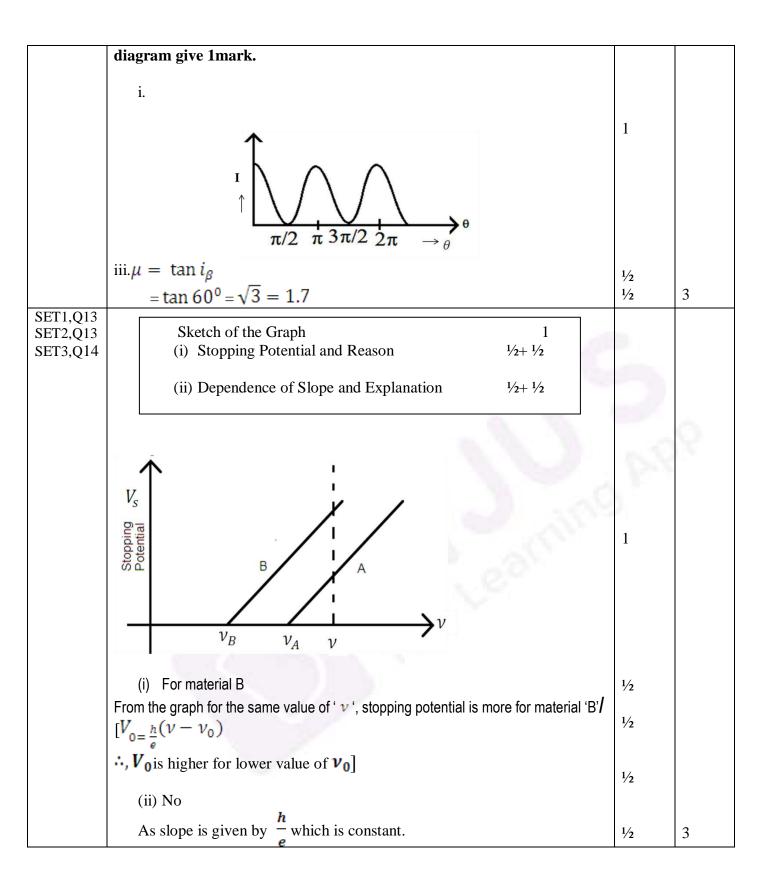
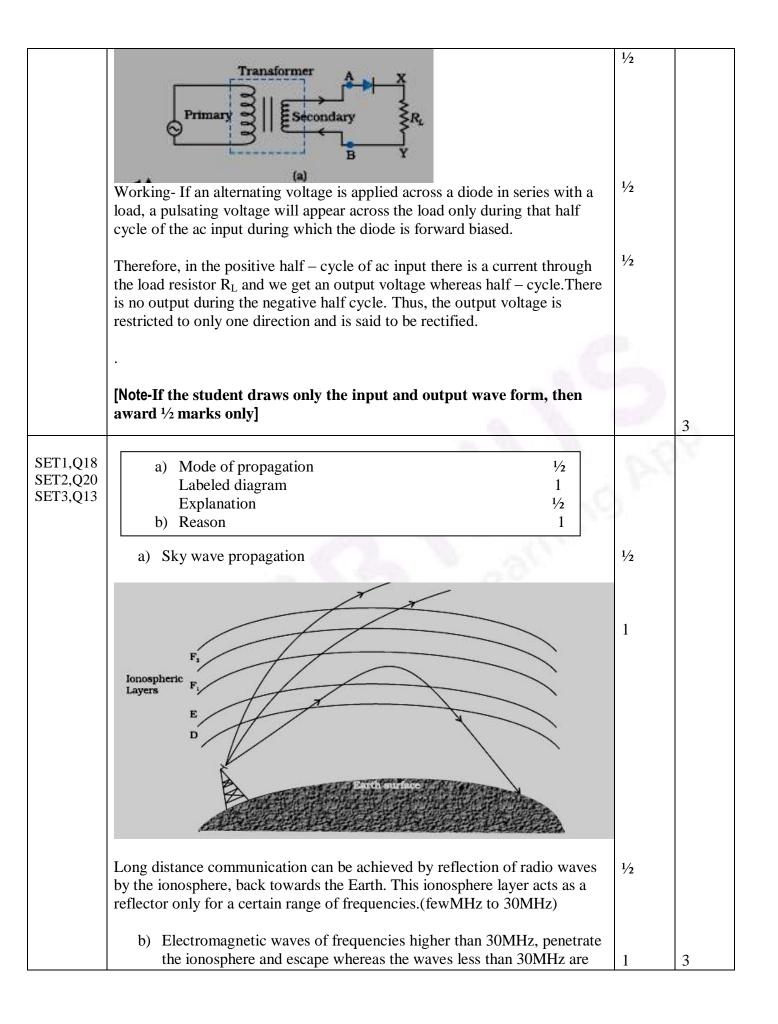
CBSE Class 12 Physics Solution

MARKING SCHEME

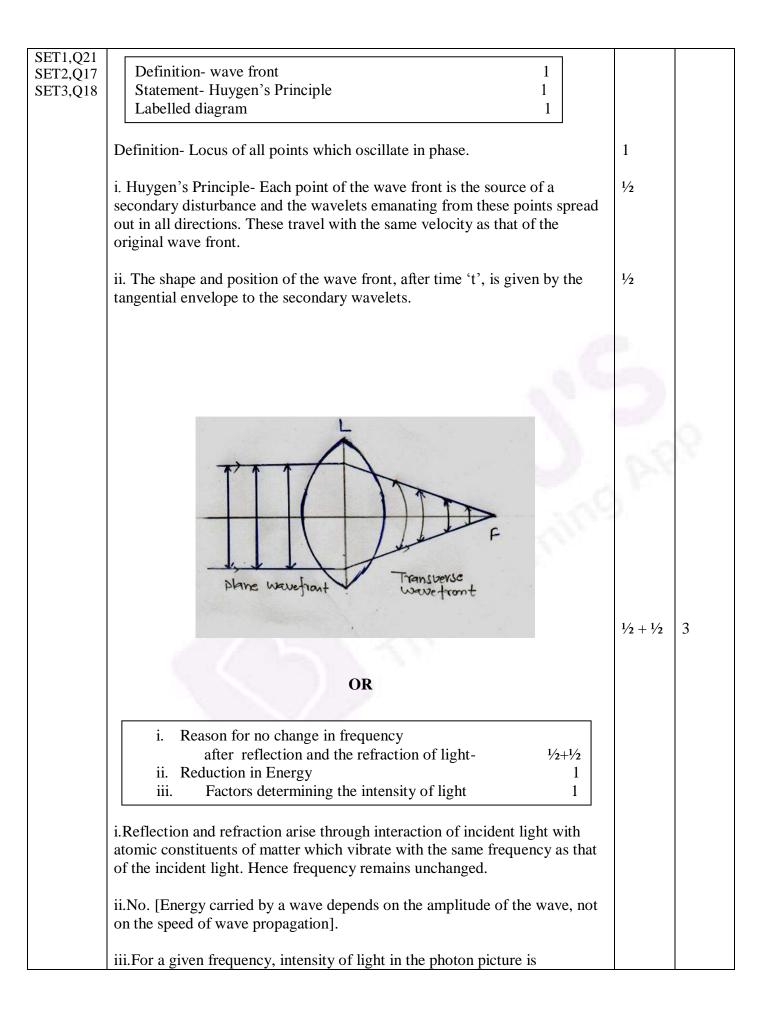

55/1/C

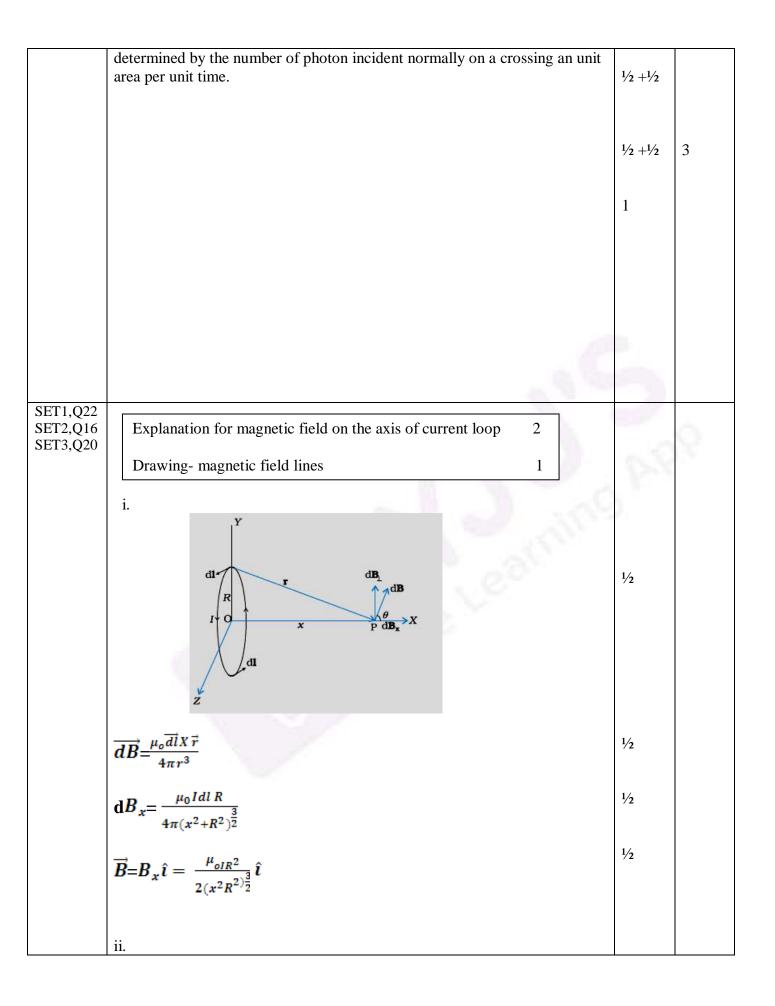
Q. No.	Expected Answer / Value Points	Marks	Total Marks
	SECTION-A		
SET1,Q1 SET2,Q4	No work is done /		
SET3,Q5	$\mathbf{W} = q\mathbf{V}_{AB} = q \ge 0$	1	1
SET1,Q2	A diamagnetic specimen would move towards the weaker region of the field	1	
SET2,Q1 SET3,Q3	while a paramagnetic specimen would move towards the stronger region./ A diamagnetic specimen is repelled by a magnet while a paramagnetic		
	specimen moves towards the magnet./ The paramagnetic get aligned along B and the diagrammatic perpendicular to the field.		
			1
SET1,Q3 SET2,Q5 SET3,Q2	Transmitter, Medium or Channel and Receiver.	1	1
SET1,Q4 SET2,Q3 SET3,Q1.	It is due to least scattering of red light as it has the longest wavelength/	58	8
	As per Rayleigh's scattering, the amount of light scattered $\propto \frac{1}{\lambda^4}$	1	1
SET1,Q5	E = 2V	1/2	
SET2,Q2 SET3,Q4		1/2	1
	$r = 2\Omega$ SECTION B	72	1
SET1,Q6	SECTION B		
SET2,Q9	Definition- 1		
SET3,Q8.	Reason- ¹ / ₂		
	Role of bandpass filter-1/2		
	Modulation index is the ratio of the amplitude of modulating signal to that of carrier wave	1	
	Alternatively $\mu = \frac{A_m}{A_c}$		
	Reason- To avoid distortion.	1⁄2	
	Role- A bandpass filter rejects low and high frequencies and allows a band of frequencies to pass through.	1⁄2	2

SET1,Q7 SET2,Q10 SET3,Q6	Path of emergent ray1Naming the face1/2Justification1/2		
	P 30 ² B 60 ^o C	1	
	Face-AC		
	Here $i_c = \sin^{-1}(\frac{2}{3})$ = $\sin^{-1}(0.6)$	1/2	2
SET1,Q8	$\angle i$ on face AC is 30° which is less than $\angle i_c$. Hence the ray get replaced here.	1/2	
SET2,Q6 SET3,Q7	Formulae of Kinetic energy and deBrogliea wavelength $\frac{1}{2} + \frac{1}{2}$ Calculation and Result $\frac{1}{2} + \frac{1}{2}$		
	Kinetic Energy for the second state- $E_{k} = \frac{13.6eV}{n^{2}} = \frac{13.6eV}{4} = 3.4X1.6X10^{-19}J$	1⁄2	
	De Broglies wavelength $\lambda = \frac{h}{\sqrt{2mE_k}}$	1⁄2	
	$=\frac{6.63X10^{-34}}{\sqrt{2X9.1X10^{-31}X3.4X1.6X10^{-19}}}$	1⁄2	
	= 0.067nm	1⁄2	2
SET1,Q9 SET2,Q8 SET3,Q10	Definition1Formula1/2Calculation and Result1/2		
	The minimum energy, required to free the electron from the ground state of the hydrogen atom, is known as Ionization Energy.	1	

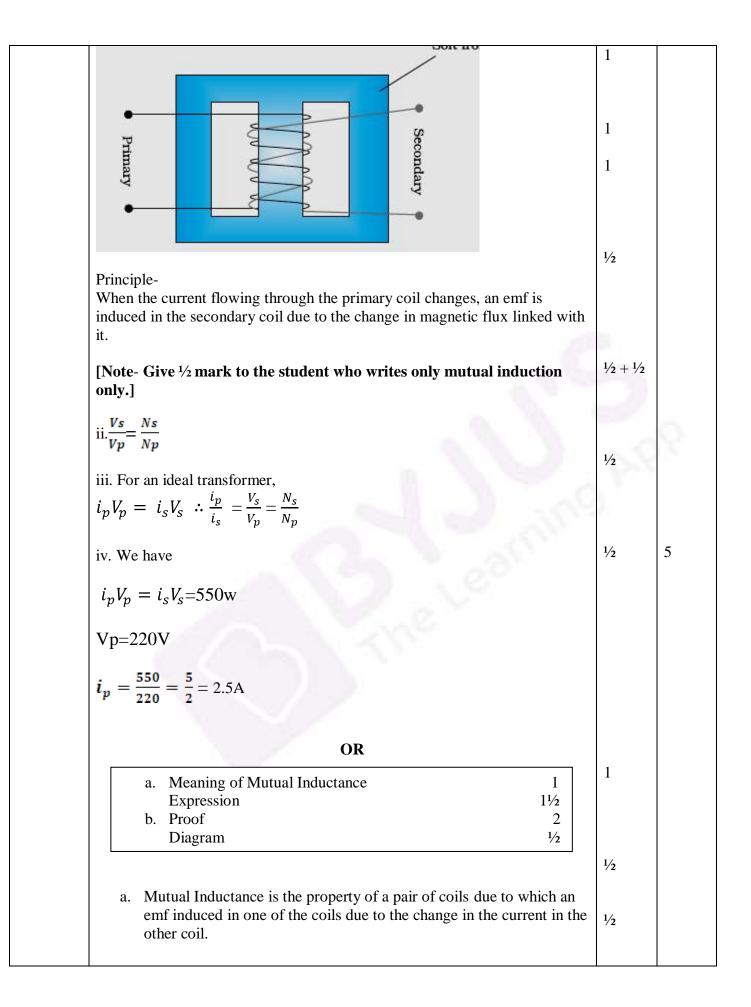

	$E_o = \frac{me^4}{8 \epsilon_o^2 h^2} i.e, E_o \propto m$ Therefore, Ionization Energy will become 200 times OR Formula 1 Calculation and Result $\frac{1}{\frac{1}{2}+\frac{1}{2}}$	1/2 1/2	2
	$\frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{\infty^2} \right)$ For shortest wavelength, n = α Therefore, $\frac{1}{\lambda} = \frac{R}{4} => \lambda = \frac{4}{R} = 4 \times 10^{-7} \text{m}$	1 1/2 1/2	2
SET1,Q10 SET2,Q7 SET3,Q9	a) Relation for terminal potential b) Justification c) Explanation (parallel and series) i) $\frac{1}{2}$ i) 1	00	28
	 Terminal potential difference across the cell, V=E-ir Also p.d. across 4Ω resistor =4X2V= 8V Hence the volmeter gives the same reading in the two cases. b) In series -current same In parallel – potential same 	1/2 1/2 1/2 1/2	2
	SECTION C		
SET1,Q11 SET2,Q15 SET3,Q22	SECTION C Definition- 1/2 i.Diagram of Equipotential Surface 1/2 ii.Diagram and reason 1/2 + 1/2 iii.Answer and Reason 1/2 + 1/2		
	Surface with a constant value of potential at all points on the surface.	1/2	
L		I	I

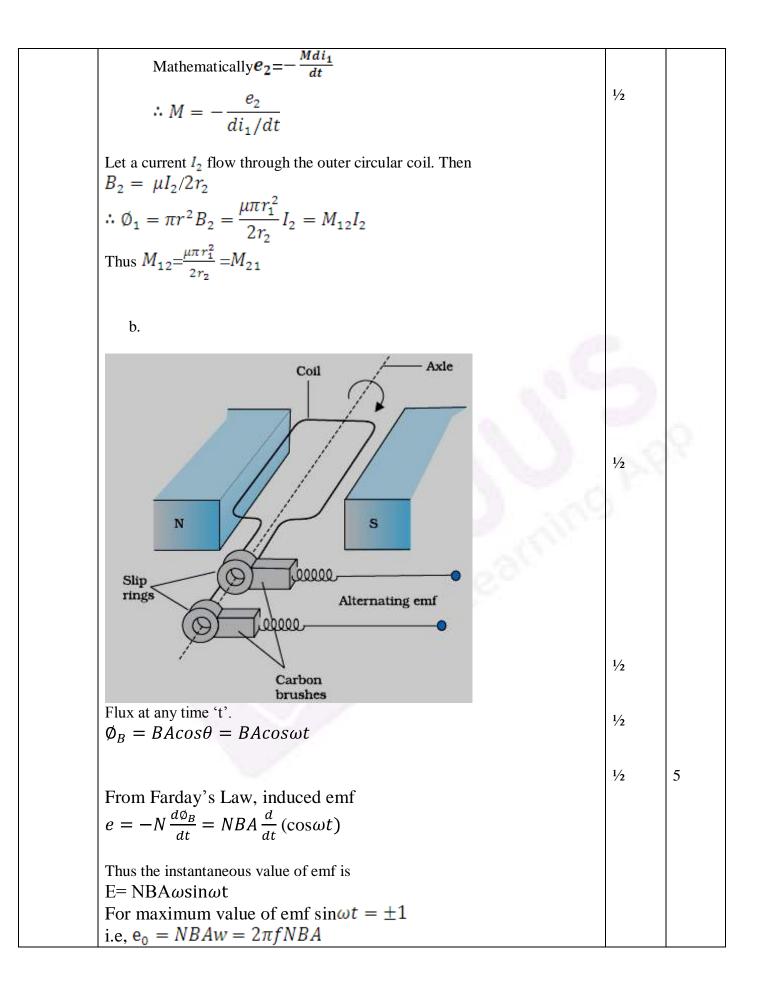
	i.	1/2	
	i.	1⁄2	
	$V \propto \frac{1}{r}$	1⁄2	
	iii.No	1⁄2	
	If the field lines are tangential, work will be done in moving a charge on the surface which goes against the definition of equipotential surface.	1/2	3
SET1,Q12 SET2,Q14 SET3,Q12	Statement1Plotting the graph1Calculating value of (μ) refractive index1i. When the pass axis of a poloroid makes an angle θ with the plane of polarisation of polorised light of intensity I_o incident on it, then the intensity of the tramsmitted emergent light is given by $I=I_o \cos^2 \theta$ Note: If the student writes the formula $I=I_o \cos^2 \theta$ and draws the	1	

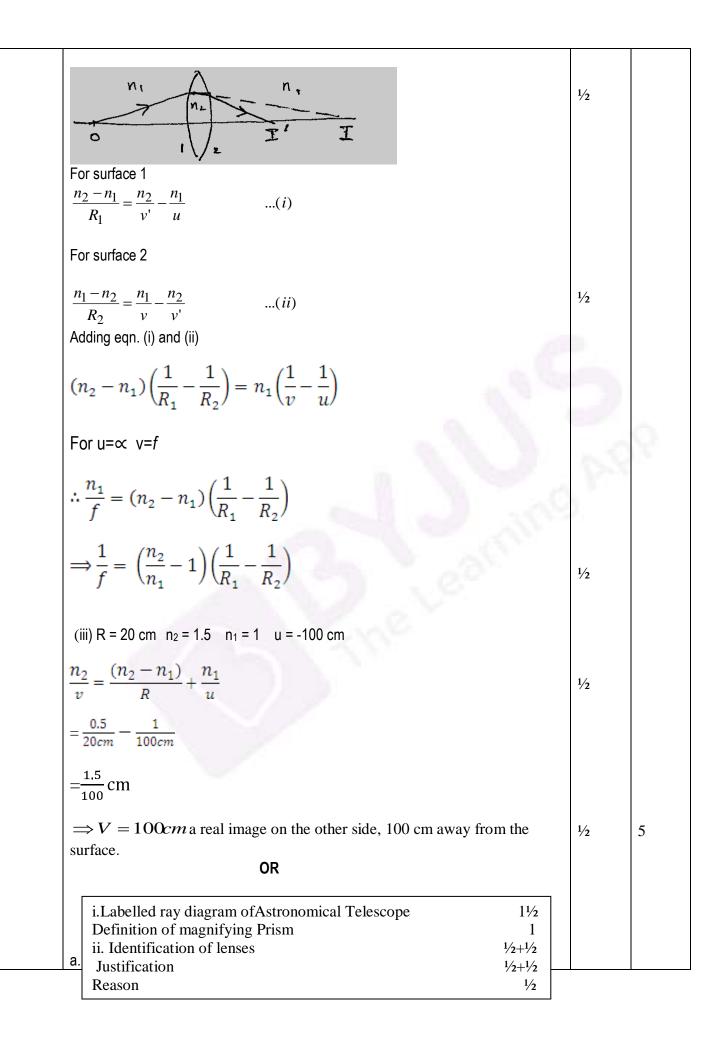


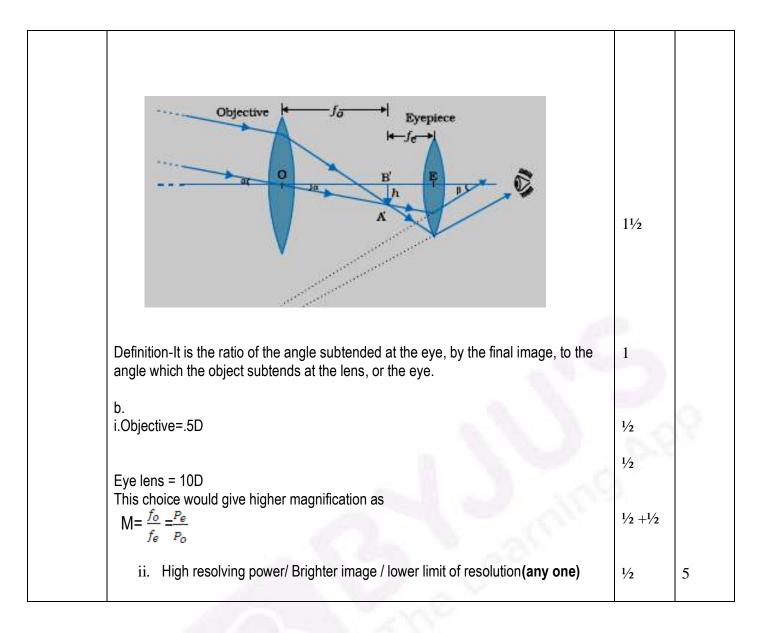

SET1,Q14			
SET2,Q12 SET3,Q19	(a) Basic nuclear process 1		
5213,Q17	(b) (i) value of x, y, z 1		
	(ii) value of a, b, c 1		
	a. Basic nuclear reaction	1	
	$P \rightarrow n + e^+ + \nu$		
	b.(i) $x = \beta^+ / {}_1^0 e$, y =5, z =11 (ii) a=10, b=2, c=4	1 1	3
SET1,Q15	(i) Relation for drift velocity 2		
SET2,Q11 SET3,Q21	(i) Relation for drift velocity 2 (ii) Effect of temperature 1		
	i. When a potential difference is applied across a conductor, an electric field is produced and free electrons are acted upon by an electric force (= -Ee). Due to this, electrons accelerate and keep colliding with each other and acquire a constant (average) velocity v_d \therefore , $F_e = -Ee$	1⁄2	Q
	$\therefore, F_e = \frac{-eV}{l}$	1/2	
	As $a = \frac{-F}{m} = \frac{-eV}{m}$		
	as $v = u + at$		
	$u = 0$, $t = \tau$ (relaxation time)	1⁄2	
	$v_d = -a \tau$		
	$v_d = \frac{-eV}{lm}\tau$	1⁄2	
	ii. Decreases, as time of relaxation decreases.	1/2, 1/2	3
SET1,Q16			-
SET2,Q22 SET3,Q15	Proof for average power1½Effect on brightness½Explanation1		

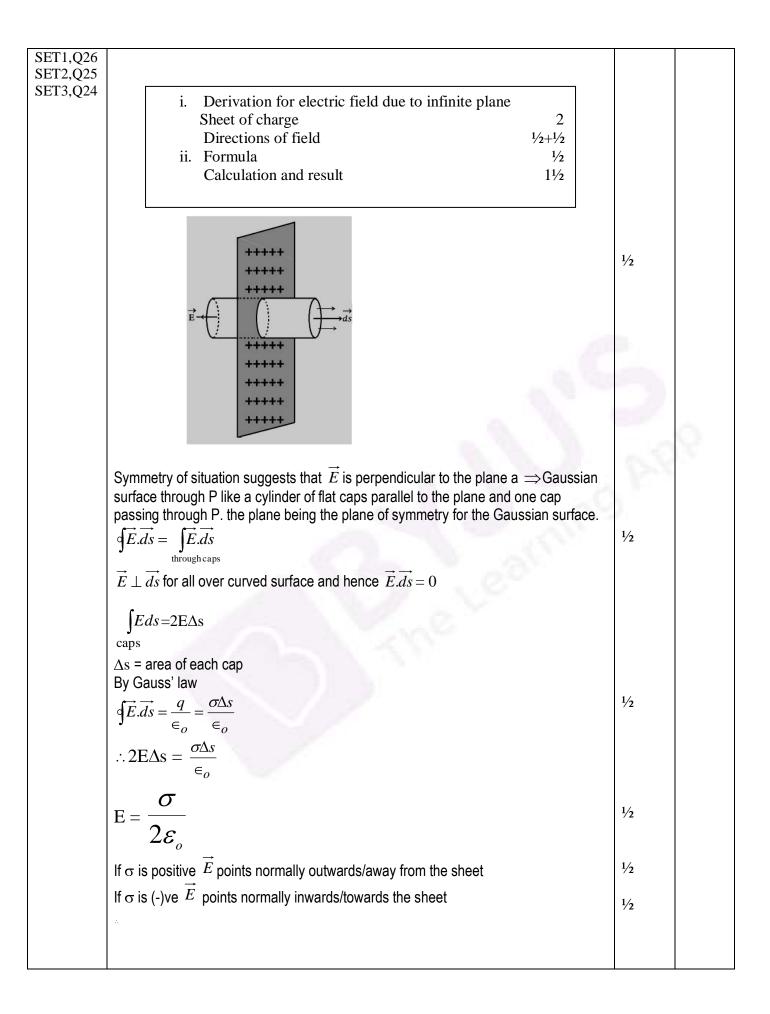
	i) $P_{av} = I_{av} \ge e_{av} \cos \emptyset$	1⁄2	
	For an ideal inductor, $\phi = \frac{\pi}{2}$	1⁄2	
	$\therefore P_{av} = l_{av} \ge e_{av} \cos \frac{\pi}{2}$		
	$P_{av} = 0$	1/2	
		1/	
	ii) Brightness decreases	1/2	
	Because as iron rod is inserted inductance increases.	$\frac{1/2}{1/2}$	3
	Thus, current decreases and brightness decreases.	72	5
SET1,Q17 SET2,Q21			
SET3,Q16	i.Diagram of Formation ¹ / ₂ Explanation of formation of		
	Depletion region ¹ / ₂		
	Barrier potential1/2ii.Circuit diagram of Half wave rectifier1/2	-	
	Explanation 1		Ô.
		100	
		100	
		1.	
		1⁄2	
	i. V_{a}		
	i.Due to diffusion and drift, the electrons and holes move across the junctions, creating a final stage in which a region is created across the junction wall, which gets devoid of the mobile charge carriers. This region is called depletion region; the potential difference across the region is called Barriers potential	1/2+1/2	
	ii		
		1	1

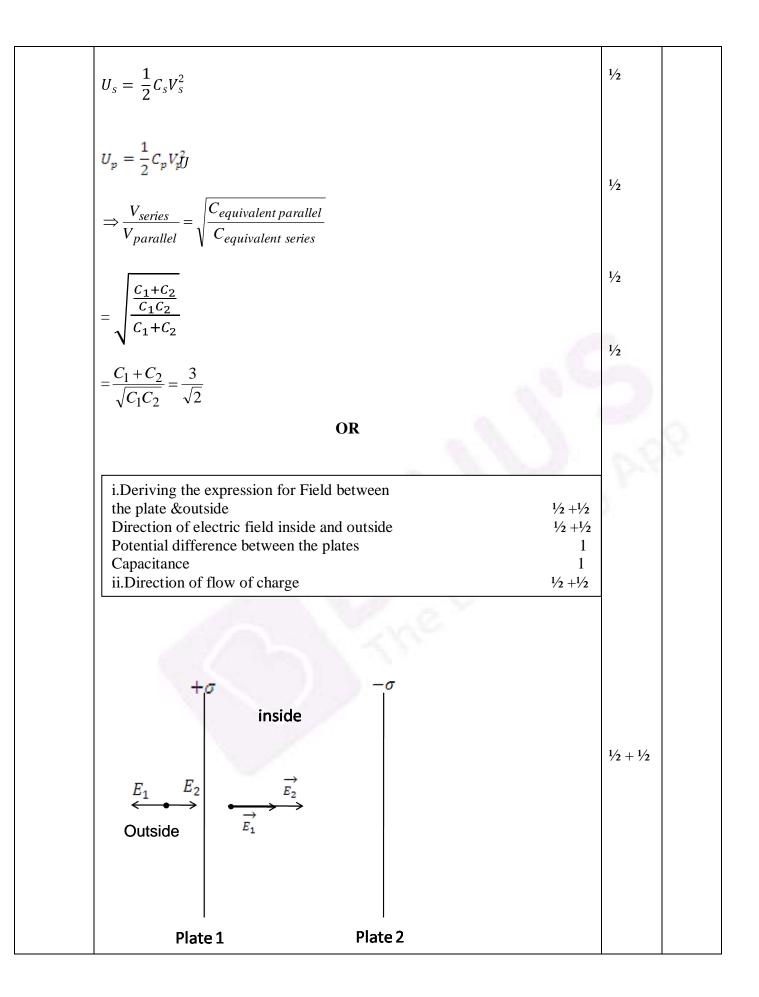

	reflected back to the earth by the ionosphere.		
SET1,Q19 SET2,Q19 SET3,Q17	i. Identification 1+1 ii. Momentary deflection of galvanometer Reason 1/2 Expressions 1/2		
	i. a. Microwaves b. X-rays	1 1	
	ii Due to conduction current in the connecting wires and a displacement current between the plates $I_d = \epsilon_0 \frac{d\emptyset_E}{dt}$	1/2 1/2	3
SET1,Q20 SET2,Q18 SET3,Q11	i. Collection current $\frac{1}{2} + \frac{1}{2}$ ii. Base Current $\frac{1}{2} + \frac{1}{2}$ iii. Base voltage $\frac{1}{2} + \frac{1}{2}$		0
	i. Input signal Voltage AC Collector Current- $i_c = \frac{V_{ce}}{R_c} = 1.0mA$	1/2 +1/2	
	Base Current- $\dot{\boldsymbol{i}}_b = \frac{\boldsymbol{i}_c}{\beta} = \frac{1.0mA}{100} = 0.01 \text{mA}$	1/2 +1/2	
	Base signal Voltage= $i_b R = 0.01 \text{mA x} 1 \text{k}\Omega = 10 \text{mv}$	1⁄2 +1⁄2	3




		1	3
		1	
	SECTION D	-	
SET1,Q23 SET2,Q23 SET3,Q23	 to the change in magnetic flux linked with it. Working- As the coil rotates, its inclination (θ) with respect to the field changes. Hence sinosodial /varying emf(=e, sinωt) is obtained./May also be explained graphically. [Note- Give full marks if the student obtains the expression for induced emf mathematically.] b. Values Ram- Scientific aptitude, curiosity, keenness to learn, positive 	1	
	approach, etc(any two) Teacher- Dedication concern for students, depth of knowledge, generous	1/2 +1/2	3


SET1,Q24 SET2,Q26 SET3,Q25	SECTION E i. Labelled diagram 1 Principle 1 ii. Expression for the turn ratio in terms of voltage ½ iii. Ratio of primary and secondary currents in terms of turns 1 iv. Current drawn by primary Formula- ½ Calculation and result ½ +½ i.Labelled diagram SOFT IRON CORE	1	





$$\begin{array}{c} \begin{array}{c} \underset{N=1}{\text{StF1},223}\\ \underset{N=1}{\text{StF1},224}\\ \underset{N=2}{\text{StF1},224}\\ \end{array} \\ \hline \textbf{i} \quad \text{Derivation of } \frac{n_2}{v} - \frac{n_1}{u} = \frac{(n_2 - n_1)}{R} & 1^{l_2}\\ \frac{1}{\eta} = \left(\frac{n_2 - n}{n_1}\right) \left(\frac{1}{k_1} - \frac{1}{k_2}\right) & 1^{l_2}\\ \hline \textbf{i} \quad \text{Formula} & \frac{l_2}{l_2}\\ \hline \textbf{Calculation and result} & 1^{l_2} \\ \hline \textbf{l} \quad \text{Formula} & \frac{l_2}{l_2} \\ \hline \textbf{calculation and result} & 1^{l_2} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l} \\ \hline \textbf{l} \quad \textbf{l} \quad \textbf{l} \quad \textbf{l}$$

Inside $\overrightarrow{E} = \overrightarrow{E_1} + \overrightarrow{E_2}$			
$=\frac{\sigma+\sigma}{2E_0}=\frac{\sigma}{E_0}$			
Outside $\overrightarrow{E} = \overrightarrow{E_2} - \overrightarrow{E_1}$			
$=\frac{\sigma-\sigma}{2\epsilon_0}=0$ b. Potential of	difference between plates	1⁄2	
V = Ed	$=\frac{1}{\epsilon_o}\frac{Qd}{A}$	1/2 + 1/2	
c. Capacitan $C = \frac{q}{v} = \frac{1}{2}$		1/2 + 1/2	
ii. As potent $V =$	ial on and inside a charged sphere is given $\frac{1}{4\pi\epsilon_0} \frac{q}{r} = \frac{1}{4\pi\epsilon_0} \cdot \frac{4\pi r^2 \sigma}{r}$	1⁄2	
	e, the bigger sphere will be at higher potential, so charge ow from bigger sphere to smaller sphere.	1⁄2	5