{137 n}\right)} X 10^{-10} n^2$		
	$\left(\frac{3}{137 n}\right)$		
	$2\pi(0.53)$ v 40-10 3 405		
	$= \frac{2\pi(0.53)}{c} X 10^{-10} n^3 \times 137 s$		
	$= 2 \times 3.14 \times 0.53 \times 10^{-10} \times 8 \times 137$ s		
	$\frac{3 \times 10^8}{3 \times 10^8}$	1/2	
	4047.07 40-19 (4.00 40-15)		
	= $1215.97 \times 10^{-18} = (1.22 \times 10^{-15}) \text{ s}$	1/2	
	Alternatively		
	If the student writes directly $T_n lpha $		
	T_2 = 8 times of orbital period of the electron in the ground state (award one mark only)		2
10.	Reason 1		
	Neason		
	Expression 1		
	Because of line of sight nature of propagation, direct waves get blocked at some		
	point by the curvature of earth.	1	
	[Alternatively : The transmitting antenna of height h, the distance to the horizon		
	equals		
	$d = \sqrt{2hR}$ (R = Radius of earth, which is upto a certain distance from the TV		
	tower]		
	The optimum separation between the receiving and transmitting antenna.		
	$d = \sqrt{2h_T R} + \sqrt{2h_R R}$	1	2
	[Where h_T = height of Transmitting antenna (h_R = Height of Receiving antenna)]		


11.	Reason for inability of e.m. theory 1		
	Resolution through photon picture 1		
	The explanation based on e.m theory does not agree with the experimental observations (instantaneous nature, max K.E of emitted photoelectron is independent of intensity, existence of threshold frequency) on the photoelectric effect.	1	
	[Note: Do not deduct any mark if the student does not mention the relevant experimental observation or mentions any one or any two of these observation.] The photon picture resolves this problem by saying that light, in interaction with matter behaves as if it is made of quanta or packets of energy, each of energy h ν . This picture enables us to get a correct explanation of all the observed experimental features of photoelectric effect.	1	
	[NOTE: Award the first mark if the student just writes "As per E.M. theory the free electrons at the surface of the metal absorb the radiant energy continuously, this leads us to conclusions which do not match with the experimental observations"]		
	Also award the second mark if the student just writes "The photon picture give us the Einstein photoelectric equation $K_{\text{max}} \ (= \text{eV}_0) = \text{h} \ \text{v} - \phi_0$ which provides a correct explanation of the observed features of the photoelectric effect.		2
12.			
	Plot of the graph showing the variation of $\lambda \text{ Vs } \frac{1}{\sqrt{V}}$ 1		
	Information regarding magnitude of charge 1		
	↑ λ		
		1	
	$\frac{1}{\sqrt{V}}$		
	$\therefore \lambda = \frac{h}{\sqrt{2mqV}}$		
		1/2	

	$\frac{\lambda}{\left(\frac{1}{\sqrt{v}}\right)} = \frac{h}{\sqrt{2mq}} = \text{slope}$ $q = \frac{h^2}{\sqrt{2mq}}$	1/2	2
	$q - \frac{1}{2m \text{ (slope)}^2}$		
	SECTION C		
13.	(a) Drawing of equipotential surfaces 1 (b) Derivation of the expression of electric potential 2	1	
	E		
	Equipotential Surfaces		
	[Note: Award ½ mark if the student just writes: The equipotential surfaces are the equidistant planes perpendicular to the Z -axis and does not draw them or "The equipotential surfaces are equidistant planes parallel to the X-Y Plane".]		
	[NOTE: In this part the Hindi version requires the student to draw equipotential surfaces for a uniform magnetic field.] "Award this 1 mark if the student just writes that these cannot be drawn."		
	(b)		
	$ \begin{array}{c c} A \leftarrow a \rightarrow 0 \leftarrow a \rightarrow B & \leftarrow -(k-a) \rightarrow P \\ \hline -9 & +9 & \leftarrow \rightarrow P \\ \hline (h+a) & \rightarrow P \end{array} $	1/2	
	Potential at point P		
	$V_p = V_{-q} + V_{+q}$		

$= \frac{1}{4\pi \in_{0}} \frac{-q}{(r+a)} + \frac{1}{4\pi \in_{0}} \frac{q}{(r-a)}$	1/2	
$= \frac{q}{4\pi \in_{0}} \left[\frac{1}{(r-a)} - \frac{1}{(r+a)} \right]$ $= \frac{q}{4\pi \in_{0}} \left[\frac{r+a-r+a}{(r-a)(r+a)} \right]$	1/2	
$= \frac{q}{4\pi \in_0} \times \frac{2a}{(r^2 - a^2)} = \frac{qX2a}{4\pi \varepsilon_o (r^2 - a^2)}$	1/2	
$= \frac{1}{4\pi \in_0} \frac{p}{(r^2 - a^2)}$		3
(where P is the dipole moment)		
14. Writing two loop equations $1+1$ Calculation of currents through 40 Ω and 20 Ω resistors 1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
In loop FCDEA -40 I ₁ -10(I ₁ + I ₂) + 40 = 0		
- 12 - 12 12 12 1		

-50 I ₁ - 10 I ₂ + 40 = 0			
5 l ₁ + l ₂ = 4		1	
Solving these two equations			
Solving these two equations			
$I_1 = 0A$		1/2	
& I ₂ = 4A		1/2	3
OR			
End error, overcoming	1/2		
Formula for meter bridge	1/2		
Calculation of value of S	2		
calculation of value of 5			
The end error, in a meter bridge, is the error	_		
(i)Ends of the wire not coinciding with the C	ocm / 100 cm marks on the meter scale		
(ii)Presence of contact resistance at the jo	ints of the meter bridge wire with the	!	
metallic strips .			
It can be reduced/overcome by finding I	balance length with two interchanged		
positions of R and S and taking the average	value of 'S' from two readings.	1/2	
(Note: Award this ½ make even if student j	ust writes only the point (i) or point (ii))	
given above.)			
E			
For a meter bridge			
		4.6	
$\frac{R}{S} = \frac{l}{100 - l}$		1/2	
S 100 - t			
For the two given conditions			
$5 \qquad l_1$			
$\frac{5}{S} = \frac{l_1}{100 - l_1}$			
$\frac{5}{\text{S/2}} = \frac{1.5l_1}{100 - 1.5l_1}$		1/2	
$S/2 = 100 - 1.3t_1$			
Dividing the two			
151 (100 1)		1/2	
$2 = \frac{1.5l_1}{(100 - 1.5l_1)} \times \frac{(100 - l_1)}{l_1}$			
$(100 1.3i_1)$ i_1			
$200 - 3 l_1 = 150 - 1.5 l_1$			

	100	1/2	
	$l_1 = \frac{100}{3}$ cm	/2	
	Putting the value of $\it l_1$ in any one of the two given conditions.		
		1/2	
	$S = 10 \Omega$		3
	(a) Identification ½ + ½		
15.	Frequency Range ½ + ½		
	(b) Proof 1		
	Microwaves: Frequency range ($\sim 10^{10}$ to 10^{12} hz)	4, 4,	
	Ultraviolet rays: Frequency range (~ 10 ¹⁵ to 10 ¹⁷ hz)	1/2+1/2	
	oltravioletrays. Frequency range (10 to 10 mz)	1/2+1/2	
	Note: Award (1+1) marks for frequency ranges even if the student just writes		
	Note: Award $(\frac{1}{2} + \frac{1}{2})$ marks for frequency ranges even if the student just writes		
	the correct order of magnitude for them)		
	(1) 6	1/2	
	(b) Average energy density of the electric field = $\frac{1}{2} \in_{0} E^{2}$	/2	
	$= \frac{1}{2} \in (CB)^2$		
	1 1 2		
	$=\frac{-}{2}\in_0\frac{-}{\mu_0}\in_0$		
	$\frac{2}{1} \frac{p_0^2}{p_0^2} = 0$		
	$= \frac{1}{2} \in_{0} \frac{1}{\mu_{0} \in_{0}} B^{2}$ $= \frac{1}{2} \frac{B^{2}}{\mu_{0}}$	1/2	
	$\left[-\frac{1}{2}\frac{1}{\mu_0}\right]$		
	= Average energy density of the magnetic field.		
	[Note: Award 1 mark for this part if the student just writes the expressions for		
	the average energy density of the electric and magnetic fields.]		3
		1	
	Definition of the wavefront 1		
16.	Definition of the wavenone		
10.	Verification of the law of Reflection 2		
	The wave front is defined as a surface of constant phase		
		1	
	Alternatively: The wave front is a locus of points which oscillate in phase		
	Consider a plane wave AB incident at an angle 'I' on a reflecting surface MN		

		T	
	Incident wavefront Medium 1 v_1 v_2 v_2 $v_2 > v_1$ Refracted wavefront	1	
	The figure drawn here shows the refracted wave front corresponding to the given incident wave front. It is seen that		
	$\sin i = \frac{BC}{AC} = \frac{v_1 \tau}{AC}$ $\sin r = \frac{AE}{AC} = \frac{v_2 \tau}{AC}$	1/2	
	$AC AC$ $\therefore \frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \mu_{21}$	1/2	
	This is Snell's law of refraction.		3
17.	(a) Definition of mutual inductance and S.I unit 1+½ (b) Obtaining the expression for resultant force on the loop 1½		
	(a) Mutual inductance equals the magnetic flux associated with a coil when unit current flows in its neighbouring coil.		
	Alternatively: Mutual inductance equals the induced emf in a coil when the rate of change of current in its neighbouring coil is one ampere/ second. S.I unit: henry (H) or weber/ampere (or any other correct SI unit)	1 1/2	
	(b) Force per unit length between two parallel straight conductors $F = \frac{\mu_0}{4\pi} \frac{2I_1I_2}{d}$		
	4π d Force on the part of the loop which is parallel to infinte straight wire and at a distance x from it.		

		1	
	$F_1 = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{x} \frac{a}{x} \text{(away from the infinte straight wire)}$ Force on the part of the loop which is at a distance (x + a) from it $F_2 = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{(x + a)} \frac{a}{(\text{towards the infinte straight wire)}}$	½ ½	
	Net force $F = F_1 - F_2$ $F = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{x} \frac{a}{a} \left[\frac{1}{x} - \frac{1}{x+a} \right]$ $F = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{x} \frac{a^2}{x(x+a)}$ (away from the infinte straight wire)	1/2	3
18.	(a) Derivation of the expression for torque 2 (b) Significance of radial magnetic field 1		
	(a) Consider the simple case when a rectangular loop is placed in a uniform magnetic field B that is in the plane of the loop The plane of the loop The plane	1 / ₂	
	Force on arm $AB = F_1 = IbB$ (directed into the plane of the loop) Force on arm $CD = F_2 = IbB$ (directed out of the plane of the loop) Therefore the magnitude of the torque on the loop due to these pair of forces	1/2	
	$\tau = F_1 \frac{a}{2} + F_2 \frac{a}{2}$	1/2	

	= I (ab) B		
	= IAB = mB	1/2	
	(A = ab = area of the loop)		
	Alternatively		
	Also accept if the student does calculations for the general case and obtains the result		
	Torque = IAB sin φ		
	Alternatively	1/2	
	Also accept if the student says that the euivalent magnetic moment (m),associated with a current carrying loop is		
	\overrightarrow{m} =IA \hat{n} (A = Area of loop)		
	The torque, on a magnetic dipole, in a magnetic field, is given by		
	$\vec{\tau} = \vec{m} \times \vec{B}$		
	$\therefore \tau = I A \left(\hat{\mathbf{n}} \times \overrightarrow{B} \right)$		
	Hence		
	(b) When a current carrying coil is kept in a radial magnetic field the corresponding moving coil galvanometer would have a linear scale	1	
	Alternatively " In a radial magnetic field two sides of the rectangular coil remain parallel to the magnetic field lines while its other two sides remain perpendicular to the magnetic field lines. This holds for all positions of the coil."		3
	Labelled ray diagram of an astronomical telescope 1 ½		
19.	Calculation of the diameter of the image of the moon. 1½		
	Objective By eyepiece	1½	

[Note: (i) Deduct ½ mark If arrows are not shown.

(ii) Award one mark of this part if a student draws the ray diagram for normal Adjustment / relaxed eye.]

Angular magnification of the telescope = $\frac{f_o}{f_{\rm e}} = \frac{15}{0.01} = 1500$

1/2

For objective lens, $\tan \alpha = \frac{3.48 X \, 10^6}{3.8 X 10^8}$

3

For eyepiece $\tan \beta = \frac{h_i}{f_e} = \frac{h_i}{10^{-2}}$

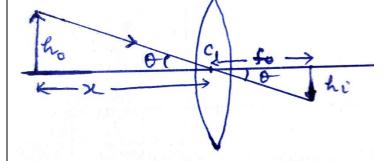
1/2

∴ Magnifying power =
$$\frac{\beta}{\alpha} = \frac{\frac{h_i}{10^{-2}}}{\frac{3.48 \times 10^6}{3.8 \times 10^8}}$$

= $\frac{h_i \times 3.8 \times 10^8}{3.48 \times 10^6 \times 10^{-2}} = 1500$

$$h_i$$
 = 13.73 cm

1/2


Also accept angular magnification of the telescope

$$= \frac{f_0}{f_e} \left(1 + \frac{f_e}{d} \right) = \frac{15}{0.01} \left(1 + \frac{0.01}{0.25} \right) = 1560$$

So, $h_i = 14.29$ cm

Alternatively

1/2

From figure:

$$\frac{\mathbf{h}_{0}}{\mathbf{x}} = \frac{h_{i}}{f_{0}}$$

[Where h_o and h_i are the diameter of the moon and diameter of the image of the moon respectively.]

1/2

$$h_i = \frac{h_0 f_o}{x}$$

$$= \frac{3.48 \times 10^6}{3.8 \times 10^8} \times 15$$
= 13.73cm

1/2

1/2

3

20.		(a)statemen	t of Gauss's law in m	agnetism ½			
		lts sign	ificance	1/2			
		(b)Four Impo	ortant properties	1/2	2 x4		
		h any closed surfa	netism states that " ace, is always zero.	The total flux of the	e magnetic field,	1/2	
	$=\oint \vec{B}.a$	$\overrightarrow{l}.\overrightarrow{s} = 0$					
		is law implies tha osed loops	t magnetic monopol	es do not exist" / m	agnetic field lines	1/2	
	(b) Fo	ur properties of n	k if the student just nagnetic field lines always form continu			1/2	
	(ii) The	tangent to the n	nagnetic field line at magnetic field at th	a given point repre	sents the	1/2	
	(iii) The		er of field lines cros	•	he stronger is the	1/2	
		ignetic field lines	•			1/2	
			OR				
	Thre	ee points of differ	rence	3 x ½			
	One	e example of each	1	1½			
		Diamagnetic	Paramagnetic	Ferromagnetic	\neg		
	1	$-1 \le \chi \langle 0$	$-0\langle\chi\langle\epsilon$	$ \chi\rangle\rangle$ 1		1/2	
	2	$0 \le \mu_{\Gamma} \langle 1$	$1 \le \mu_{\Gamma} \langle 1 + \varepsilon \rangle$	$ \mu_{\rm r}\rangle\rangle$ 1		1/2	
	3	μζ μ0	μ>μ0	$\mu\rangle\rangle\mu_0$		1/2	
	differei Exampl Diamag Parama	Give full credit of nce] les (Any one exan gnetic materials: I	positive constant. this part if student value of each type) Bi,Cu, Pb,Si, water, N Al,Na,Ca, Oxygen(at	aCl, Nitrogen (at ST	P)	½ ½ ½	3
21.		Definition of d			1		
		Calculation of	half life		1		
		Calculation of	initial number of nu	clei at t=0	1		

The decay constant (λ) of a radioactive nucleus equals the ratio of the instantaneous rate of decay $(\frac{\Delta~N}{\Delta~t})$ to the corresponding instantaneous number of radioactive nuclei.

3

Alternatively:

The decay constant (λ) of a radioactive nucleus is the constant of proportionality in the relation between its rate of decay and number of its nuclei at any given instant.

Alternatively:

$$\frac{\Delta N}{\Delta t} \propto N$$

$$\frac{\Delta N}{\Delta t} = \lambda N$$

The constant (λ) is known as the decay constant

Alternatively:

The decay constant equals the reciprocal of the mean life of a given radioactive nucleus .

$$\lambda = \frac{1}{\tau}$$

where

τ= mean life

Alternatively:

The decay constant equal the ratio of $\ln_e 2$ to the half life of the given radioactive element.

$$\lambda = \frac{\ln_e 2}{T_{1/2}}$$

Where $T_{1/2}$ = Half life

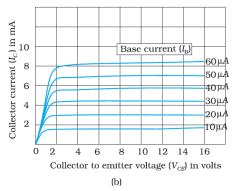
1

Alternatively:

The decay constant of a radioactive element, is the reciprocal of the time in which the number of its nuclei reduces to 1/e of its original number.

(Note: Do not deduct any mark of this definition, if a student does not write the formula in support of the definition)

We have

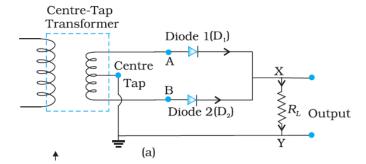

$$R = \lambda N$$

1/2

R (20 hrs) = $10000 = \lambda N_{20}$		
R (30 hrs) = $5000 = \lambda N_{30}$		
$\therefore \frac{N_{20}}{N_{30}} = 2$		
This means that the number of nuclei, of the given radioactive nucleus, gets halved in a time of (30 - 20) hours = 10 hours	1/2	
Half life = 10 hours This means that in 20 hours (= 2 half lives), the original number of nuclei must have gone down by a factor of 4.	1/2	
Hence Rate of decay at t = 0	1/2	
$\lambda N_0 = 4\lambda N_{20}$		
=4X10000 = 40,000 disintegration per second		
(Note: Award full marks of the last part of this question even if student does no calculate initial number of nuclei and calculates correctly rate of disintegration a $t=0$) i.e $R_0 = 40,000$ disintegration per second		
$N_0 = \frac{40000}{\lambda} = \frac{40000}{\ln_e 2} \times 10 \times 60 \times 60$		
$N_0 = \frac{144 \times 10^7}{0.693} = 2.08 \times 10^9 nuclei$		3
(a) Calculation of energy of a photon of light 1½		
(b) Identification of photodiode 1½		
Why photodiode are operated in reverse bias 1		
We have		
$E = h_{V} = h c$	1/2	
$E = h v = \frac{h c}{\lambda}$		
$= \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{600 \times 10^{-9}} $ J	1/2	

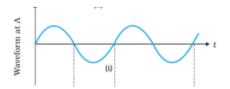
			_
	$= \frac{19.89 \times 10^{-26}}{6 \times 10^{-7} \times 1.6 \times 10^{-19}} \text{ eV}$		
	$= \frac{19.89}{9.6} \text{ eV}$ = 2.08eV	1/2	
	The band gap energy of diode D_2 (= 2eV) is less than the energy of the photon. Hence diode D_2 will not be able to detect light of wavelength 600 nm. [Note: Some student may take the energy of the photon as 2eV and say that all the three diodes will be able is detect this right , Award them the ½ mark for the last part of identification]	1/2	
	(b) A photodiode when operated in reverse bias, can measure the fractional change in minority carrier dominated reverse bias current with greater ease Alternatively: It is easier is observe the change in current with change in light intensity, if a reverse bias is applied	1	3
	(a) Functions of the three segments $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$		
23.	(b) Circuit diagram for studying the output characteristics 1		
	obtaining output characteristics 1/2		
	(i) Emitter: supplies the large number of majority carriers for current flow through the transistor	1/2	
	(ii) Base: Allows most of the majority charge carriers to go over to the collector	1/2	
	Alternatively , It is the very thin lightly doped central segment of the transistor.		
	Collector: collects a major portion of the majority charge carriers supplied by the emitter.	1/2	
	(b) $ \begin{array}{c c} I_{C} \\ \hline I_{B} \\ \hline N_{C} \end{array} $ $ \begin{array}{c c} I_{C} \\ \hline MA \\ C \\ V_{CE} \end{array} $ $ \begin{array}{c c} V_{CC} \end{array} $	1	
	The output characteristics are obtained by observing the variation of I_c when V_{CE} is varied keeping I_B constant .	1/2	

Note: Award the last $\frac{1}{2}$ mark even if the student just draws the graph for output characteristics



[Note: Do not deduct marks of this part, for not writing values on the axis]

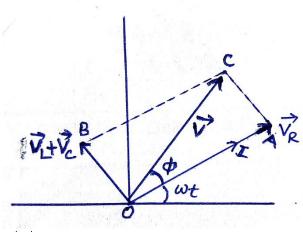
OR


Circuit diagram of full wave rectifier	1/2
working	1/2
Input and output wave forms	1/2 + 1/2

The circuit diagram of a full wave rectifier is shown below.

Because of the center tap in the secondary of the transformer, diodes 1 and 2 get forward biased in successive halves of the input ac cycle. However the current through the load flows in the same direction in both the halves of he input ac cycle. We therefore, get a unidirectional (rectified) current through the load for the full cycle of the input ac.

The input and output wave forms are as shown below.



1

1

1/2

	Due to D		1/2	3
24.	(a)Obtaining the expression for modulation index in terms of A and B (b) calculation of $\boldsymbol{\mu}$ Reason	1 ½ 1 ½		
	We are given that $A = A_c + A_m$ and $B = A_c - A_m$ $A_c = (A + B) / 2$ $A_m = (A - B) / 2$		½ ½	
	$\therefore \mu = \frac{A_{m}}{A_{c}}$ $= \frac{A - B}{A_{c}}$			
	A+B (b) We have		1/2	
	$\mu = \frac{A_{m}}{A_{c}}$ $= \frac{10}{15} = \frac{2}{3}$		1/2	
	$\boldsymbol{\mu}\;$ is kept less than one to avoid distortion		1/2	3
	SECTION D			
25.	(a) Derivation of the expression for impedance 2 plot of impedance with frequency ½			
	b) Phase difference between voltage across inductor and capacitor // // // // // // // // //			
	(c) Reason and calculation of self induction $\frac{1}{2} + 1\frac{1}{2}$			

1

$$|\vec{V}| = V_m$$

$$|V_{R}| = V_{Rm}$$

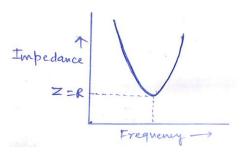
$$|V_L|=V_{Lm}$$

From the figure, the pythagorean theorem gives

$$V_{\rm m}^2 = V_{\rm Rm}^2 + (V_{\rm Lm} - V_{\rm cm})^2$$

$$V_{Rm} = i_m R$$
, $V_{Lm} = i_m X_L$, $V_{cm} = i_m X_C$,

=
$$(i_m Z)^2$$
= $(I_m R)^2$ + $(i_m X_L$ - $i_m X_c$,)


$$z^2 = R^2 + ((X_L - X_C)^2)$$

$$\therefore z = \sqrt{R^2 + (X_L - X_c)^2}$$

[note: award these two marks, If a student does it correctly for the other case i.e $% \left\{ 1,2,\ldots,n\right\} =\left\{ 1,2,\ldots,n\right\}$

 $(V_c > V_L)]$

 $V_m = i_m Z$

1/2

1/2

1/2

(b) Phase difference between voltage across inductor and the capacitor at resonance is $180^{\circ}\,$

(c) Inductor will offer an additional impedance to ac due to its self inductance.

1/2

1/2

$R = \frac{V_{rm}}{I_{rms}} = \frac{200}{1} = 200 \Omega$	
I_{rms} 1	
Impedance of the inductor	
$Z = \frac{V_{rms}}{I_{rms}} = \frac{200}{0.5} = 400 \Omega$	1/2
1rms 0.5	,-
Since $Z = \sqrt{R^2 + (X_L)^2}$	
$\therefore (400)^2 - (200)^2 = (X_L)^2$	
	1/2
$X_L = \sqrt{600X200} = 346.4 \Omega$	/2
Inductance (L) = $\frac{X_L}{W} = \frac{364.4}{2X3.14X50} = 1.1H$	1/2
$\frac{1}{w} = \frac{1}{2X3.14X50} = 1.111$	
OR	
(a) Diagram of the device	
working Principle ½	
Four sources of energy loss $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	
(b) Estimation of Line power loss 1½	
(a)	
S made of the state of the stat	
Primary Secondary	1
Working Principle: When the alternating voltage is applied to the primary, the	
resulting current produces an alternating magnetic flux in secondary and induces	
an emf in it./It works on the mutual induction.	1/2
Four sources of energy loss	
(i) Flux leakage between primary and secondary windings	
(ii) Resistance of the windings	1/2
(iii)Production of eddy currents in the iron core.	1/2
(iv)Magnetization of the core.	1/2
	1/2
(b) Total resistance of the line = length X resistance per unit length	
$= 40 \text{ km} \times 0.5 \Omega/km$	
= 20 0	1

1/2

= 20 Ω

	Current flowing in the line $I = P/V$		
	$I = \frac{1200 X 10^3}{4000}$		
	= 300A		
	∴ Line power loss in the form of heat	1/2	
	$P=I^2R$		
	$= ((300)^2 \times 20)$ = 1800 kW	1/2	5
		/2	
26.	(a) Two characteristic Two characteristic features of		
	distinction2		
	Dervation Derivation of the expression for the intensity		
	$1\frac{1}{2}$		
	(b) Calculation of separation between the first order		
	tor Calculation of Separation between the first order		
	(a)		
	(Any two of the following)(i) Interference pattern has number of equally spaced bright and dark bands while		
	diffraction pattern has central bright maximum which is twice as wide as the other		
	maxima.	1/2 + 1/2	
	(ii) Interference is obtained by the superposing two waves originating from two narrow slits. The diffraction pattern is the superposition of the continuous family of waves originating from each point on a single slit.		
	(iii) In interference pattern, the intensity of all bright fringes is same, while in		
	diffraction pattern intensity of bright fringes go on decreasing with the increasing order of the maxima		
	(iv)In interference pattern , the first maximum falls at an angle of $\frac{\lambda}{a}$. where a is		
	the separation between two narrow slits, while in diffraction pattern, at the	1/2 + 1/2	
	same angle first minimum occurs. (where 'a' is the width of single slit.)		
	Displacement produced by source s_1		
	Y_1 = a cos wt Displacement produced by the other source 's ₂ '		
	Y_2 = a cos (wt + \emptyset)	1/2	
	Resultant displacement $Y = Y_1 + Y_2$		
	- 2 (coc wt + coc (wt + 0))		
	= a [cos wt + cos (wt + Ø)		
	= a [cos wt + cos (wt + \emptyset) = 2a cos (\emptyset / ₂) cos (wt + \emptyset / ₂)	1/2	
	$= 2a \cos(\frac{\emptyset}{2}) \cos(wt + \frac{\emptyset}{2})$	1/2	
		1/ ₂	

(a) Distance of First order minima from centre of the central maxima =

1/2

Distance of third order maxima from centre of the central maxima $X_{B3} = \frac{7D\lambda}{2a}$

 \div Distance between first order minima and third order maxima= $x_{B3}-x_{d1}$

$$=\frac{7D\lambda}{2a}-\frac{\lambda D}{a}$$

1/2

$$=\frac{5D\lambda}{2a}$$

$$=\frac{5 X 620 X 10^{-9} X 1.5}{2X3X10^{-3}}$$

1/2

=775 X
$$10^{-6}$$
m
=7.75 X 10^{-4} m

OR

(a) Two conditions of total internal reflection

1 + 1

(b) Obtaining the relation

(c) Calculating of the position of the final image

2

(a) (i) Light travels from denser to rarer medium.

1 1

(ii) Angle of incidence is more than the critical angle

1/2

For the Grazing incidence

$$\mu \sin i_c = 1 \sin 90^{\circ}$$

$$\mu = \frac{1}{\sin i_c}$$

1/2

(b) For convex lens of focal Length 10 cm

1/2

$$\frac{1}{f_1} = \frac{1}{v_1} - \frac{1}{u_1}$$

1/2

$$\frac{1}{10} = \frac{1}{v_1} - \frac{1}{-30} \Rightarrow v_1 = 15 \text{ cm}$$

Object distance for concave lens u_2 = 15-5 =10 cm

$$\frac{1}{f_2} = \frac{1}{v_2} - \frac{1}{u_2}$$

$$\frac{1}{-10} = \frac{1}{v_2} - \frac{1}{10}$$

$$v_2 = \infty$$

For third lens 1 1 1		
 	1/2	5
$\frac{1}{3} = \frac{1}{v_3} - \frac{1}{\infty} = v_3 = 30 \text{ cm}$		
a) Description of the process of transferring the charge. $\frac{1}{2}$ Derivation of the expression of the energy stored $2\frac{1}{2}$ b) Calculation of the ratio of energy stored 2 (a) The electrons are transferred to the positive terminal of the battery from the metallic plate connected to the positive terminal, leaving behind positive charge on it. Similarly, the electrons move on to the second plate from negative terminal, hence it gets negatively charged. Process continuous till the potential difference between two plates equals the potential of the battery. [Note: award this $\frac{1}{2}$ mark, If the student writes, there will be no transfer of charge between the plates]	½	
	½ 	
dW = V dq		
Where $V = \frac{q}{c}$	1/2	
$\therefore dW = \frac{q}{c} dq$	1/2	
Total work done in changing up the capacitor		
$W = \int dw = \int_{0}^{Q} \frac{q}{c} dq$	½	
·	½	
Hence energy stored = $W = \frac{Q^2}{2C} \left(= \frac{1}{2} CV^2 = \frac{1}{2} QV \right)$		
(b) Charge stored on the capacitor q=CV When it is connected to the uncharged capacitor of same capacitance, sharing of charge takes place between the two capacitor till the potential of both the capacitor becomes $\frac{V}{2}$		
7	1/2	

Energy stored on the combination (u_2) =	$= \frac{1}{2} C \left(\frac{v}{2} \right)^2 + \frac{1}{2} C$	$\left(\frac{\mathbf{v}}{2}\right)^2 = \frac{1}{2}$	CV ² 4
--	--	---	-------------------

Energy stored on single capacitor before connecting

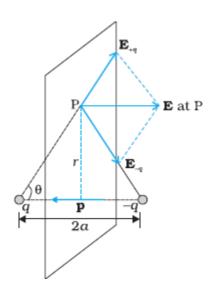
1/2

$$\mathsf{U}_1 = \frac{1}{2} \; CV^2$$

Ratio of energy stored in the combination to that in the single capacitor

$$\frac{\mathrm{U}_2}{\mathrm{U}_1} = \frac{\mathrm{C}\mathrm{V}^2/4}{\mathrm{C}\mathrm{V}^2/2} = 1:2$$

1/2


OR

(a) Derivation for the expression of the electric field on the equatorial line

(b) Finding the position and nature of Q

1 + 1

(a)

1

The magnitude of the electric fields due to the two charges +q and -q are

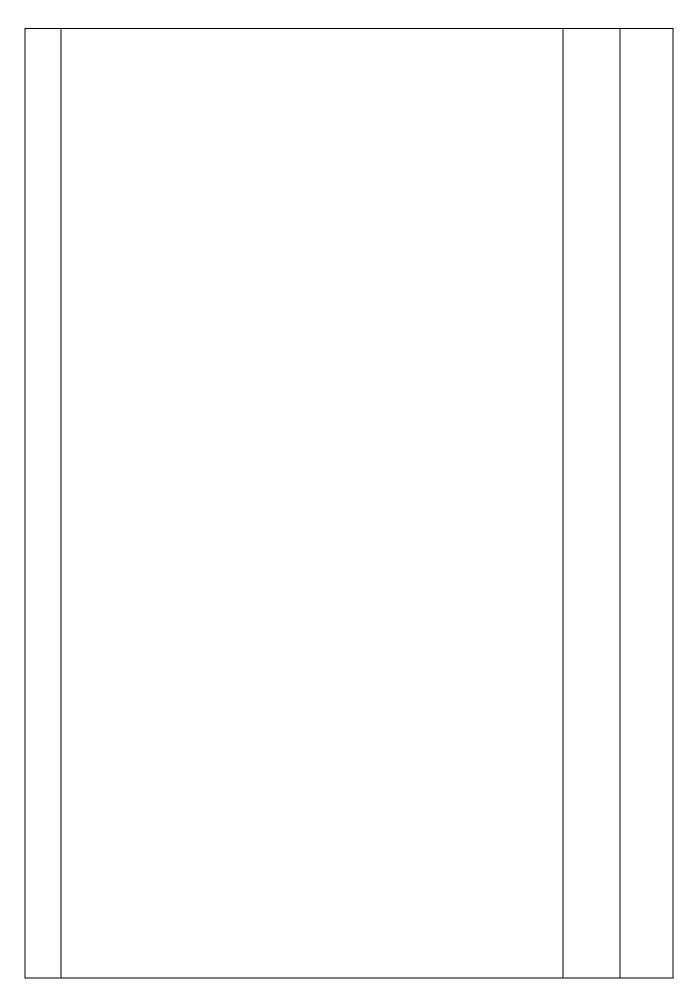
$$E_{+q} = \frac{1}{4\pi \in_0} \frac{q}{(r^2 + a^2)}$$

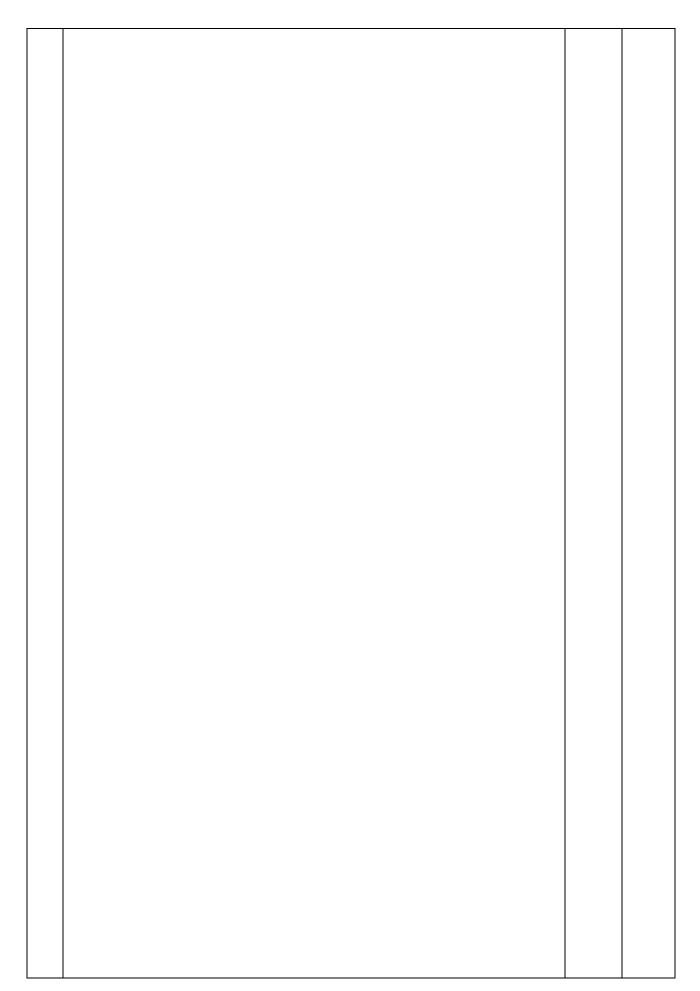
1/2

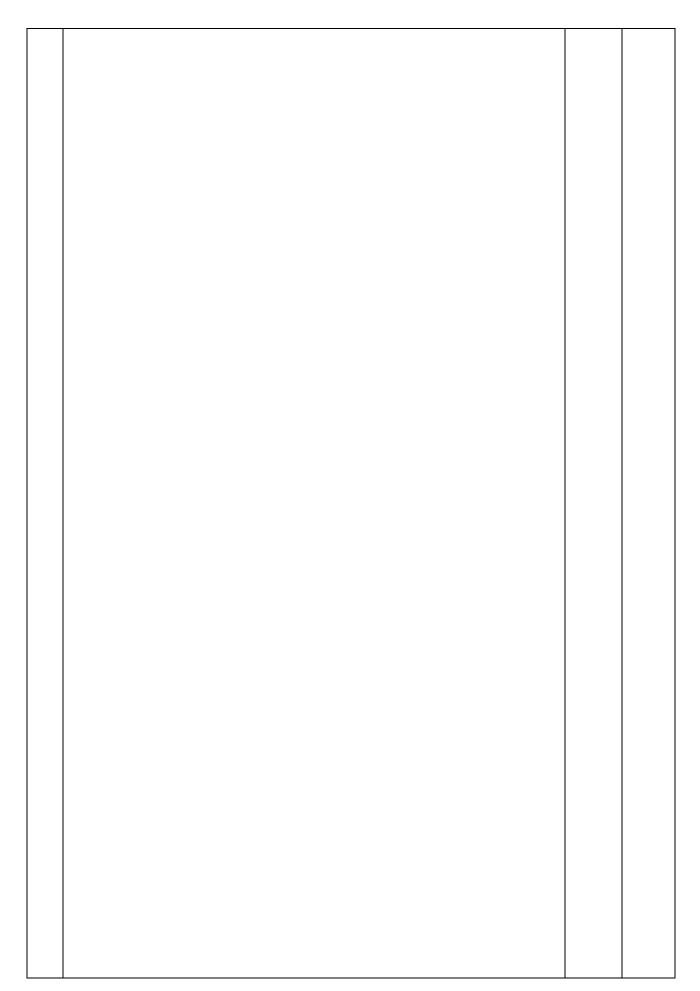
$$E_{-q} = \frac{1}{4\pi \in_0} \frac{q}{\left(r^2 + a^2\right)}$$

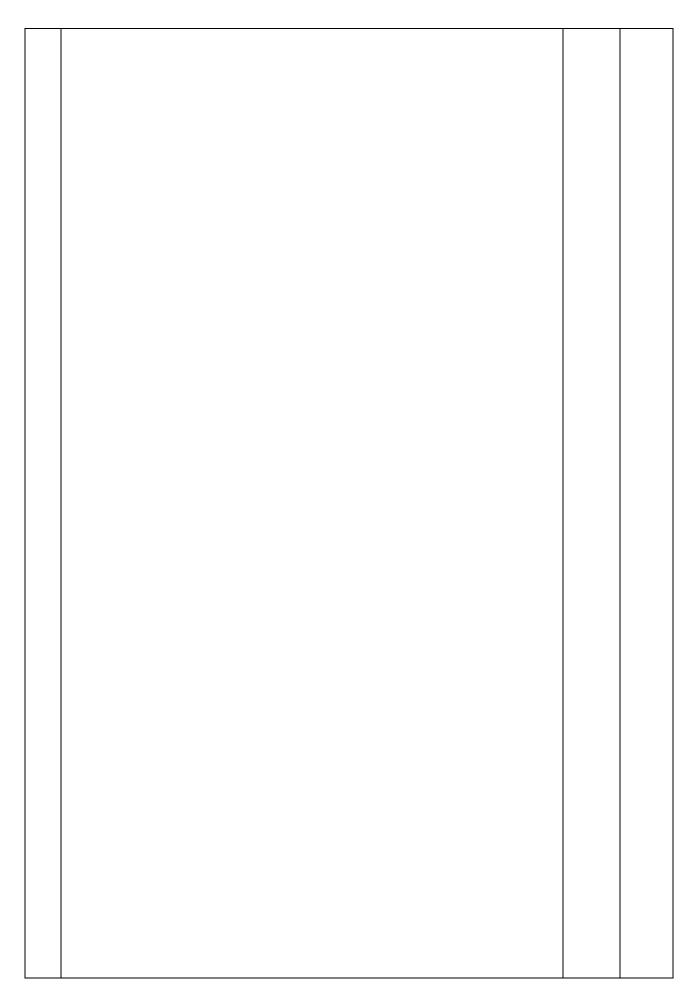
1/2

5


The components normal to the dipole axis cancel away and the components along the dipole axis add up


1/2


Hence total Electric field = - ($E_{+q} + E_{-q}$) $\cos \theta ~~ \hat{p}$


$E = -\frac{2qa}{4\pi\varepsilon_0 \left(r^2 + a^2\right)^{3/2}} \hat{p}$	1/2	
(b) Q Q Q (x)		
System is in equilibrium therefore net force on each charge of system will be	<i>Y</i> ₂	
zero. For the total force on 'Q' to be zero		
$\frac{1}{4\pi \in_{0}} \frac{qQ}{x^{2}} = \frac{1}{4\pi \in_{0}} \frac{qQ}{(2-x)^{2}}$	1/2	
x = 2 - x $2x = 2$ $x = 1 m$	1/2	
(Give full credit of this part, if a students writes directly 1m by observing the given condition)		
For the equilibrium of charge "q" the nature of charge Q must be opposite to the nature of charge q.	1/2	5

		1
1		
1		
Ì		1
Ì		1
Ì		1
1		
1		

		5
Ì		