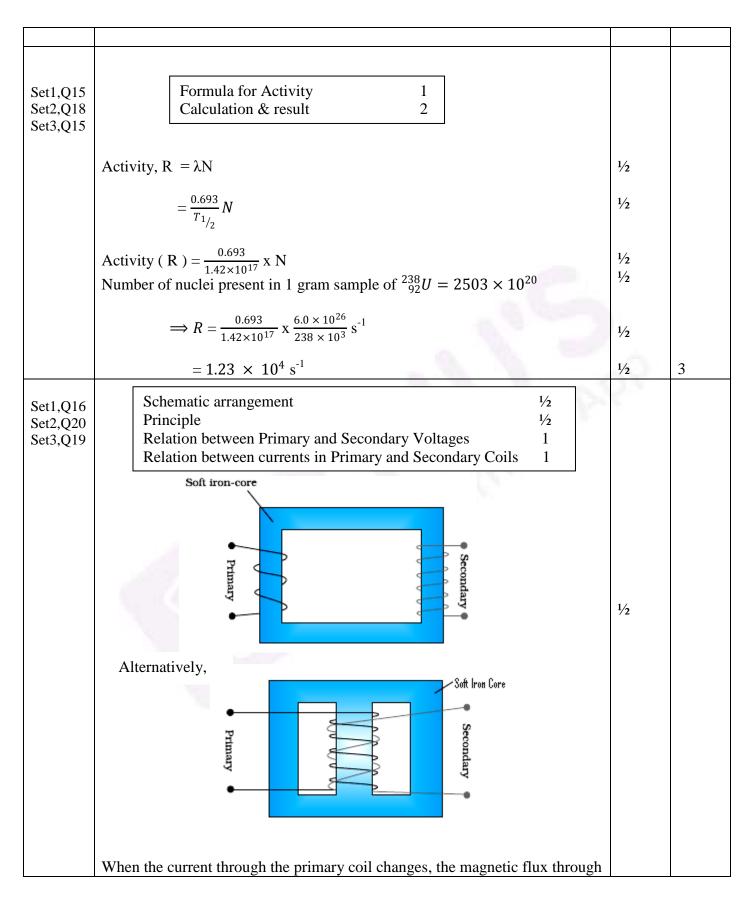
CBSE Class 12 Physics Solution

MARKING SCHEME

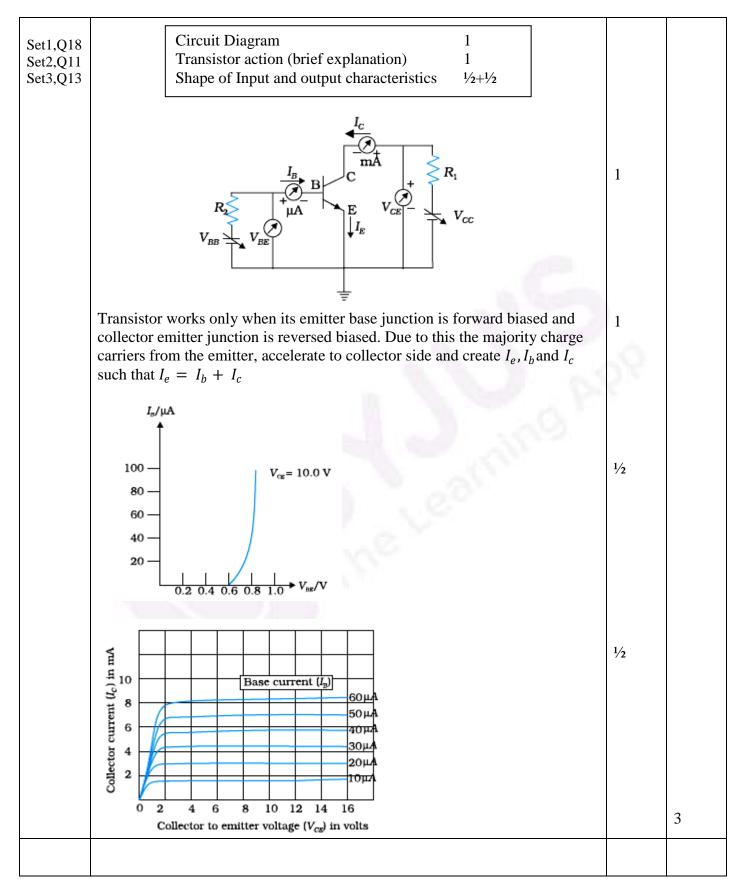
SET 55/1/E

Q. No.	Expected Answer / Value Points	Marks	Total Marks
	(SECTION A)		
Set1,Q1	Potentiometer 'Q' will be preferred		
Set2,Q5 Set3,Q2	Reason:- Sensitivity $\propto \frac{1}{potential \ gradient \ (k)}$	1/2	
	Since potential gradient is less, sensitivity is more. [Note: Also accept if the student just writs that potential gradient is less for potentiometer Q]	1/2	1
Set1,Q2 Set2,Q3 Set3,Q1	$\frac{1}{\omega t_{1}}$	22	
	Graph of V Graph of I	1/2 1/2	1
Set1,Q3 Set2,Q2 Set3,Q4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
	[Note: If students write truth table correctly then award ¹ / ₂ mark.]		1
Set1,Q4 Set2,Q4 Set3,Q5	For a.c. source, circuit is complete due to the presence of displacement current in the capacitor. For steady dc, there is no displacement current, therefore, circuit is not complete.	1/2+1/2	
	[Alternatively, Capacitive reactance $X_{c} = \frac{1}{2\pi fC} = \frac{1}{\omega C}$		
	So, capacitor allows easy path for a.c. source. For d.c, $f=0$, so $X_c = infinity$, So capacitor blocks d.c]	1/2+1/2	1
Set1,Q5 Set2,Q1 Set3,Q3	Conductivity of a conductor is the current flowing per unit area per unit electric field applied. [Alternatively, conductivity $\sigma = \frac{J}{E}$]	1⁄2	

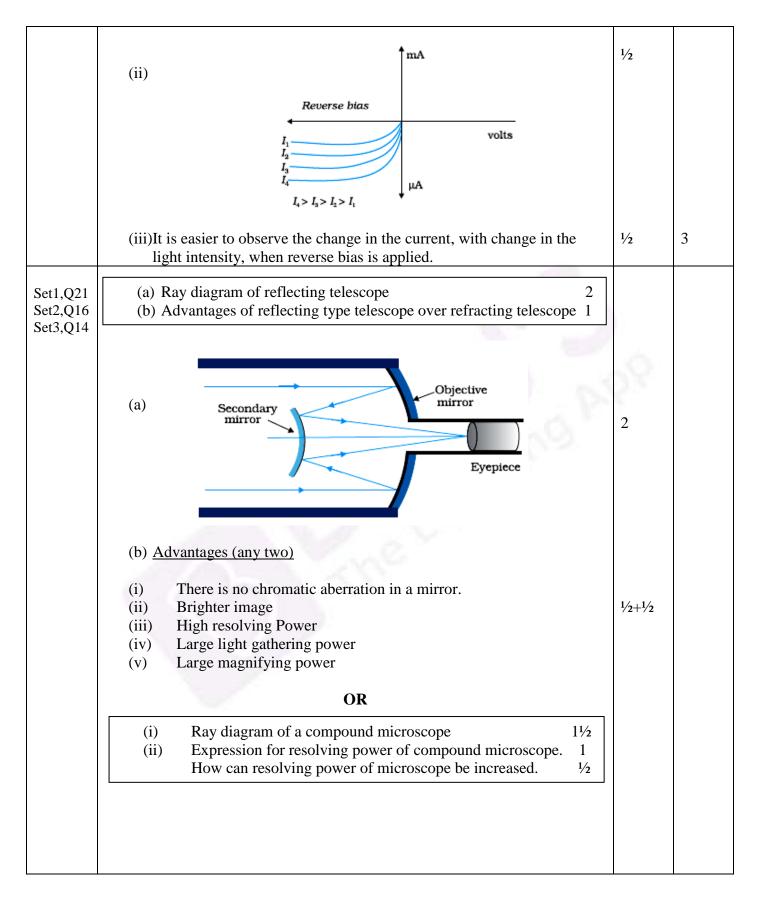

	Depends upon number density i.e. nature of material, and relaxation time i.e. temperature.	1/2	1
	(SECTION B)		
Set1,Q6 Set2,Q8	Derivation of expression for work done 2		
Set3,Q7	Work done against the restoring torque		
	$dw = \tau d\theta$	1⁄2	
	$dw = pE\sin\theta d\theta$	1⁄2	
	$\therefore, W = pE \frac{\theta}{\theta} \sin \theta d\theta$	1⁄2	
	$= pE \cos \theta_0 - \cos \theta_1$	1⁄2	2
Set1,Q7 Set2,Q9 Set3,Q6	de-Broglie wavelength1/2Condition of stationary orbits1/2Obtaining Bohr's Postulate of quantization of orbital angular momentum.1	2	
	de Broglie wavelength, $\lambda = \frac{h}{mv}$	1/2	
	For electron moving in the n th orbit, $2\pi r = n\lambda$	1⁄2	
	$\therefore 2\pi r = \frac{nh}{mv}$		
	$\therefore \text{ mvr} = \frac{nh}{2\pi} = \text{L} \text{ (orbital angular momentum)}$	1⁄2	
	This is Bohr's Postulate of quantization of orbital angular momentum.	1/2	2
Set1,Q8 Set2,Q10 Set3,Q9	Explanation of the concept of Mobile Telephony1/2Explanation of working11/2		
	Concept of mobile telephony is to divide the service area into a suitable number of cells centred on an office MTSO (Mobile Telephone Switching Office) / Mobile telephony means that you can talk to any person from anywhere.	1⁄2	
	Explanation: 1. Entire service area is divided into smaller parts called cells.	1/2	
	2. Each cell has a base station to receive and send signals to mobiles.	1⁄2	
	3. Each base station is linked to MTSO. MTSO co-ordinates between	1⁄2	2

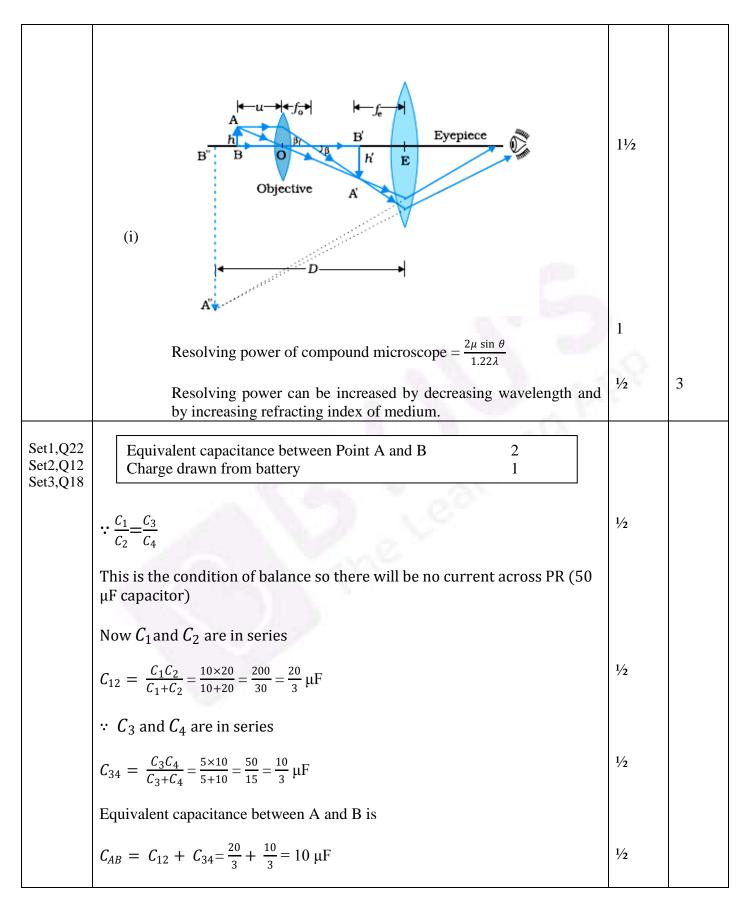
base station and TCO (Telephone Control Office)Set1.Q9
Set2.Q7
Set3.Q10Formula
Calculation
Longest Wavelength
$$\frac{1}{\lambda_{2}}$$

Ldentification of Series $\frac{1}{\lambda_{2}}$
 $\frac{1}{\lambda_{max}} = R$
 $\frac{1}{n_{1}^{2}} - \frac{1}{n_{1}^{2}}$ $\frac{1}{\lambda_{2}}$ The energy of the incident photon = 12.5 eV
Energy of ground state = -13.6eV
 \therefore Energy after absorption of photon can be -1.1eV $\frac{1}{\lambda_{max}} = \frac{1}{2^{2}} - \frac{1}{n_{1}^{2}}$ $\frac{1}{\lambda_{2}}$ This means that electron can go to the excited state $n_{i} = 3$. It emits photons
of maximum wavelength on going to $n_{f} = 2$ i.e. $\frac{1}{\lambda_{max}} = \frac{36}{5\pi}$ $\frac{1}{2}$ $= 6.555 \times 10^{-7} m = 6555 A^{\circ}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ It belongs to Balmer Series. $\frac{1}{2}$ $\frac{1}{n_{1}^{2}} - \frac{1}{n_{1}^{2}}$ [Note:-
(1) If student just writes the formula
 $\frac{1}{\lambda_{max}} = R \frac{1}{n_{1}^{2}} - \frac{1}{n_{1}^{2}}$ $\frac{1}{2}$ for the wavelength of different levels in the Hydrogen spectrum and
calculates λ_{max} for any series, award full 3 marks. $\frac{1}{2}$
Also award full 3 marks if the student writes that the energy of the excited
state cannot be 12.5eV]ORFormula1
Calculation

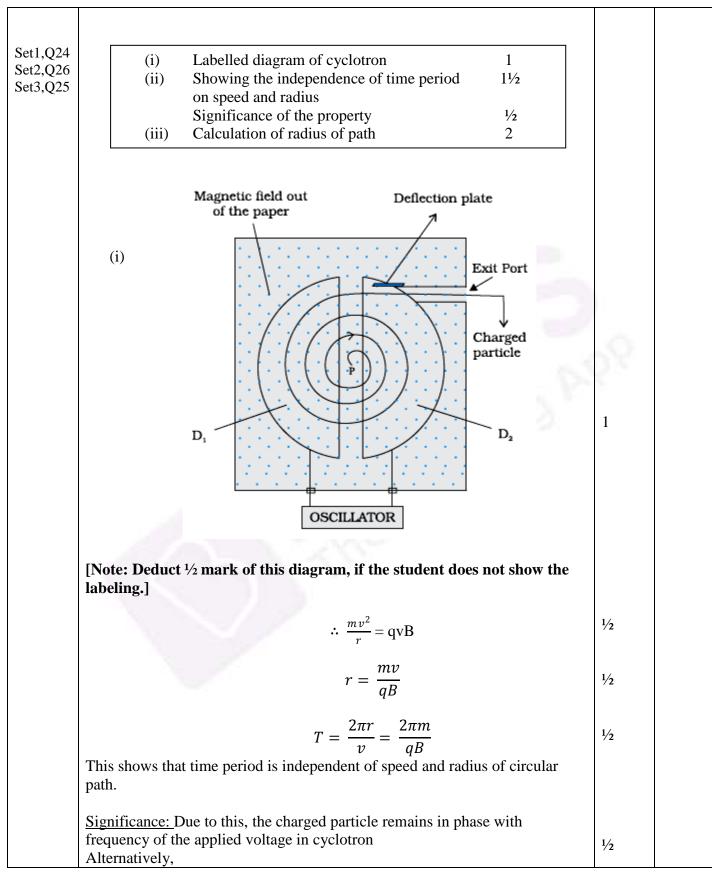

		- 1	
	$v = \frac{nh}{2\pi mr}$ And $r = \frac{1}{k} \frac{n^2 h^2}{4\pi^2 m e^2}$ So, $v = k \frac{2\pi e^2}{nh}$	1⁄2	
	In first excited state	1⁄2	
	$n = 2$ So velocity $v_2 = \frac{2\pi k e^2}{2h}$	1⁄2	
	$= 1.09 \times 10^6 \text{ ms}^{-1}$	1⁄2	
	OR		
	Velocity of electron, $v_n = \frac{1}{137} \frac{c}{n}$	1	
	In first excited state $n = 2$ So velocity in first excited state (v_2)	80	
	$= \frac{1}{137} \frac{c}{2}$ = 1.09 × 10 ⁶ ms ⁻¹	1/2	
	$= 1.09 \times 10^6 \text{ ms}^{-1}$	1/2	2
Set1,Q10 Set2,Q6 Set3,Q8	 (i) How are infrared waves produced ½ One important use ½ (ii) Reason (any one) 1 (i) Infrared waves are produced by hot bodies and molecules. Important use(Any one) To treat muscular strains/ To reveal the secret writings on the ancient walls/ For producing dehydrated fruits/ Solar heater/ Solar cooker Ozone layer protects us from harmful U-V rays 	1/2 1/2 1	2
	(SECTION C)		
Set1,Q11 Set2,Q15 Set3,Q12	 (i) Electric Flux through the shell 1 (ii) Statement of Law 1 (iii) Force on charge at C 1/2 Force on charge at A 1/2 		
	(i) Electric flux through a Gaussian surface, $\varphi = \frac{\text{total enclosed charge}}{\epsilon_0}$	1/2	

	Net charge enclosed inside the shell $q=0$ \therefore Electric flux through the shell $\frac{q}{c}=0$	1/2	
	Award $\frac{1}{2}$ mark even when the student writes - Electric flux through the shell is zero as electric field inside the shell is zero.		
	(ii) Gauss Law- Electric flux through a Gaussian surface is $1/\epsilon_0$ times the net charge enclosed with in it. Alternatively, $\oint \vec{E} \cdot \vec{dS} = \frac{q}{E_0}$	1	
	(iii) Force on the charge at the centre i.e. Charget $Q/2 = 0$	1/2	
	$F_{A} = \frac{1}{4\pi E_{0}} \frac{2Q \times (Q + Q/2)}{x^{2}}$ $= \frac{1}{4\pi E_{0}} \frac{3Q^{2}}{x^{2}}$	1/2	3
Set1,Q12 Set2,Q13 Set3,Q21	How galvanometer is converted in to a voltmeter and an Ammeter $\frac{1}{2} + \frac{1}{2}$ Diagram for conversion of galvanometer into a voltmeter and an $\frac{1}{2} + \frac{1}{2}$ Ammeter.Resistance of each arrangement $\frac{1}{2} + \frac{1}{2}$	25	
	A galvanometer is converted into a voltmeter by connecting a high resistance 'R' in series with it. A galvanometer is converted into an ammeter by connecting a small resistance (called shunt) in parallel with it.	1/2 1/2	
	$ \begin{array}{c} \hline \hline $	1/2	
	$ \begin{array}{c} $	1/2	

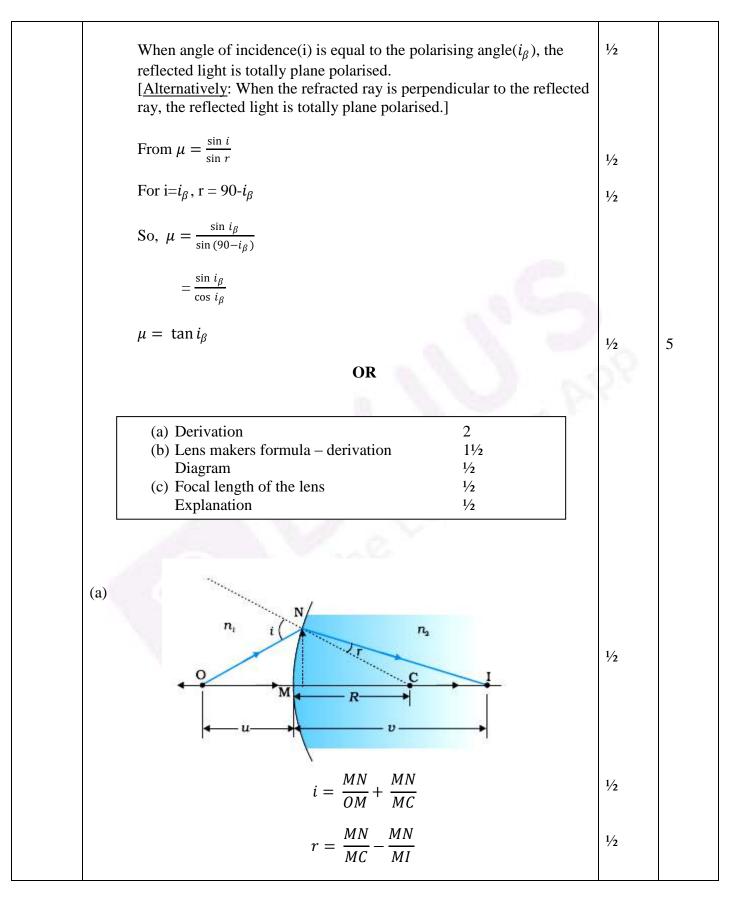

	Resistance of voltmeter, $R_V = G + R$	1⁄2	
	Resistance for Ammeter, $R_A = \frac{G r_s}{G + r_s}$	1⁄2	3
Set1,Q13 Set2,Q14 Set3,Q17	(i)Total Internal Reflection (definition)1/2Conditions for T.I.R1(ii)Finding the relation between critical angle and1Refractive Index1(iii)Phenomenon based on Total Internal Reflection1/2		
	 When a ray of light travels from a denser medium into a rarer medium at an angle greater than the critical angle, it reflects back into the denser medium. This phenomenon is called total internal reflection. Conditions for total internal reflection 	1⁄2	
	(a) Light should travel from denser medium to rarer medium.(b) Angle of incidence should be greater than critical angle.	1/2 1/2	
	(ii) $\frac{1}{\mu} = \frac{\sin i}{\sin r}$, for total internal reflection to occur $i \ge i_c$ at critical angle, angle of refraction $r = 90^\circ$, hence $\frac{1}{\mu} = \frac{\sin i_c}{\sin 90^\circ}$	1⁄2	
	$\Rightarrow \mu = \frac{1}{\sin i_c}$ (iii) Mirage/ sparkling of diamond/ optical fiber/ totally reflecting Prism/ shinning of air bubbles in water.(any one)	1⁄2 1⁄2	3
Set1,Q14 Set2,Q21 Set3,Q16	Global Positioning System1Brief explanation of the Working Principle2		
	Global Positioning System is method of identifying location or position of any point or a person on earth using a system of 24 satellites, which are continuously orbiting, observing, monitoring and mapping the earth.	1	
	Working Principle:(i)The unique location of GPS user is determined by measuring its distance from at least three GPS satellites.	1	
	 (ii) Using these values of distances, obtained from three satellites, a microprocessor, fitted in GPS device, determines the exact location. 	1	3

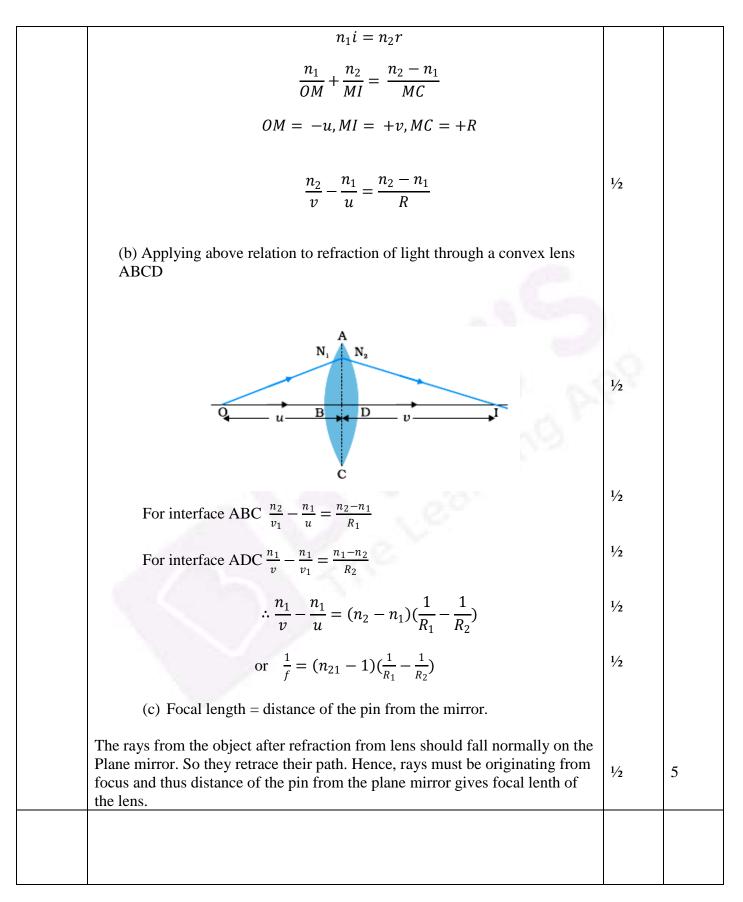


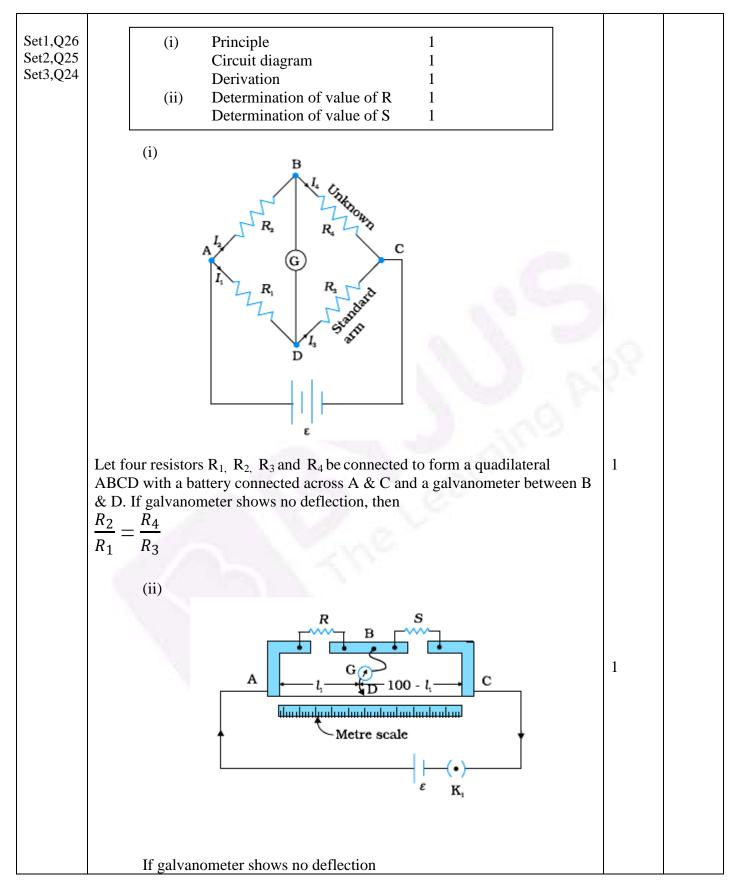
	the secondary changes. This produces an induced emf in the secondary coil/ it works on mutual induction.	1/2	
	$\varepsilon_s = -N_s \frac{d \varphi}{dt}$ $\varepsilon_p = -N_p \frac{d \varphi}{dt}$	1/2	
	$arepsilon_p = -N_p \; rac{d\; arphi}{dt}$		
	$\frac{\varepsilon_s}{\varepsilon_p} = \frac{N_s}{N_p}$	1⁄2	
	$i_s \varepsilon_s = i_p \varepsilon_p$ (for ideal transformer)	1/2	
	$\frac{i_s}{i_p} = \frac{\varepsilon_p}{\varepsilon_s}$	1/2	3
Set1,Q17 Set2,Q19 Set3,Q11	(a) Formula1/2Calculation & result1/2+1/2(b) Formula1/2Calculation & result1/2+1/2	28	
	(a) $\beta = \frac{\lambda D}{d}$	1⁄2	
	$=\frac{500\times10^{-9}\times1}{10^{-3}}$	1⁄2	
	$= 0.5 \text{ mm or } 5 \ge 10^{-4} \text{m}$	1⁄2	
	(b) $\beta_0 = \frac{2\lambda D}{a} = 10 \beta$	1⁄2	
	$a = \frac{2 \times 500 \times 10^{-9} \times 1}{10 \times 5 \times 10^{-4}}$	1⁄2	
	$a = 2 \times 10^{-4} \text{ m or } 0.2 \text{ mm}$	1⁄2	3

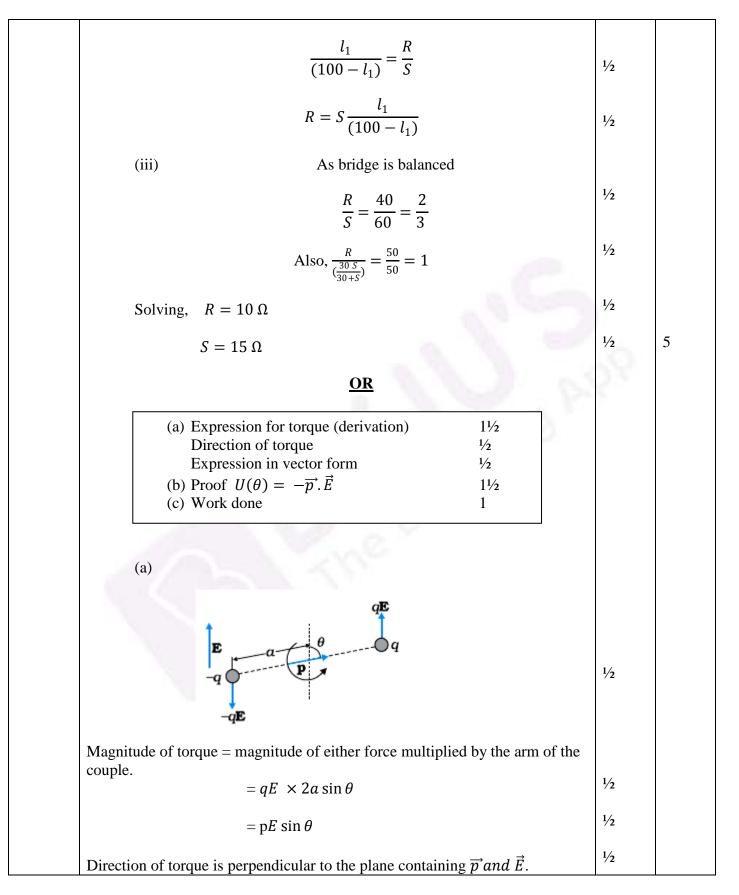


Set1,Q19 Set2,Q22 Set3,Q20	Identification of materials having same Intensity of incident radiation $\frac{1}{2}+\frac{1}{2}$ Explanation $\frac{1}{2}$ Identification of materials that correspond to different intensities. $\frac{1}{2}+\frac{1}{2}$ Explanation $\frac{1}{2}$		
	(1, 2) correspond to same intensity but different material.	1⁄2	
	(3, 4) correspond to same intensity but different material.	1⁄2	
	As saturation currents are same and stopping potentials are different.	1⁄2	
	(1, 3) correspond to different intensity but same material.	1⁄2	
	(2, 4) correspond to different intensity but same material.	1⁄2	
	As stopping potentials are same but saturation currents are different.	1/2	3
Set1,Q20 Set2,Q17 Set3,Q22	(i) Working with circuit diagram1+1(ii) Characteristics of a photodiode for different illumination intensities1/2(iii)Reason for operating photodiode in reverse bias1/2	Ş.	
	 (i) (i) (i) (i) (i) (i) (j) (j) (j) (j) (j) (j) (j) (j) (j) (j	1/2 1/2 1/2 1/2	




	Charge drawn from battery $(q) = CV$	1/2	
	$= 10 \text{ x} 10 \mu \text{C}$		
	$= 100 \ \mu C \text{ or } 10^{-4} C$	1⁄2	3
	(SECTION D)		
Set1,Q23			
Set2,Q23	(a.) Reason of transportation of Power at high voltages 1		
Set3,Q23	(b.)Explanation 1		
	(c.) Two values displayed by (i) Shiv $\frac{1}{2} + \frac{1}{2}$		
	(ii) Uncle $\frac{1}{2} + \frac{1}{2}$		
	(a) To reduce power losses in the transmission line.		
		1	
	(b) Since power loss is inversely proportional to power factor		
		1	
	$(P = VI \cos \varphi$ where $\cos \varphi$ is power factor). To supply a given power at a	1.0	
	given voltage, if $\cos \varphi$ is small, we have to increase current accordingly. This	0	
	will lead to large power loss $(I^2 R)$ in transmission /	3.5	
	True Power		
	$(Effective Power = \frac{True Power}{\cos \varphi})$		
	του φ		
	(c) Values displayed by		
	(i) Shiv – understanding nature/ respecting elders/ helping nature/ caring/ etc.	1/2+1/2	
	(ii) Uncle- knowledgeable/ helping nature/ caring/ etc.(Any two each)	1/2+1/2	4
	(SECTION E)		





	$= \frac{\mu_0 I_1 I_2}{2\pi d} L$		
	Force per unit length		
	$\frac{F}{L} = \frac{\mu_0 I_1 I_2}{2\pi d}$	1/2	
	(iii) Attractive force	1/2	
	(iv) Loop ABCD will move towards wire PQ.	1⁄2	
	Current in wire PQ and Current in arm AD are in the same		
	direction, so they attract each other.	1/2	
	Current in wire PQ and Current in arm BC are in opposite		
	direction, so they repel each other.	1/2	
	Contribution due to summation AD and CD multifu costs other		
	Contribution due to current in AB and CD nullify each other.		
	Since arm AD is nearer than arm BC to arm PQ, so net force on		
	the loop is attractive. Therefore, the loop will move towards the	1.0	
	wire PQ.	1/2	5
		2.2	
Set1,Q25	(a) Explanation 2		
Set2,Q24	(b) Diagram 1		
Set3,Q26	Explanation ¹ / ₂		
	Proof of relation $\mu = \tan i_{\beta}$ 1		
	(a) When unpolarized light passes through a polariser, vibrations perpendicular to the axis of the polaroid are blocked.	1/2	
	perpendicular to the axis of the polaroid are blocked.	72	
	Unpolarised light have vibrations in all directions.		
		1⁄2	
	Hence, if the Polariser is rotated, the unblocked vibrations remain		
	same with reference to the axis of Polariser	1⁄2	
	Hence for all positions of Polaroid, half of the incident light always		
	get transmitted. Hence, the intensity of the light does not change.	1/2	
	get thanking in the end of the taget were have	/ _	
	(b)		
	Incident Reflected		
	AIR		
		1	
	Refracted		
	\times		
	MEDIUM		

Vector form $\vec{\tau} = \vec{p} \times \vec{E}$	1⁄2	
(b) Work done by external torque in rotating a dipole in uniform electric field is stored as the Potential energy of the system. $U(\theta_0 \rightarrow \theta) = W(\theta_0 \rightarrow \theta) = pE(\cos \theta_0 - \cos \theta_1)$ For $\theta_0 = \frac{\pi}{2}$ and $\theta_1 = \theta$	1/2 1/2	
$U(\theta) = pE\left(\cos\frac{\pi}{2} - \cos\theta\right) = -pE\cos\theta = -\overrightarrow{p}\cdot\overrightarrow{E}$	1/2	
For rotating dipole from position of unstable equilibrium ($\theta_0 = 180^\circ$) to the stable equilibrium ($\theta = 0^\circ$)	1/2	
$\therefore W_{req} = pE(\cos 180^\circ - \cos 0^\circ)$ = pE(-1-1) = -2pE	1⁄2	5