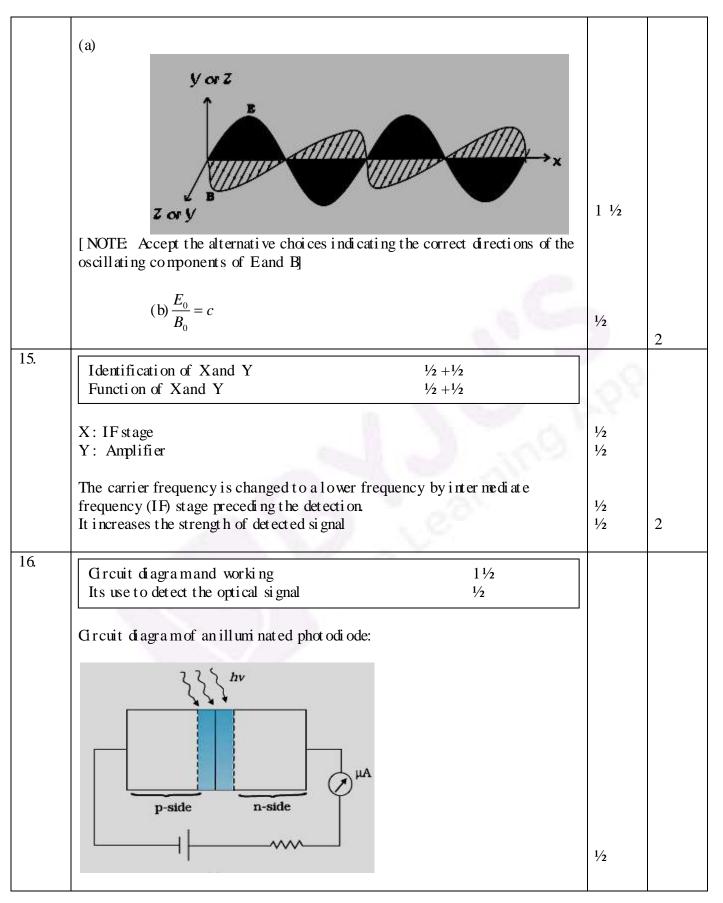
CBSE Class 12 Physics Solution


MARKI NG SCHEME **SET 55/1/1**

Q No.	Expected Ans wer / Value Points	Marks	Tot al Marks
1.	Substances, which at room temperature, retain their ferromagnetic property for a long period of time are called permanent magnets. A nico, cobalt, steel and ticonal (any one)	1/2 +1/2	1
2.	Spherical.	1	1
3.	Heat waves, as they are transverse/electromagnetic in nature	1/2 +1/2	1
4.	Magnitude of conduction & displacement currents are zero.	1	1
5.	$A + \delta_m = 2i$	1	1
6.	(1, 3) and (2, 4)	1/2 +1/2	1
7.	$i = \frac{V}{R} = \frac{190}{38} = 5A$ Award full 1 mark if student calculates current directly	1/2 +1/2	1
8.	Because the cell has some finite internal resistance./ Enf is determined when the cell is in open circuit and no current is drawn.	1	1
9.	Conditions Relation (a) i) Ray of light should travel from denser to rarer medium ii) Angle of incidence should be more than the critical angle.	1/2 1/2	
	(b) $\mu = \frac{1}{\sin i_c}$ where i_c is the critical angle	1	2
10.	Statement of lenz law Enf and justification 1/2 +1/2 The polarity of induced enf is such that it tends to produce a current which opposes the change in magnetic flux that produced it. Yes, as the magnetic flux due to vertical component of Earth's magnetic keeps on changing as the netallic rod falls down.	1 1/2 +1/2	2
11.	Det er mi nati on of power Nat ure 1½ Power of convex lens,		
		1/2	

Del hi SET I Page 2 of 19

H NAL Print Draft 11/3/2013 11:30 a m

Power of concave lens,		
	1/2	
Po wer of the combination $P=P_1+P_2=-1D$ Nature: Diverging	1/2	2
12. (i) Value of Shunt Resistance (ii) Combined resistance 1 1	72	2
(i) Shunt $S = \frac{R_A i_g}{i - i_g}$	1/2	
$=\frac{0.8\times1.0}{5.0-1.0}=0.2\Omega$	1/2	
(ii) Combined resistance of amneter and shunt $ \frac{1}{R_{total}} = \frac{1}{R_A} + \frac{1}{S} $ $ = \frac{1}{0.8} + \frac{1}{0.2} $ $ R_{total} = \frac{0.8}{5} $	1/2	25
$\Rightarrow R_{total} = 0.16\Omega$	1/2	2
(i) Effect on Bright ness of the bulb and reason 1/2 + (ii) Effect on volt meter reading and reason 1/2 + (i) Increases.		
As the value of the base current increases, the collector curwill increase proportionately. (ii) Increases.		2
Due to increase in collector current, voltage drop across lamp increase.		2
(a) Sket ch of propagation (b) Relation 1 ½ 1/2		

	When the photodiode is illuminated with radiations (photons) with energy (hv) greater than the energy gap (Eg) of the semiconductor, then electron-hole pairs are generated due to the absorption of photons. The junction field sends the electrons to n-side and holes to p-side to produce the enf. Hence current flows through the load when connected. It is easier to observe the change in the current with change in the radiation intensity, if a reverse bias is applied. Thus photodiode can be used as a photodetector to detect optical signals. OR	1 1/2	
	I mportant considerations Or der of band gap 1. It is a heavily doped p-n j unction 2. The reverse breakdown voltages of LEDs are very low 3. The semiconductor used for fabrication of visible LEDs must at least have a band gap of 1.8 eV (Any two of the above) Or der of band gap is about 3 eVto 1.8 eV	1/2 + 1/2	2
17.	I mportant factors justifying the need of modulation 1½ Diagramshowing, how AM wave is obtained 1½		
	1. Practical Size of the antenna or aerial	1/2	
	2. Effective power radiated by an antenna	1/2	
	3. Mixing up of signals from different transmitters	1/2	
	ca o M M M M M M M M M M M M M M M M M M	1/2	
	m(i) o	1/2	
	c _m (t) for AM 0	1/2	3
18.	(i) Calculation of potential V and unknown capacitance C (ii) Calculation of charge stored O 1		

(i) Q=CV	1/2	
	1/2	
	1/2	
Substituting the value of C Potential V= 180 V	1/2	
(ii) Charge stored when voltage is increased by 120 V	1/2 1/2	3
OR	55	
(i) Cal cul ati on of net electric flux 2 (ii) Cal cul ati on of charge 1		
(i) The magnitude of the electric field at the left face is E= 50 NC ¹ Therefore fly through this face		
120 = 360 = 240	1/2	
Arr Capacitance $C = 2$	1/2	
The magnitude of the electric field at the right face is $E=100$ NC 1 Therefore flux through this face		
Q = 2 $= 600$	1/2	
	1/2	
(ii) Charge enclosed by the cylinder	1/2	
C	1/2	3

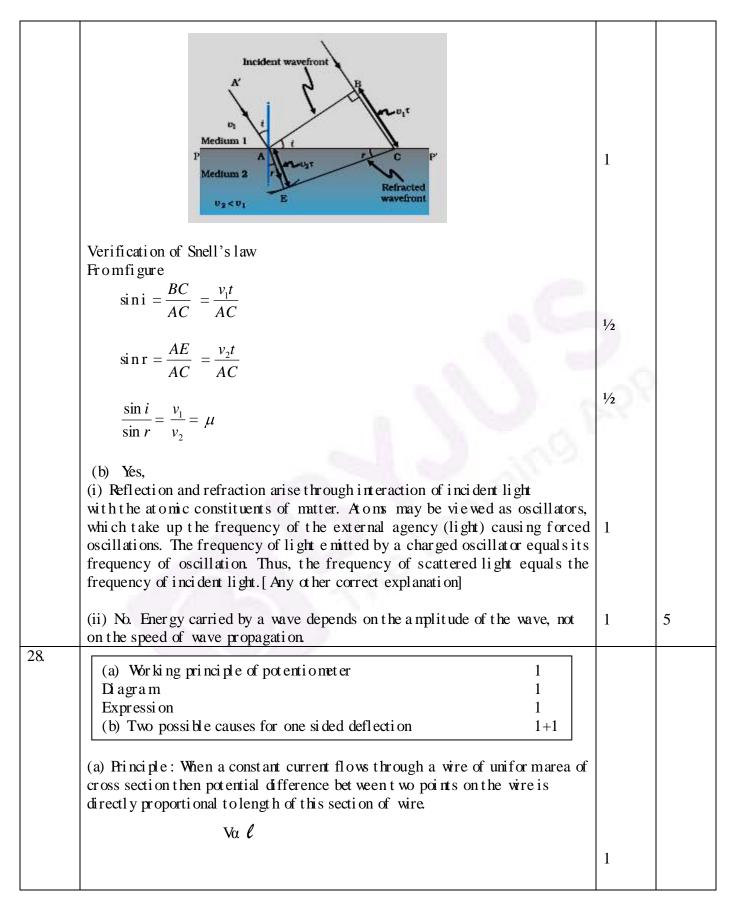
Del hi SET I Page 6 of 19 H NAL Print Draft

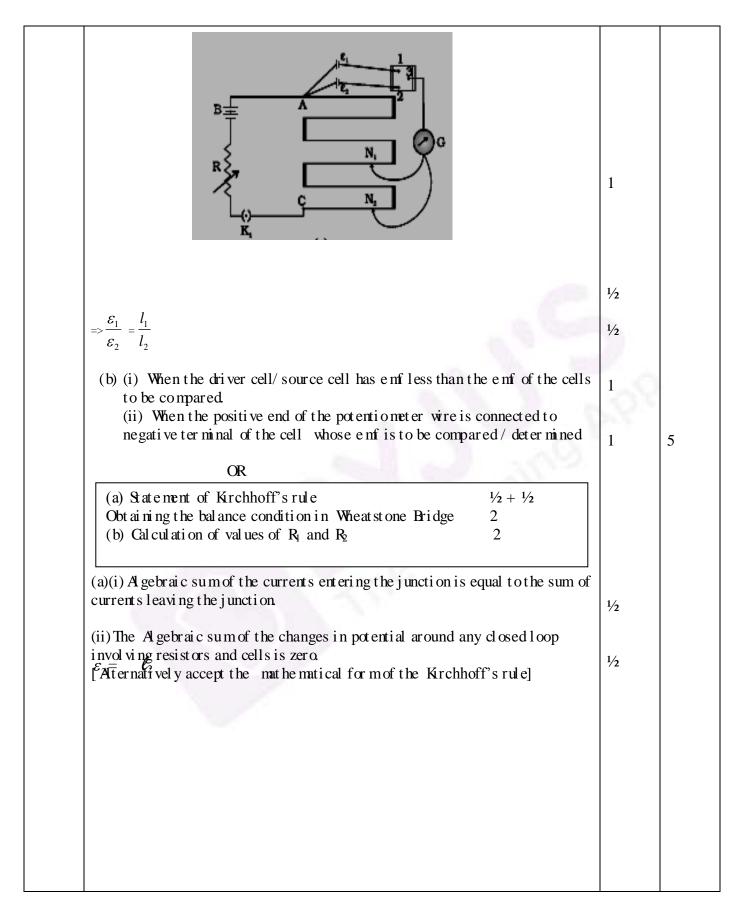
11/3/2013 11:30 a m

19.	(a) Cause of release of energy (b) Proof for independence of nuclear density on mass number 2 (a) Since the total initial mass of nuclei on the left side of reaction is greater than the total final mass of nucleus on the right hand side, this difference of mass appears as the energy released.	1	
	As $R=R_0$ $A^{1/3}$	1/2	
		1/ ₂ 1/ ₂	
		1/2	3
20.	(a) Reasons of failure of wave theory to explain Photoelectric effect. 1 ½ (b) Basic features of Photon picture 1 ½ (a) According to wave theory		
	(i) The maximum kinetic energy of the emitted electron should be directly proportional to the intensity of incident radiations but it is not observed experimentally. Also maximum kinetic energy of the emitted electrons should not depend upon incident frequency	1/2	
	according to wave theory, but it is not so. (ii) Electron emmission should take place at all frequencies of radiations i.e. there should not exist the threshold frequency. This fact contradicts experimental observation	1/2	
	(iii) There should be a time lag in photoelectric emmission but according to observation photoelectric emmission is instantaneous	1/2	
	(b) According to phot on picture		
	$_{(i)}$ Each quantum of radiation has energy h $ u$	1/2	

	(ii) In photoelectric effect the electrons in the metal absorbs this quantum of energy $(h\nu)$	1/2	
	(iii) When this energy exceeds the minimum energy needed for the	1/2	3
21.	As the rod is rotated, free electrons in the rod move towards the outer end due to Lorentz force and get distributed over the ring. Thus, the resulting separation of charges produces as emf across the ends of the rod. The magnitude of the emf generated across the length 'dr' of the rod as it moves at right angle to the magnetic field is given by	1/2 1 1/2 1/2	3

	Det er mi nati on of		
	(i) Dyna mic out put resistance $\frac{1}{2} + \frac{1}{2}$ (ii) d c current gain $\frac{1}{2} + \frac{1}{2}$		
22.	(ii) d c current gain $\frac{1}{2} + \frac{1}{2}$ (iii) a c current gain $\frac{1}{2} + \frac{1}{2}$		
	$\begin{array}{c} \text{(III) a c current gain} \\ \text{(2 + 72)} \end{array}$		
	(1) Dyna mic out put resistance		
	$r_0 = \left(rac{\Delta V_{CE}}{\Delta I_C} ight) ext{I}_{ ext{b}}$	1/2	
	= 0.2 mA		
	dt. Verseille	1/2	
	$r_0 == 20 \text{ K}\Omega$		
	(2) dc current gain, at 10 V, $I_C = 3.6$ mA	149	
	$\beta = \frac{I_c}{I_b} = \frac{3.6 \times 10^{-3}}{30 \times 10^{-6}} = 120$	1/2 + 1/2	
	(3) ac current gain		
	$\Delta I_b = 40 \ \mu\text{A} - 30 \ \mu\text{A} = 10 \ \mu\text{A}$		
	$\Delta I_c = 4.7 \text{ mA} - 3.6 \text{ mA} = 1.1 \text{ mA}$		
	$oldsymbol{eta}_{ac} = \left(rac{\Delta oldsymbol{I}_c}{\Delta oldsymbol{I}_b} ight)$	1/2	
	From the graph = $\frac{1.1x10 \cdot (^312 - 10)}{10x10 \cdot (^337 - 3)} = \frac{4 \text{ V}}{3.5} = 4 \text{ V}$	1/2	3
	[NOTE: Gredit should also be given to candidate who uses the right		
	procedure, but considers the values slightly different from those used above]		
23.	Derivation of expression for total energy of the electron Energy level diagram for Balmer series 2		
	Energy level diagram for Balmer series 1		
		1/2	


From(i) and (ii)	1/2	
Ki netic energy		
	h	
	-0	
Pot ential energy	S.	
	1/2	
□ □ Tot al Ener gy		
TE = KE + U	1/2	
\Rightarrow		
EnergyLevel Diagram of Bal mer Series		
n= n=6 n=5 n=4		
n=3		
$_{n=2}$		
Balmer	1	3
Aso = = =	11.20	


Del hi SET I Page 10 of 19

H NAL Print Draft 11/3/2013 11:30 a m

	T		
	Resonance will be sharper for resistance Ro Si gnificance of Qfactor For large Qfactor, resonance will be sharper and therefore circuit will be more selective	1/2 1/2	3
26.	Four parts 1 mark for each part		
	 a) Because during thunder stormcar would act as an electrostatic shield b) Dr. Pat hak displayed values of safety of human life, helpfulness, empathy and scientific temper. (or any other two relevant values) c) Gratefulness, indebtedness (or any other relevant value) d) Example of any similar action 	1 1/2 + 1/2 1 1	4
27.	(a) Ray diagramshowing i mage for mation Derivation of expression for magnification 2 (b) Distinction bet ween myopia and hyper metropia Correction of defects by diagram 1 Derivation of expression for magnification 2 (b) Distinction bet ween myopia and hyper metropia 1 Correction of defects by diagram 1 Derivation of expression for magnification 2 (b) Distinction bet ween myopia and hyper metropia 1 Correction of defects by diagram 1	- Q-Y-	
	Magnification of objective	1	
	$n_0 = \frac{h'}{h} = \frac{L}{f_0}$	1/2	
	Angular magnification due to eyepiece		
		1/2	
	Total magnification when i mage is for med at infinity		

m=m ₀ m ₂		1/2
		1/2
(b)		
Myopia	Hy per met ropi a	
1. Distant object arriving at the eye	1. Eyel ens focuses the incoming	
lens get converged at a point in front	light behind retina	
of the retina		
2. The eye ball is elongated	2. The eye ball is shortened	
3. Person cannot see distant objects	3. Person cannot see nearby objects	
cl earl y.	d earl y.	1/2 + 1/2
(Any t wo or any other correct ans wer)		
(This two or any other correct and wer)		
	4 10 10	
P	V-)-	COX
		N.X.
	_	
=	100	
= P		
=		
= P		1/2 + 1/2
= P		1/2 + 1/2
My opi a can be corrected by	Hyper metropia can be corrected by	1/2 + 1/2
My opi a can be corrected by interposing a concave lens bet ween	interposing a convex lens bet ween	1/2 + 1/2
My opi a can be corrected by interposing a concave lens bet ween eye and object	interposing a convex lens bet ween eye and object	1/2 + 1/2
My opi a can be corrected by interposing a concave lens bet ween eye and object [Award only half mark if diagrams not	interposing a convex lens bet ween eye and object	1/2 + 1/2
My opi a can be corrected by interposing a concave lens bet ween eye and object [Award only half mark if diagrams not explanation is not written]	interposing a convex lens bet ween eye and object drawn, a ward full mark even if	1/2 + 1/2
My opi a can be corrected by interposing a concave lens bet ween eye and object [Award only half mark if diagrams not explanation is not written]	interposing a convex lens bet ween eye and object drawn, a ward full mark even if	1/2 + 1/2
My opi a can be corrected by interposing a concave lens bet ween eye and object [Award only half mark if diagrams not explanation is not written] Ol (a) Statement of Huygen's principle	interposing a convex lens bet ween eye and object drawn, a ward full mark even if	1/2 + 1/2
My opi a can be corrected by interposing a concave lens bet ween eye and object [Award only half mark if diagrams not explanation is not written] Ol (a) Statement of Huygen's principle Diagram	interposing a convex lens bet ween eye and object drawn, a ward full mark even if	1/2 + 1/2
My opi a can be corrected by interposing a concave lens bet ween eye and object [Award only half mark if diagrams not explanation is not written] Ol (a) Statement of Huygen's principle Diagram Verification of Snell's law	interposing a convex lens bet ween eye and object drawn, a ward full mark even if R 1 1 1	1/2 + 1/2
My opi a can be corrected by interposing a concave lens bet ween eye and object [Award only half mark if diagrams not explanation is not written] Ol (a) Statement of Huygen's principle Diagram	interposing a convex lens bet ween eye and object drawn, a ward full mark even if	1/2 + 1/2
My opi a can be corrected by interposing a concave lens bet ween eye and object [Award only half mark if diagrams not explanation is not written] Ol (a) Statement of Huygen's principle Diagram Verification of Snell's law	interposing a convex lens bet ween eye and object drawn, a ward full mark even if R 1 1 1	1/2 + 1/2
My opi a can be corrected by interposing a concave lens bet ween eye and object [Award only half mark if diagrams not explanation is not written] Ol (a) Statement of Huygen's principle Diagram Verification of Snell's law (b) Explanation of (i) and (ii)	interposing a convex lens bet ween eye and object drawn, a ward full mark even if R 1 1 1 1 1+1 ch point of the wavefront is the source	1/2 + 1/2
My opi a can be corrected by interposing a concave lens bet ween eye and object [Award only half mark if diagrams not explanation is not written] Ol (a) Statement of Huygen's principle Diagram Verification of Snell's law (b) Explanation of (i) and (ii) (a) According to Huygens principle, eacof a secondary disturbance and the verification of the secondary disturbance and the secondary disturbance an	interposing a convex lens bet ween eye and object drawn, a ward full mark even if R 1 1 1 1 1+1 ch point of the wavefront is the source wavelets emanating from these points	1
My opi a can be corrected by interposing a concave lens bet ween eye and object [Award only half mark if diagrams not explanation is not written] Ol (a) Statement of Huygen's principle Diagram Verification of Snell's law (b) Explanation of (i) and (ii) (a) According to Huygens principle, each of a secondary disturbance and the verification of all directions with the specific and specific and the specific and the specific and the specific and specific and the specific and t	interposing a convex lens bet ween eye and object drawn, a ward full mark even if R 1 1 1 1+1 ch point of the wavefront is the source wavelets emanating from these points eed of the wave. A common tangent to	1
My opi a can be corrected by interposing a concave lens bet ween eye and object [Award only half mark if diagrams not explanation is not written] Ol (a) Statement of Huygen's principle Diagram Verification of Snell's law (b) Explanation of (i) and (ii) (a) According to Huygens principle, eacof a secondary disturbance and the verification of the secondary disturbance and the verification.	interposing a convex lens bet ween eye and object drawn, a ward full mark even if R 1 1 1 1+1 ch point of the wavefront is the source wavelets emanating from these points eed of the wave. A common tangent to	1

	A C R. T. R. T. D. L. R. T. D. T. R. T. D. T. T. R. T. T. T. T. R. T.	1/2	
	In loop ADBA $-I_{1} R_{1} + 0 +I_{2} R_{2} = 0$ $=> I_{1} R_{1} = I_{2} R_{2}$	1/2	
	In loop CBDC $I_2 R_4 + 0 - I_1 R_5 = 0$ $\Rightarrow I_2 R_4 = I_1 R_5$	1/2	
	$=> rac{R_1}{R_2} = rac{R_3}{R_4}$	1/2	
	(b) $\frac{R_1}{R_2} = \frac{40}{60} = \frac{2}{3}$	1/2	
	$\frac{R_1 + 10}{R_2} = \frac{60}{40} = \frac{3}{2}$ $\frac{R_1}{R_2} + \frac{10}{R_2} = \frac{3}{2}$ $\Rightarrow \frac{2}{3} + \frac{10}{R_2} = \frac{3}{2}$	1/2	
	$=>R_2=12\Omega$	1/2	
	Substituting for R_2 and finding the value of R_1 R_1 =8 Ω	1/2	5
29.	(a) Derivation of the expression for the torque with diagram 3 (b) Depiction of the trajectories 2		

(a) 1/2 The magnetic field exerts no force on the two arms AD and BC of the loop. Force F₁ acts on arm AB directing into the plane. $F_1 = IbB$ 1/2 Force F_2 acts on arm CD directing out of the plane. $F_2 = IbB = F_1$ $\frac{1}{2}$ Hence there is a torque on the loop due to forces F_1 and F_2 1/2 =IbB $\frac{a}{2}$ + IbB $\frac{a}{2}$ =I(ab) B=I AB where A=ab is the area of the loop (b) 1 1

OR (a) Execution of SHMof compass needle in magnetic field 2 Derivation of its time period 1 (b) Finding (i) horizontal component of earth's magnetic field (ii) angle of dip 1+1 (a) Torque acting on the compass needle suspended freely in a unifor m magnetic field 1/2 It will be balanced by the restoring torque For small angle $\sin\theta \approx \theta$ 1/2 In equilibirum, the resulting equation of motion	
Derivation of its time period (b) Finding (i) horizontal component of earth's magnetic field (ii) angle of dip (a) Torque acting on the compass needle suspended freely in a unifor m magnetic field It will be balanced by the restoring torque For small angle $\sin\theta\approx\theta$ V2 In equilibirum, the resulting equation of motion	
magnetic field 1/2 It will be balanced by the restoring torque For small angle $\sin\theta\approx\theta$ 1/2 In equilibirum, the resulting equation of motion 1/2	
It will be balanced by the restoring torque For small angle $\sin\theta\approx\theta$ 1/2 In equilibirum, the resulting equation of motion 1/2	
For small angle $\sin\theta\approx\theta$ 1/2 In equilibirum, the resulting equation of motion 1/2	
In equilibirum, the resulting equation of motion 1/2	
In equilibirum, the resulting equation of motion 1/2	
$1\frac{1}{2}$	
1/2	
In magnitude = $MB \sin \theta$	
$=- MB \sin \theta$ [If the student just writes that the needle,	
(i) When slight $1 = -\frac{MB\theta}{3}$ disturbed from its stable position experiences a	

Award (1 + 1 = 2) marks]		
(b) (i) Horizontal component of Earth's magnetic field=0	1	
(ii) The value of angle of dip at that place $=90^{\circ}$	1	5