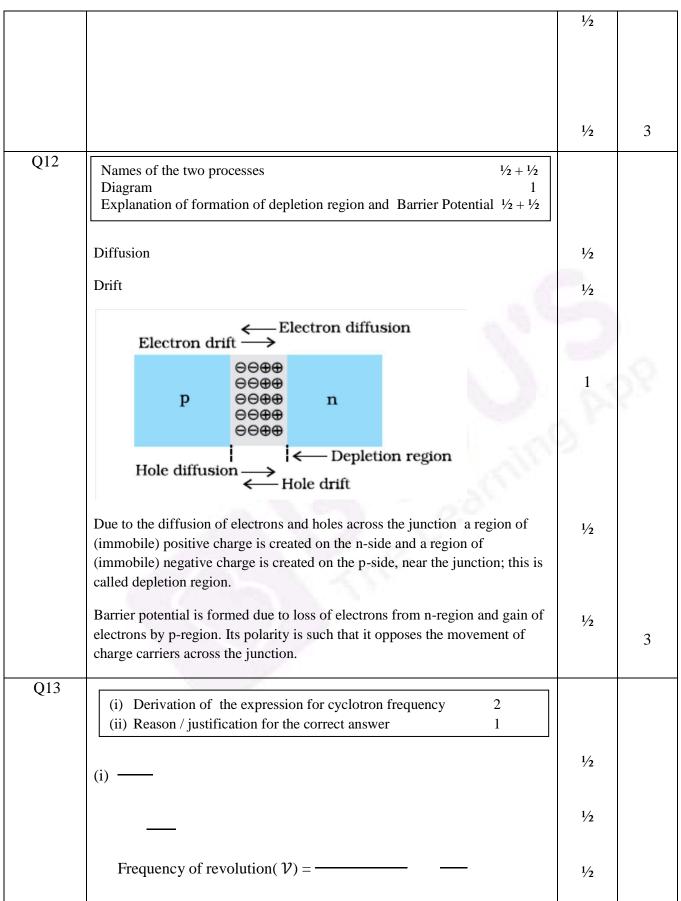
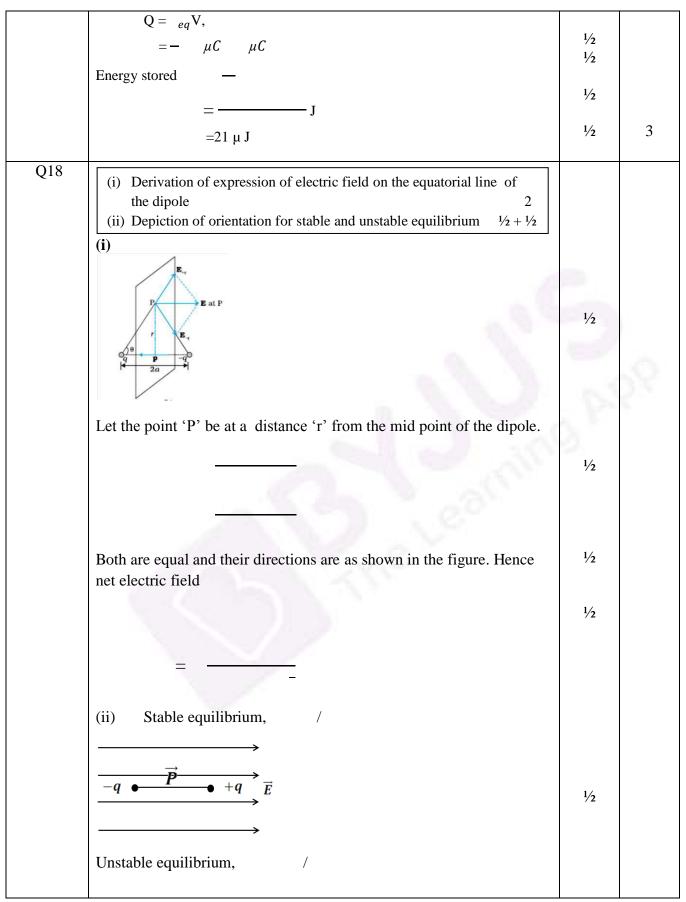
CBSE Class 12 Physics Solution


SET: DELHI 55/1/1

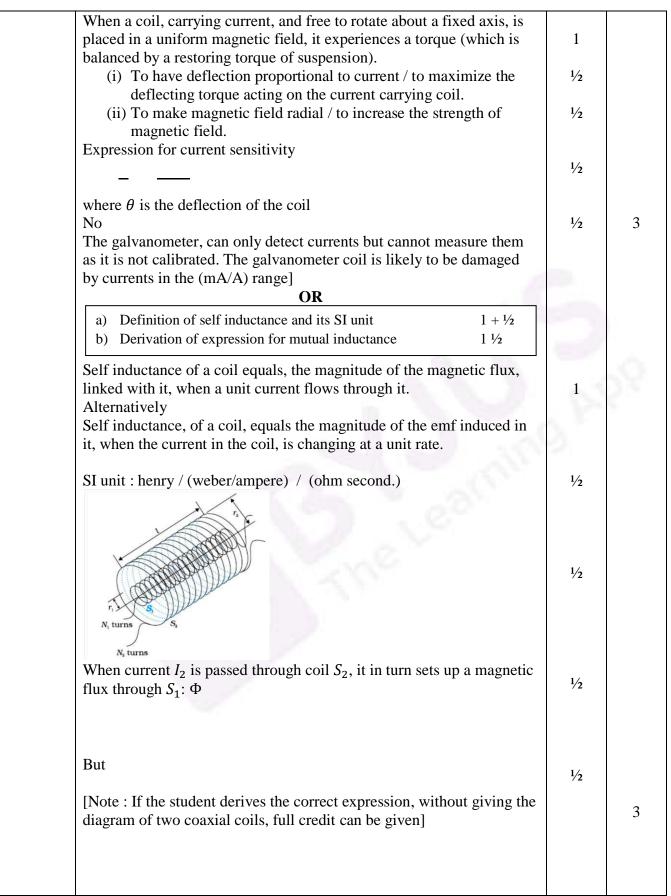
MARKING SCHEME

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
	SECTION A		•
Q1	No,	1/2	
	Because the charge resides only on the surface of the conductor.	1⁄2	1
Q2	No, As the magnetic field due to current carrying wire will be in the plane of the circular loop, so magnetic flux will remain zero. Alternatively	1/2 1/2	
	[Magnetic flux does not change with the change of current.]		1
Q3	$B_{H} = B_{E} \cos \delta$ $B = B_{E} \cos 60^{0} \Rightarrow B_{E} = 2B$	1/2	
	At equator $\delta = 0^{\circ}$ [Alternatively, Award full one mark, if student doesn't take the value (=2B)of B_E , while finding the value of horizontal component at equator, and just writes the formula only.]	1⁄2	1
Q4	Solar cell	1	1
Q5	Speed of em waves is determined by the ratio of the peak values of electric and magnetic field vectors. [Alternatively, Give full credit, if student writes directly —	1	1
Q6	Explanation of flow of current through capacitor 1 Expression for displacement current 1 During charging, electric flux between the plates of capacitor keeps on changing; this results in the production of a displacement current between the plates.	1	2
Q7	Definition of distance of closest approach 1 Finding of distance of closest approach when 1 Kinetic energy is doubled 1 It is the distance of charged particle from the centre of the nucleus, at which the whole of the initial kinetic energy of the (for off) charged	1	2
	which the whole of the initial kinetic energy of the (far off) charged particle gets converted into the electric potential energy of the system. Distance of closest approach (r_c) is given by	1	
	'K' is doubled, becomes –	1/2	

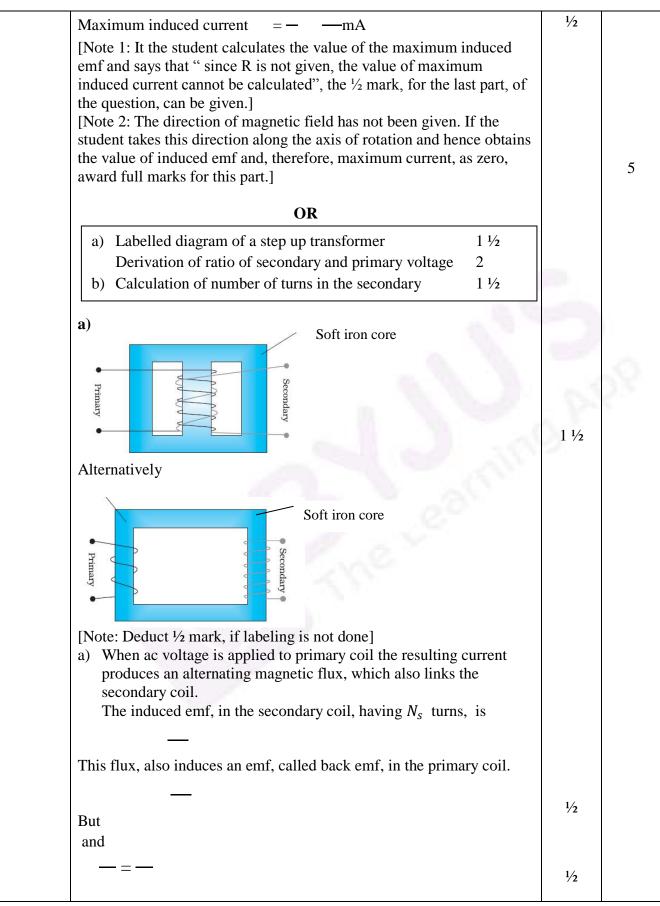
	[Alternatively: If a candidate writes directly – without mentioning		2
	formula, award the 1 mark for this part.]		Z
	OR		
	Two important limitations of Rutherford nuclear model 1+1		
	 According to Rutherford model, electron orbiting around the nucleus, continuously radiates energy due to the acceleration; hence the atom will not remain stable. As electron spirals inwards; its angular velocity and frequency change continuously; therefore it will emit a continuous spectrum. 	1	2
Q8	Calculation of wavelength of electron in ground state 2		
	Radius of ground state of hydrogen atom = 0.53 Å = 0.53 x According to de Broglie relation For ground state $n=1$ $2 \ge 3.14 \ge 0.53 \ge 10^{-10} = 1 \ge 1$ m	1/2 1/2 1/2 1/2	2
	Alternatively Velocity of electron, in the ground state, of hydrogen atom = 2. Hence momentum of revolving electron p = mv	1/2	2
	= 9.	1⁄2	
	– <u> </u>	1/2	
		1/2	2
	[Note: Also accept the following answer: Let be the wavelength of the electron in the orbit, we then have	1	
	For ground state n=1	1	2
	$(r=r_0 \text{ is the radius of the ground state})$ [Alternatively	1	
		1	
	and (velocity of electron in ground state)	1	2


00		1	
Q9	Definition of magnifying power1Reason for short focal lengths of objective and eyepiece1		
	Magnifying power is defined as the angle subtended at the eye by the image to the angle subtended (at the unaided eye) by the object.	1	
	(Alternatively: Also accept this definition in the form of formula)		
	To increase the magnifying power both the objective and eyepiece must have short focal lengths (as $ -$	1/2 +1/2	2
Q10			
QIU	Name of basic mode of communication 1/2		
	Type of wave propagation $\frac{1}{2}$ Range of frequencies and reason $\frac{1}{2} + \frac{1}{2}$		
	Broadcast / point to point, mode of communication	1/2	
	Space wave propagation	1/2	0
	Above 40 M	1/2	2.5
	Because e.m. waves, of frequency above 40MHz, are not reflected back by	1/2	2
	the ionosphere / penetrate through the ionosphere. SECTION C	72	2
Q11	(i) Calculation of phase difference between current and voltage 1 Name of quantity which leads $\frac{1}{2}$ (ii) Calculation of value of 'C', is to be connected in parallel $1\frac{1}{2}$ (i) $\Omega=100\Omega$ $= 500\Omega$ Phase angle $=-1$	1/2	
	_	1⁄2	
	As , (/phase angle is negative), hence current leads voltage	1⁄2	
	(ii) To make power factor unity		
	= 100	1⁄2	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1/	
The mass of the two particles, i.e deuteron and proton, is different. Since (cyclotron) frequency depends inversely on the mass, they cannot be accelerated by the same oscillator frequency.Q14(i) Explanation of emission of electrons from the photosensitive surface 1½ (ii) Identification of metal/s which does/do not cause photoelectric effect 1 / photoelectric emission Effect produced½(i) Einstein's Photoelectric equation is½(ii) Leinstein's Photoelectric equation is½(iii) dentification of one energy 'h is incident on the metal, some part of this energy is utilized as work function to eject the electron and remaining energy appears as the kinetic energy of the emitted electron.1(iii) $ V$ $= 3.77 \ eV$ ½The work function of Mo and Ni is more than the energy of the incident photons; so photoelectric emission will not take place from these metals. Kinetic energy of photo electrons will not change, only photoelectric current will change.½Q15Derivation of expression of voltage across resistance R3 $\sqrt[4]{}$ <td></td> <td>1/2</td> <td></td>		1/2	
VVQ14(i) Explanation of emission of electrons from the photosensitive surface 11/2 (ii) Identification of metal/s which does/do not cause photoelectric effect 1 / photoelectric emission Effect produced1/2(i) Einstein's Photoelectric equation is1/2(ii) Einstein's Photoelectric equation is1/2(i) Einstein's Photoelectric equation is1/2(ii) Einstein's Photoelectric equation to eject the electron and remaining energy appears as the kinetic energy of the emitted electron.1(iii) $-$ V1/2 $= 3.77 \text{ eV}$ 1/2The work function of Mo and Ni is more than the energy of the incident photons; so photoelectric emission will not take place from these metals. Kinetic energy of photo electrons will not change, only photoelectric current will change.1/2Q15Derivation of expression of voltage across resistance R3Q15Derivation of expression of voltage across resistance R3 4_{1} 4_{2} 1/2Effective resistance between points A & B1/2			
(i) Explanation of metal/s which does/do not cause photoelectric effect 1 / photoelectric emission Effect produced $\frac{1}{2}$ (i) Einstein's Photoelectric equation is $\frac{1}{2}$ (i) Einstein's Photoelectric equation to eject the electron and remaining energy appears as the kinetic energy of the emitted electron. (ii) $ V$ $\frac{1}{2}$ The work function of Mo and Ni is more than the energy of the incident photons; so photoelectric emission will not take place from these metals. Kinetic energy of photo electrons will not change, only photoelectric current will change. Q15 Derivation of expression of voltage across resistance R 3 $\sqrt[4]{2}$ Resistance between points A & C Effective resistance between points A & B	3	1/2	
$Q15 \qquad \begin{array}{c} 1/2 \\ When a photon of energy 'h is incident on the metal, some part of this energy is utilized as work function to eject the electron and remaining energy appears as the kinetic energy of the emitted electron. (ii) \ - \ - \ - \ - \ - \ - \ - \ - \ - \ $			Q14
energy is utilized as work function to eject the electron and remaining energy appears as the kinetic energy of the emitted electron. (ii) $ V$ = 3.77 eV The work function of Mo and Ni is more than the energy of the incident photons; so photoelectric emission will not take place from these metals. Kinetic energy of photo electrons will not change, only photoelectric current will change. Q15 Derivation of expression of voltage across resistance R 3 V $R_{esistance}$ $R_{esistance}$ R Effective resistance between points A & B V		1⁄2	
energy is utilized as work function to eject the electron and remaining energy appears as the kinetic energy of the emitted electron. (ii) $ V$ = 3.77 eV The work function of Mo and Ni is more than the energy of the incident photons; so photoelectric emission will not take place from these metals. Kinetic energy of photo electrons will not change, only photoelectric current will change. Q15 Derivation of expression of voltage across resistance R 3 V_{-} Resistance between points A & C Effective resistance between points A & B			
$\frac{1}{2}$ $= 3.77 \text{ eV}$ The work function of Mo and Ni is more than the energy of the incident photons; so photoelectric emission will not take place from these metals. Kinetic energy of photo electrons will not change, only photoelectric current will change. $\frac{Q15}{Q15}$ Derivation of expression of voltage across resistance R 3 $\frac{V}{V}$ Resistance between points A & C $\frac{V}{L}$ Effective resistance between points A & B $\frac{V}{L}$		1	
$= 3.77 \text{ eV}$ The work function of Mo and Ni is more than the energy of the incident photons; so photoelectric emission will not take place from these metals. Kinetic energy of photo electrons will not change, only photoelectric current will change. $Q15$ Q15 Derivation of expression of voltage across resistance R 3 $\int_{V_{1}}^{V_{2}} \int_{R_{s}}^{R_{s}} \int_{R_{s}}^{R_{$			
photons; so photoelectric emission will not take place from these metals. Kinetic energy of photo electrons will not change, only photoelectric current will change. Q15 Derivation of expression of voltage across resistance R 3 V_{Q15} Derivation of expression of voltage across resistance R 3 V_{Q15} Resistance between points A & C Effective resistance between points A & B	Q.	1/2	
Kinetic energy of photo electrons will not change, only photoelectric current will change. $\frac{1}{2}$ Q15Derivation of expression of voltage across resistance R3 $\int_{A} \int_{I_1} \int_{R_{e_1}} R_{e_2}$ Resistance between points A & C Effective resistance between points A & B $\frac{1}{2}$	C 1	1⁄2	
Derivation of expression of voltage across resistance R 3 V_{0} A I_{1} R_{e} Resistance between points A & C Effective resistance between points A & B V_{2}	3	1⁄2	
I = I = I $V = I$ $A = I$ $A = I$ $A = I$ $Resistance between points A & C$ $I = I$			Q15
Effective resistance between points A & B			
Effective resistance between points A & B		1/2	
		72	
¹ / ₂			
—		1⁄2	
Current drawn from the voltage source, —			
		1/2	

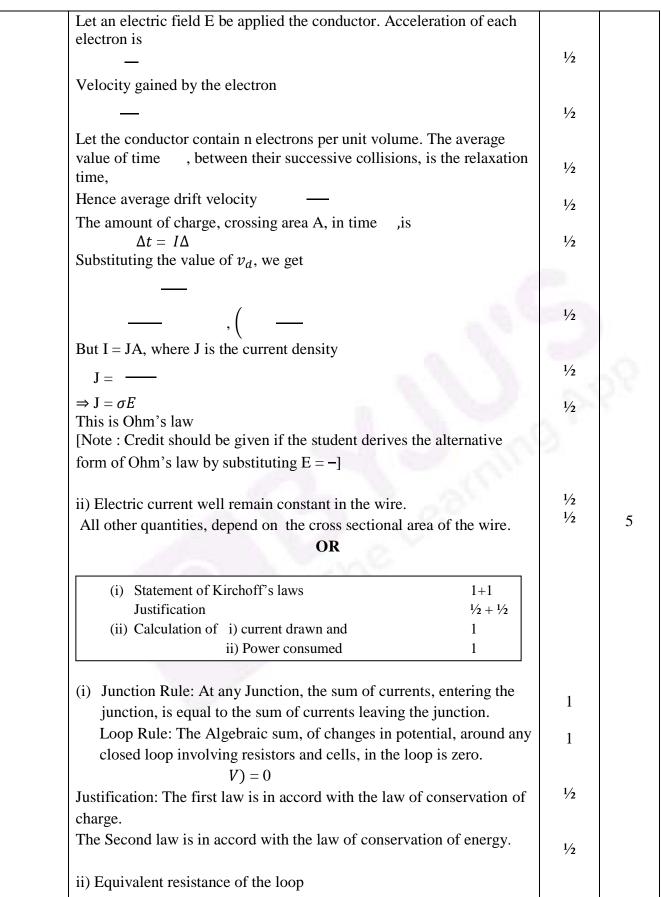

Page 5 of 16

[]			
	et current through R be oltage across R	1⁄2	
		1⁄2	
	=	1⁄2	3
	Definition of amplitude modulation 1 Explanation of two factors justifying the need of modulation 2		
ca ac Di sig (i)	is the process of superposition of information/message signal over a arrier wave in such a way that the amplitude of carrier wave is varied cording to the information signal/message signal. irect transmission, of the low frequency base band information gnal, is not possible due to the following reasons; Size of Antenna: For transmitting a signal, minimum height of antenna should be –; with the help of modulation wavelength of signal decreases, hence height of antenna becomes manageable.	1	28
	 a) Effective power radiated by an antenna: b) Effective power radiated by an antenna varies inversely as λ², hence effective power radiated into the space, by the antenna, increases. b) To avoid mixing up of signals from different transmitters. (Any two) 	1/2 + 1/2	3
	(i) Calculation of equivalent capacitance 1 (ii) Calculation of charge and energy stored 1+1 Capacitors are in parallel μF Capacitors are in series $= \mu F$	1/2	
(ii)	$= \mu F$) Charge drawn from the source	1⁄2	


	$ \longrightarrow $		
	$\xrightarrow{+q} \xrightarrow{\overrightarrow{P}} -q \xrightarrow{\overrightarrow{E}} \overrightarrow{E}$	1⁄2	3
Q19	(i)Determining the mass and atomic number of A_4 and A $\frac{1}{2} \times 4$ (ii)Basic nuclear processes of and decays $\frac{1}{2} + \frac{1}{2}$		
	 (i) A₄ : Mass Number : 172 Atomic Number : 69 (ii) A : Mass Number :180 Atomic Number : 72 [Alternatively : Give full credit if student considers decay and find atomic and mass numbers accordingly 	1/2 1/2 1/2 1/2	
	Gives the values quoted above. If the student takes β^+ decay	0	2
	This would give the answers: $(A_4:172,69);(A:180,74)]$ Basic nuclear process for β^+ decay p For β^- decay n [Note: Give full credit of this part, if student writes the processes as conversion of proton into neutron for decay and neutron into proton for decay.]	1/2 1/2	3
Q20	(i)Calculation of speed of light1 ½(ii)Calculation of angle of incidence at face AB1 ½		
	(i) =	1⁄2	
	=	1⁄2	
	Also $ m/s$ = 2.122	1⁄2	
	(ii)		

	$A = \begin{bmatrix} i \\ i \\ r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \\ r_6 \\ r_6 \\ r_6 \\ r_6 \\ r_7 \\ r_7 \\ r_8 \\ r_8 \\ r_8 \\ r_9 \\ r_$		
	At face AC, let the angle of incidence be r_2 . For grazing ray, e = — = 45	1/2	
	Let angle of refraction at face AB be r_1 . Now		
	= 60	1⁄2	
	Let angle of incidence at this face be <i>i</i>		
		1/	2
	-	1/2	3
Q21	Calculation of collector current and input 1+1+1	1	Ş
		1⁄2	
	= $= 1 mA$ current gain	1⁄2	
		1/2	
		1/2	
	Input signal voltage	1/2	
	= $1 \times 10^{-5} \times 10^{3} \Omega$ =10 [Note : Give full credit if student calculates the required quantities by any other alternative method]	1⁄2	3
Q22			
	Working Principle of moving coil galvanometer1Necessity of (i) radial magnetic field½		
	(ii) cylindrical soft iron core ¹ / ₂		
	Expression for current sensitivity ¹ / ₂		
	Explanation of use of Galvanometer to measure current ¹ / ₂		
р	0 of 16		

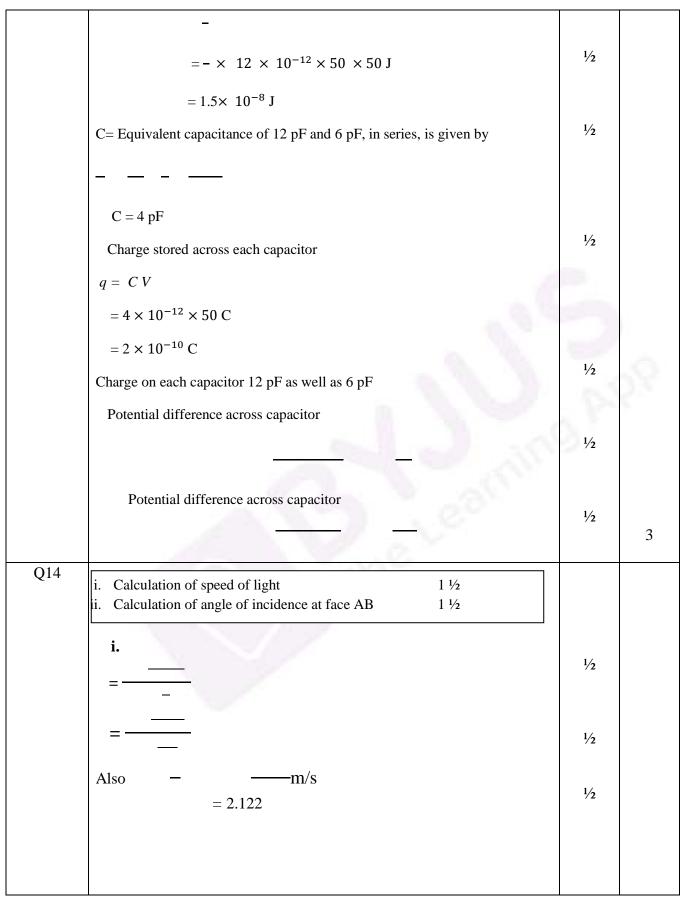
	SECTION D		
Q23	a) Two qualities each of Anuja and her mother1/2 x 4b) Explanation, using lens maker's formula2		
	a) Anuja : Scientific temperament, co-operative, knowledgeable (any two)	1/2+1/2	
	Mother : Inquisitive, scientific temper/keen to learn/has no airs(any two)(or any other two similar values)	$\frac{1}{2} + \frac{1}{2}$	
	b)	1⁄2	
	As the refractive index of plastic material is less than that of glass material therefore, for the same power $(=)$, the radius of currature	1⁄2	
	of plastic material is small. Therefore plastic lens is thicker. Alternatively, If student just writes that plastic has a different refractive index than glass, award one mark for this part.	1/2 1/2	4
	SECTION E		
Q24	a) Labelled diagram of AC generator1 ½Expression for instantaneous value of induced emf.1 ½b) Calculation of maximum value of current2	2	8
	N Slip rings O 00000 Alternating emf O 00000 Carbon brushes	1 1/2	
	[Deduct $\frac{1}{2}$ mark, If diagram is not labeled] When the coil is rotated with constant angular speed ω , the angle θ between the magnetic field and area vector of the coil, at instant t, is given by $\theta = \omega t$, Therefore, magnets flux, (ϕ_B), at this instant, is = BA cos ω t	14	
	\therefore Induced emf e = -N—	$\frac{1/2}{1/2}$	
	$e = NBA \ \omega \sin \omega t$ $e = e_o \sin \omega t$		
	where $e_o = NBA$	1⁄2	
	b) Maximum value of emf = NBA ω	1/2	
	$= 20 \times 200 \times x \times 3 \times x \times 50V$ = 600 mV	1/2 1/2	


Page 11 of 16

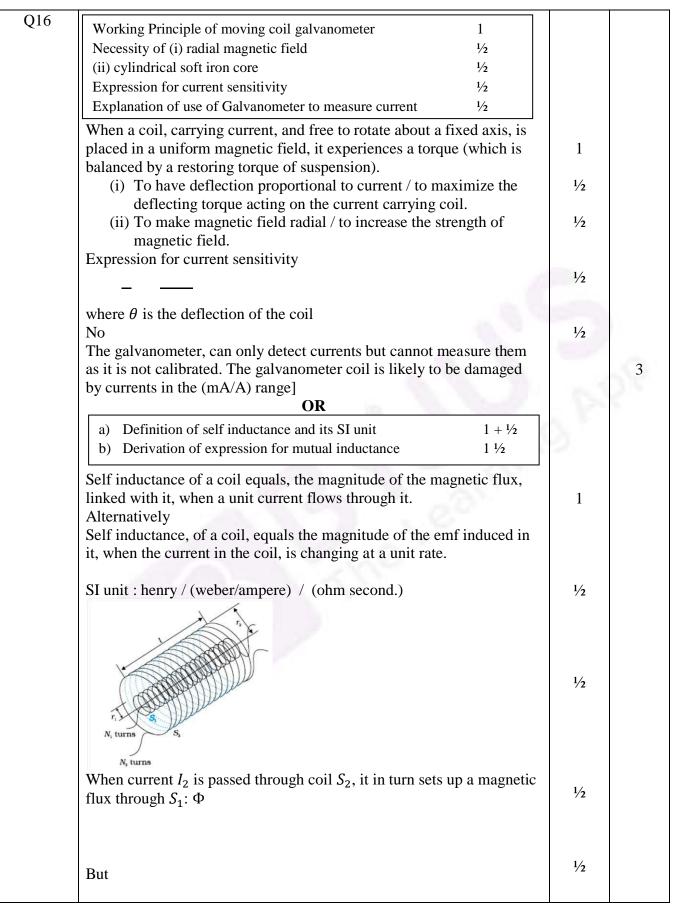
	For an ideal transformer		
	=	1⁄2	
		1⁄2	
	b) — = —	1⁄2	
	=	1⁄2	
	= 300	1⁄2	5
Q25	a) Distinction between unpolarised and linearly polarized light2Obtaining linearly polarized Light1b) Calculation of intensely of light2		
	 a) In an unpolarized light, the oscillations, of the electric field, are in random directions, in planes perpendicular to the direction of propagation. For a polarized light, the oscillations are aligned along one particular direction. Alternatively 		Ş
	Polarized light can be distinguished, from unpolarized light, when it is allowed to pass through a polaroid. Polarized light does can show change in its intensity, on passing through a Polaroid; intensity remains same in case of unpolarized light.	1	
	When unpolarised light wave is incident on a polaroid, then the electric vectors along the direction of its aligned molecules, get absorbed; the electric vector, oscillating along a direction perpendicular to the aligned molecules, pass through. This light is called linearly polarized light.	1	
	b) According to Malus' Law:I =	1⁄2	
	\therefore I = (- θ , where is the intensity of unpolarized light.		
	(given)		
	I =		

~			
01	R		
a) Explanation of two features (disinterference pattern and diffractionb) Calculation of angular width of Estimation of number of fringe	n pattern.) 2 central maxima 2		
a) Interference Pattern	Diffraction pattern		
1) All fringes are of equal width.	1) Width of central maxima is twice the width of higher order bands.		
2) Intensity of all bright bands is equal.	2) Intensity goes on decreasing for higher order of diffraction bands.	0	
 b) Angular width of central maximu 	rrect distinguishing features.] um	1+1	Ś.
		1/2 1/2	Ś.
b) Angular width of central maximu		1/2	2
 b) Angular width of central maximu = ————————————————————————————————————	m	1/2 1/2	2
 b) Angular width of central maximu = radian = radian 	m	1/2 1/2	2
 b) Angular width of central maximu 	um ne diffraction pattern e fringes which can be	1/2 1/2	¢.
 b) Angular width of central maximu = radian = radian Linear width of central maxima in the Let 'n' be the number of interference 	um ne diffraction pattern e fringes which can be	1/2 1/2 1	2
 b) Angular width of central maximu = radian = radian Linear width of central maxima in the Let 'n' be the number of interference 	um ne diffraction pattern e fringes which can be	1/2 1/2 1	<i>C</i>
 b) Angular width of central maximu = radian = radian Linear width of central maxima in the Let 'n' be the number of interference 	Im The diffraction pattern the fringes which can be that the writes the answers as 2 (taking	1/2 1/2 1	2
 b) Angular width of central maximu = radian = radian Linear width of central maxima in the central maxima in the central maximum Let 'n' be the number of interference accommodated in the central maxim [Award the last ½ mark if the studen 	Im The diffraction pattern the fringes which can be that the writes the answers as 2 (taking	1/2 1/2 1	
 b) Angular width of central maximu = radian = radian Linear width of central maxima in the central maxima in the central maximum Let 'n' be the number of interference accommodated in the central maxim [Award the last ½ mark if the studen 	Im The diffraction pattern the fringes which can be that the writes the answers as 2 (taking culation.]	1/2 1/2 1	

R = r/	1⁄2	
Hence current drawn from the cell	1/2	
$I = \frac{1}{r} = \frac{1}{r}$	72	
Power consumed P = $\binom{r}{3}$	1⁄2	
= — x = —	1⁄2	
[Note: Award the last $1\frac{1}{2}$ marks for this part, if the calculations, for these parts, are done by using (any other) value of equivalent		
resistance obtained by the student.)		5

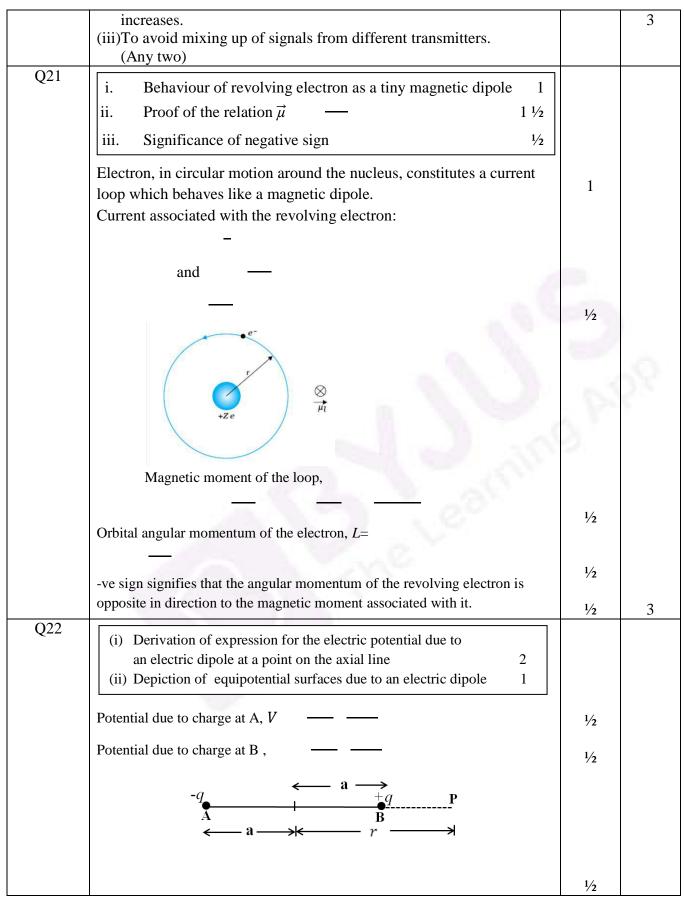

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
Q1	$B_{H} = B_{E} \cos \delta$	1/2	
	$B = B_E \cos 60^\circ \Rightarrow B_E = 2B$		
	At equator $\delta = 0^{\circ}$	1/2	
	[Alternatively, Award full one mark, if student doesn't take the value (=2B)of B_E , while finding the value of horizontal component at equator, and just writes the formula only.]		1
Q2	Solar cell	1	1
Q3	No,	1/2	1
	Because the charge resides only on the surface of the conductor.	1/2	1
Q4	Speed of em waves is determined by the ratio of the peak values of electric and magnetic field vectors.	1	
	[Alternatively, Give full credit, if student writes directly —	1	1
Q5	No,	1/2	1
	As the magnetic field due to current carrying wire will be in the plane of the circular loop, so magnetic flux will remain zero. Alternatively	1⁄2	
	[Magnetic flux does not change with the change of current.]		1
Q6	Calculation of wavelength of electron in first excited state 2		
	Radius of n th orbit		
	$= 0.53 \times 4$ = 2.12 Å	1/2	
	For an electron revolving in nth orbit, according to de Broglie relation $2\pi r_n = n\lambda$, For 1 st excited state $n = 2$		
		1/2	
	n	$\frac{1/2}{1/2}$	2
	= 6.67 Å Alternatively	72	2
		1⁄2	
	velocity of electron in first excited state, v		
		1⁄2	
	$m = 6.67 \text{\AA}$	1/2	_
	= 6.6/A Alternatively	1/2	2

MARKING SCHEME

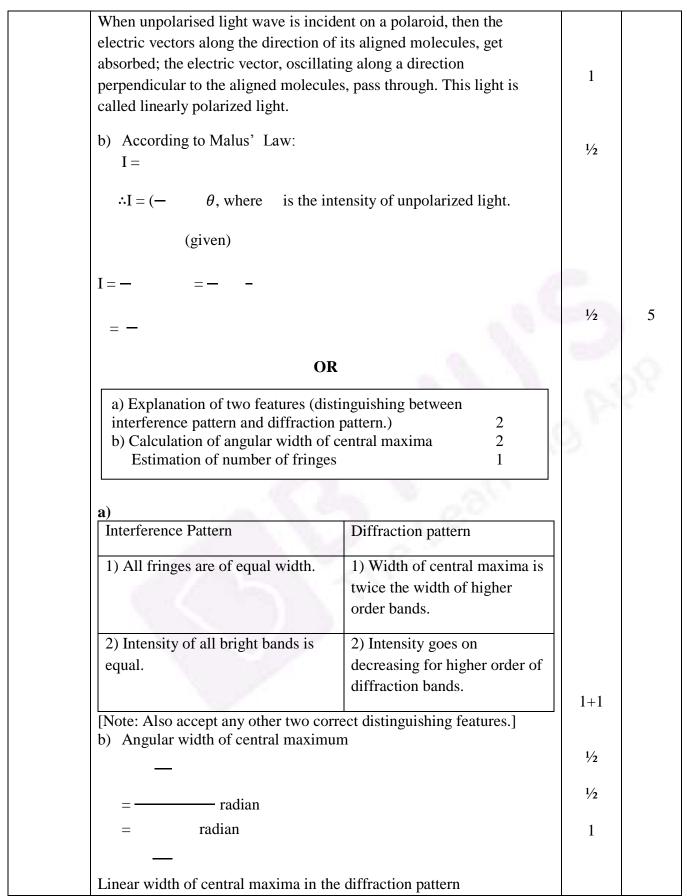

	Let be the wavelength of the electron in the n th orbit. We then have		
		1	
		1⁄2	
	Also		
	(r radius of the ground state orbit)		
		1/2	2
	Alternatively,		
	Let λ_n be the wavelength of the electron in the n th orbit. We then have		
	_	1	0
	But	12	67
		1⁄2	
		1/2	
	where v_0 is the velocity of electron in ground state.		2
Q7	Distinction between transducer and repeater2		
	Transducer : A device which converts one form of energy into another.	1	
	Repeater : A combination of receiver and transmitter / It picks signals from a transmitter; amplifies and retransmits them.	1	2
Q8	Explanation of flow of current through capacitor1Expression for displacement current1		
	During charging, electric flux between the plates of capacitor keeps on changing; this results in the production of a displacement current between the plates.	1	
		1	2

Q9	Definition of distance of closest approach 1		
	Finding of distance of closest approach when Kinetic energy is doubled1		
	It is the distance of charged particle from the centre of the nucleus, at which the whole of the initial kinetic energy of the (far off) charged particle gets converted into the electric potential energy of the system. Distance of closest approach (r_c) is given by	1	
		1/2	
	'K' is doubled, $\therefore r_c$ becomes –	1/2	
	[Alternatively: If a candidate writes directly - without mentioning	72	
	formula, award the 1 mark for this part.]		2
	OR		
	Two important limitations of Rutherford nuclear model 1+1		
	 According to Rutherford model, electron orbiting around the nucleus, continuously radiates energy due to the acceleration; hence the atom will not remain stable. As electron spirals inwards; its angular velocity and frequency 	1	28
	2. As election spirals inwards, its angular velocity and nequency change continuously; therefore it will emit a continuous spectrum.	1	2
Q10	Reasons for having large focal length and large aperture of objective of telescope and their justification1+1		
	Large focal length : to increase magnifying power Large aperature : to increase resolving power.	1/2 1/2 1/2	
		1/2	2
Q11	Derivation of expression of voltage across resistance R 3		
	Resistance between points A & C		
	Effective resistance between points A & B	1⁄2	
	Encerve resistance between points A & B		
D	re 3 of 16		

		1⁄2	
	Current drawn from the voltage source, —		
		1⁄2	
	Let current through R be		
		1⁄2	
	Voltage across R		
	=	1/2	1
	=	1⁄2	22
		2	3
Q12	Identification of metal which has higher threshold frequency $\frac{1}{2}$ Determination of the work function of the metal which has greatervalue $\frac{1}{2}$ Calculation of maximum kinetic energy (K) of electron emittedby light of frequency 81		
	 i) Q has higher threshold frequency ii) Work function =h 	1/2 1/2	
	=	1/2 1/2 1/2	
		1⁄2	3
Q13	Calculation of electrostatic energy in 12 pF capacitor1Total charge stored in combination1Potential difference across each capacitor $\frac{1}{2} + \frac{1}{2}$		
	Energy stored, in the capacitor of capacitance 12 pF,		

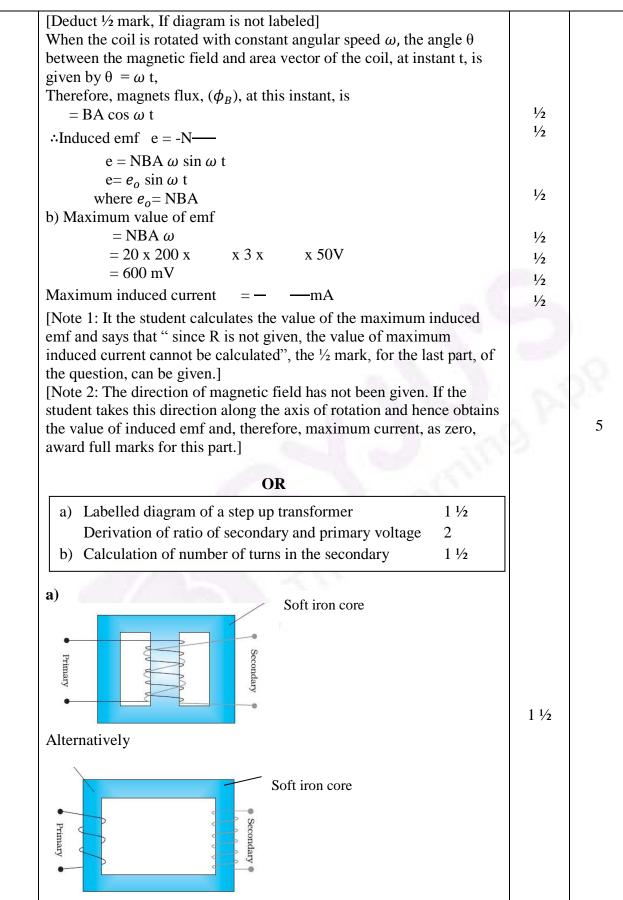


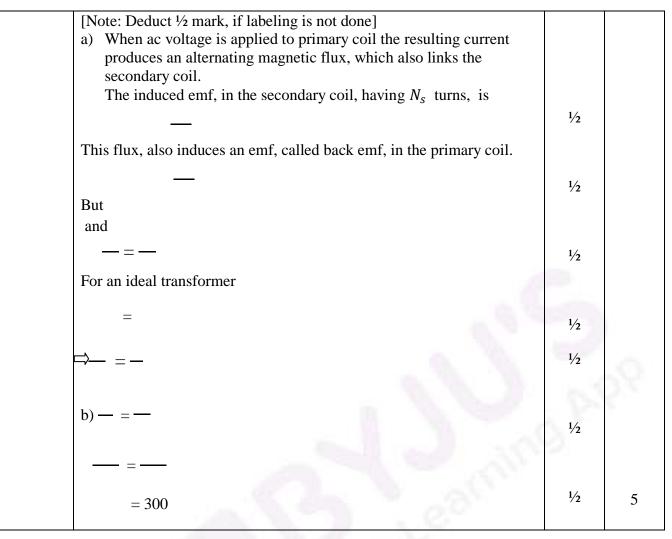
	ii.		
	A r_1 r_2 r_3 r_3 r_3 r_3 r_3 r_3 r_3 r_3 r_3 r_3	1⁄2	
	Let angle of refraction at face AB be r_1 . Now = 60	1⁄2	
	= 60 Let angle of incidence at this face be <i>i</i>		
	_		
		100	
	-	1⁄2	3
Q15	i. Determining the mass and atomic number of A_4 and A $\frac{1}{2} \times 4$ ii. Basic nuclear processes of and decays $\frac{1}{2} + \frac{1}{2}$	3	5
	 i. A₄ : Mass Number : 172 Atomic Number : 69 ii. A : Mass Number :180 Atomic Number : 72 [Alternatively : Give full credit if student considers decay and find atomic and mass numbers accordingly 	1/2 1/2 1/2 1/2 1/2	
	Gives the values quoted above. If the student takes β^+ decay		
	This would give the answers: $(A_4:172,69);(A:180,74)]$ Basic nuclear process for β^+ decay p For β^- decay n [Note: Give full credit of this part, if student writes the processes as conversion of proton into neutron for decay and neutron into proton	1/2 1/2	3
	for decay.]		3



	[Note : If the student derives the correct expression, without giving the diagram of two coaxial coils, full credit can be given]		3
Q17	Calculation of collector current and input 1+1+1		
	Given $\begin{aligned} &= 2k\Omega \\ &= 2x^{3}\Omega \end{aligned}$	1/	
		1/2	
	= 1 mA current gain	1⁄2	
		1/2	
	Input signal voltage	1/2 1/2	
	$= 1 \times 10^{-5} \times 10^{3} \Omega$ =10	1/2	
010	[Note : Give full credit if student calculates the required quantities by any other alternative method]	2	3
Q18	Explanation of heavily doping of both p and n sides of Zener diode 1Circuit diagram of Zener diode as a dc voltage regulator1Explanation of the use of Zener diode as a dc voltage regulator.1		
	By heavily doping both p and n sides of the junction, depletion region formed is very thin, i.e. $< 10^{-6}$ m. Hence, electric field, across the junction is very high (~ 5 × 10 ⁶ V/m) even for a small reverse bias e. This can lead to a 'breakdown' during reverse biasing.	1	
	Unregulated voltage (V_L) I_L Regulated R_L (V_x)		
	If the input voltage increases/decreases, current through resister R , and Zener diode, also increases/decreases. This increases/decreases the voltage drop across change in voltage across the Zener diode.	1	
	This is because, in the breakdown region, Zener voltage remains constant even though the current through the Zener diode changes.	1	3

0.1.0			
Q19	 (i) Calculation of phase difference between current and voltage 1 Name of quantity which leads 1/2 (ii) Calculation of value of 'C', is to be connected in parallel 1 1/2 		
	i. Ω=100Ω		
	$=500\Omega$	1⁄2	
	Phase angle		
	= -1		
	-	1/2	
	As , (/phase angle is negative), hence current leads voltage	1/2	
	ii. To make power factor unity	1/2	52
	= 100	31	
		1⁄2	
		1⁄2	3
Q20	Definition of amplitude modulation1Explanation of two factors justifying the need of modulation2		
	 It is the process of superposition of information/message signal over a carrier wave in such a way that the amplitude of carrier wave is varied according to the information signal/message signal. Direct transmission, of the low frequency base band information signal, is not possible due to the following reasons; (i) Size of Antenna: For transmitting a signal, minimum height of antenna should be -; with the help of modulation wavelength of signal decreases, hence height of antenna becomes manageable. (ii) Effective power radiated by an antenna: 	1	
	Effective power radiated by an antenna varies inversely as λ^2 , hence effective power radiated into the space, by the antenna,	¹ / ₂ + ¹ / ₂	


		1	
	V = [Note : Also accept any other alternative correct method.]	1⁄2	3
Q23	a) Two qualities each of Anuja and her mother½ x 4b) Explanation, using lens maker's formula2a) Anuja : Scientific temperament, co-operative, knowledgeable (any two)Mother : Inquisitive, scientific temper/keen to learn/has no airs(any	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	\$
	 two)(or any other two similar values) b) As the refractive index of plastic material is less than that of glass material therefore, for the same power (=), the radius of currature of plastic material is small. Therefore plastic lens is thicker. 	1/2 1/2 1/2 1/2 1/2	
Q24	Alternatively, If student just writes that plastic has a different refractive index than glass, award one mark for this part. a) Distinction between unpolarised and linearly polarized light 2 Obtaining linearly polarized Light b) Calculation of intensely of light		4
	 a) In an unpolarized light, the oscillations, of the electric field, are in random directions, in planes perpendicular to the direction of propagation. For a polarized light, the oscillations are aligned along one particular direction. Alternatively 	1	
	Polarized light can be distinguished, from unpolarized light, when it is allowed to pass through a polaroid. Polarized light does can show change in its intensity, on passing through a Polaroid; intensity remains same in case of unpolarized light.	1	


	I	1	1
	Let 'n' be the number of interference fringes which can be accommodated in the central maxima	1⁄2	
	[Award the last $\frac{1}{2}$ mark if the student writes the answers as 2 (taking $d=a$), or just attempts to do these calculation.]	1⁄2	5
Q25		1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	5
	OR		

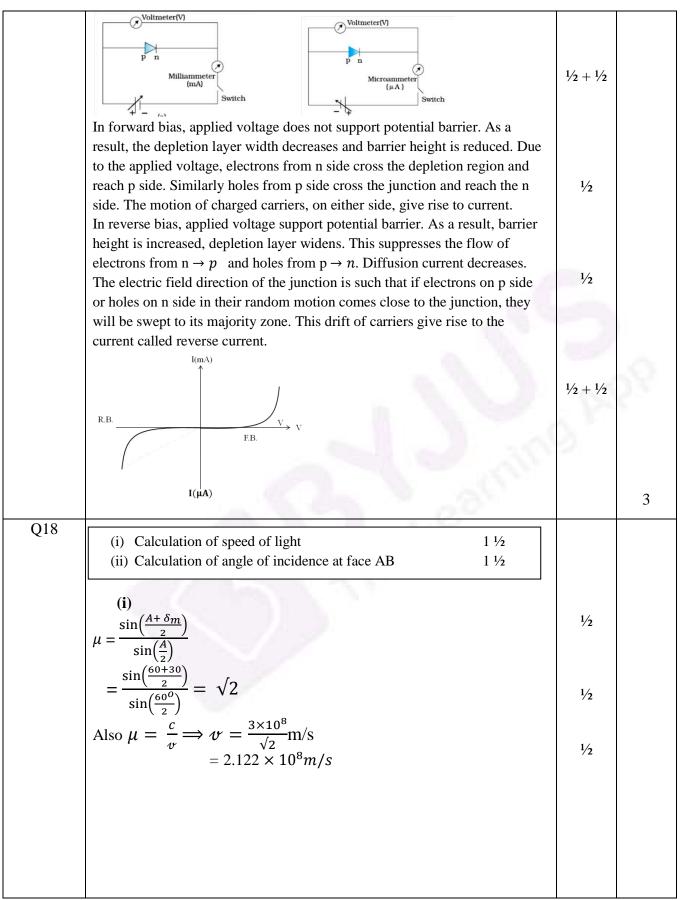
(i) Statement of Kirchoff's laws 1+1		
Justification $\frac{1}{2} + \frac{1}{2}$		
(ii) Calculation of i) current drawn and 1		
ii) Power consumed 1		
(i) Junction Rule: At any Junction, the sum of currents, entering the		
junction, is equal to the sum of currents leaving the junction.	1	
Loop Rule: The Algebraic sum, of changes in potential, around any closed loop involving resistors and cells, in the loop is zero.	1	
V) = 0		
Justification: The first law is in accord with the law of conservation of charge.	1⁄2	
The Second law is in accord with the law of conservation of energy.	1/2	
ii) Equivalent resistance of the loop		
R = r/r	1/	
Hence current drawn from the cell	1/2	0
$I = \frac{1}{r} = -$	1⁄2	22
Power consumed P = $\binom{r}{3}$	1⁄2	
= — x $=$ —	1⁄2	
[Note: Award the last 1 ¹ / ₂ marks for this part, if the calculations, for these parts, are done by using (any other) value of equivalent resistance obtained by the student.)		5
Q26 Q26 11/		
a) Labelled diagram of AC generator 1 ⁷ 2		
Expression for instantaneous value of induced emf.1 ½b) Calculation of maximum value of current2		
N Slip rings Alternating emf Carbon brushes	1 1⁄2	

Page 14 of 16

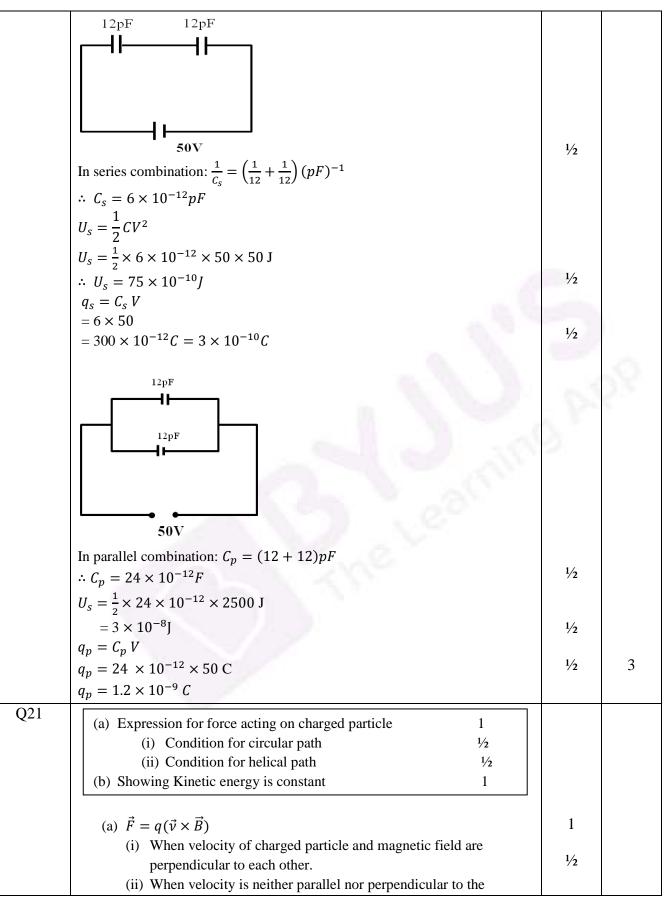
Page 15 of 16

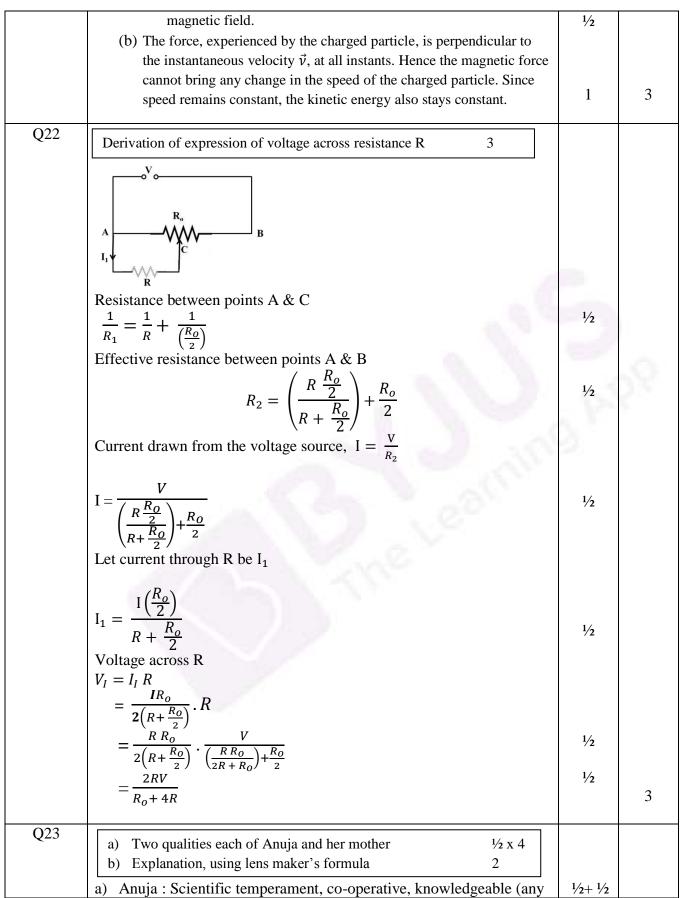
MARKING S	SCHEME
-----------	--------

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
Q1	No,	1/2	
	As the magnetic field due to current carrying wire will be in the plane of the circular loop, so magnetic flux will remain zero. Alternatively	1⁄2	
	[Magnetic flux does not change with the change of current.]		1
Q2	Speed of em waves is determined by the ratio of the peak values of electric and magnetic field vectors.		
	[Alternatively, Give full credit, if student writes directly —	1	1
Q3	Solar cell	1	1
Q4	$B_{H} = B_{E} \cos \delta$	1/2	
	$B = B_E \cos 60^0 \Rightarrow B_E = 2B$	and I	
	At equator $\delta = 0^{\circ}$	1/2	0
		100	1
	[Alternatively, Award full one mark, if student doesn't take the value $(=2B)$ of B_E , while finding the value of horizontal component at equator, and just writes the formula only.]	a r	
Q5	No,	1/2	
	Because the charge resides only on the surface of the conductor.	1⁄2	1
Q6	Definition of distance of closest approach1Finding of distance of closest approach when1Kinetic energy is doubled1		
	It is the distance of charged particle from the centre of the nucleus, at which the whole of the initial kinetic energy of the (far off) charged particle gets converted into the electric potential energy of the system. Distance of closest approach (r_c) is given by	1	
		1/2	
	'K' is doubled, $\therefore r_c$ becomes –		
	[Alternatively: If a candidate writes directly – without mentioning	1⁄2	
	formula, award the 1 mark for this part.]		2
	OR		
	Two important limitations of Rutherford nuclear model 1+1		
	 According to Rutherford model, electron orbiting around the nucleus, continuously radiates energy due to the acceleration; hence the atom will not remain stable. 	1	

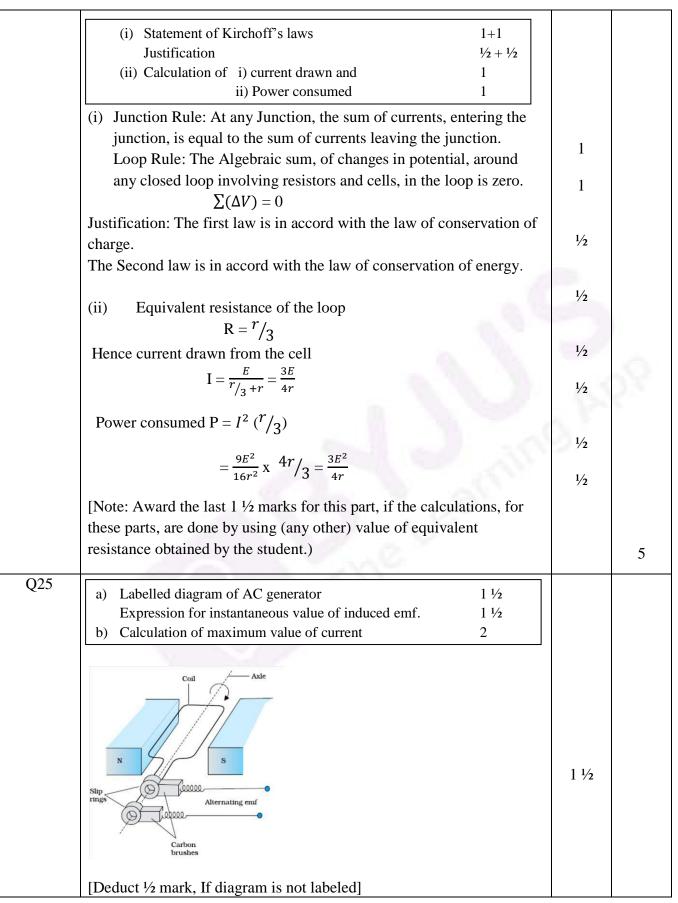

ndex $\frac{1}{2}$	2
¹ /2 ¹ /2	2
1/2 ndex	2
ndex	2
	2
10	
1	0.0
nere. $\frac{1/2}{1/2}$	2
1/2	
1/2	
1⁄2	
1⁄2	2
	1/2

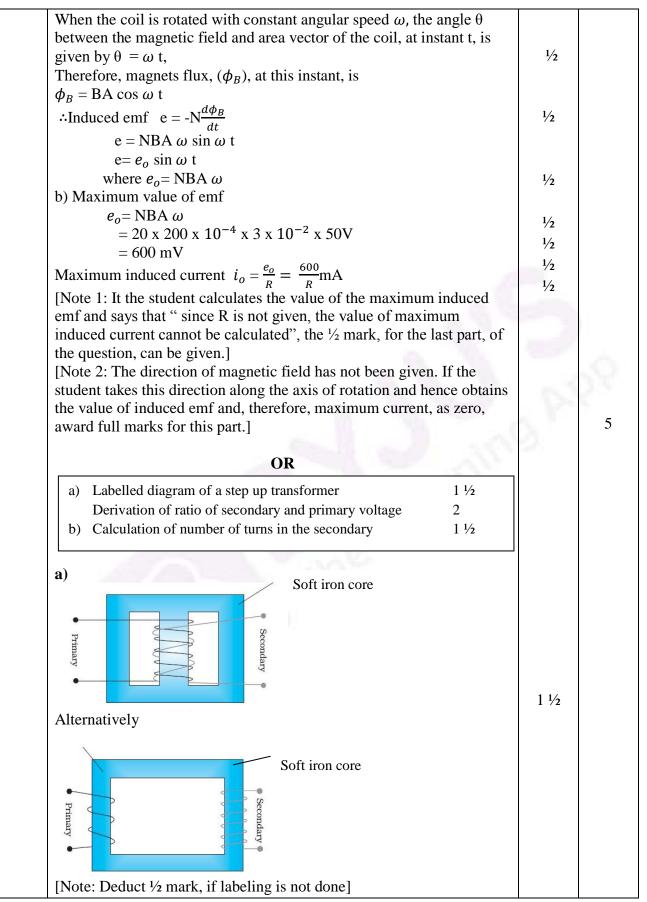
Q10			
	Explanation of flow of current through capacitor1		
	Expression for displacement current 1		
	During charging, electric flux between the plates of capacitor keeps on	1	
	changing; this results in the production of a displacement current	1	
	between the plates.		
	$I_d = \epsilon_o \frac{d\varphi_E}{dt} \left(/ I_d = \epsilon_o A \frac{dE}{dt} \right)$	1	2
Q11		1	Z
Q11	Working Principle of moving coil galvanometer 1		
	Necessity of (i) radial magnetic field		
	(ii) cylindrical soft iron core ¹ / ₂		
	Expression for current sensitivity ¹ / ₂		
	Explanation of use of Galvanometer to measure current ¹ / ₂		
	When a coil, carrying current, and free to rotate about a fixed axis, is	1	
	placed in a uniform magnetic field, it experiences a torque (which is balanced by a restoring torque of suspension).	1	
	(i) To have deflection proportional to current / to maximize the	1/2	
	deflecting torque acting on the current carrying coil.	/2	0
	(ii) To make magnetic field radial / to increase the strength of	1/2	3.5
	magnetic field.	- 22-	
	Expression for current sensitivity	1.1	
	$I_s = \frac{\theta}{I} \text{ or } \frac{NAB}{K}$	1/2	
	where θ is the deflection of the coil		
	No	1⁄2	
	The galvanometer, can only detect currents but cannot measure them		
	as it is not calibrated. The galvanometer coil is likely to be damaged		2
	by currents in the (mA/A) range] OR		3
	a) Definition of self inductance and its SI unit $1 + \frac{1}{2}$		
	b) Derivation of expression for mutual inductance $1\frac{1}{2}$		
	Self inductance of a coil equals, the magnitude of the magnetic flux,		
	linked with it, when a unit current flows through it.	1	
	Alternatively		
	Self inductance, of a coil, equals the magnitude of the emf induced in		
	it, when the current in the coil, is changing at a unit rate.		
	SI unit : henry / (weber/ampere) / (ohm second.)	1/2	
	Si unit : hem y / (weber/ampere) / (onin second.)	/2	


	r, turns S,	1⁄2	
	When current I_2 is passed through coil S_2 , it in turn sets up a magnetic flux through S_1 : $\Phi_1 = (n_1 \ell)(\pi r_1^2)(B_2)$	1⁄2	
	$\begin{split} \Phi_1 &= (n_1 \ell) (\pi r_1^2) (\mu_0 n_2 l_2) \\ \Phi_1 &= \mu_0 n_1 n_2 l_2 \pi r_1^2 \ell l_2 \\ \text{But } \Phi_1 &= M_{12} l_2 \\ &\Rightarrow M_{12} &= \mu_0 n_1 n_2 \pi r_1^2 \ell \\ \text{[Note : If the student derives the correct expression, without giving the diagram of two coaxial coils, full credit can be given]} \end{split}$	1⁄2	3
Q12	(i) Determining the mass and atomic number of A_4 and A $\frac{1}{2} \times 4$ (ii) Basic nuclear processes of β^+ and β^- decays $\frac{1}{2} + \frac{1}{2}$	N.	5.5
	(i) A_4 : Mass Number : 172 i. Atomic Number : 69 (ii) A : Mass Number : 180 i. Atomic Number : 72 [Alternatively : Give full credit if student considers β^+ decay and find atomic and mass numbers accordingly $1\frac{80}{72}A \xrightarrow{\alpha} 1\frac{76}{70}A_1 \xrightarrow{\beta^-} 1\frac{76}{71}A_2 \xrightarrow{\alpha} 1\frac{72}{69}A_3 \xrightarrow{r} 1\frac{72}{69}A_4$ Gives the values quoted above. If the student takes β^+ decay $1\frac{80}{74}A \xrightarrow{\alpha} 1\frac{76}{72}A_1 \xrightarrow{\beta^+} 1\frac{76}{71}A_2 \xrightarrow{\alpha} 1\frac{72}{69}A_3 \xrightarrow{r} 1\frac{72}{69}A_4$	1/2 1/2 1/2 1/2	
	This would give the answers: $(A_4:172,69);(A:180,74)]$ Basic nuclear process for β^+ decay $p \rightarrow n + {}_1^0 e + v$ For β^- decay $n \rightarrow p + {}_1^0 e + \bar{v}$ [Note: Give full credit of this part, if student writes the processes as conversion of proton into neutron for β^+ decay and neutron into proton for β^- decay.]	1⁄2 1⁄2	3
Q13	Calculation of collector current I_c , base current I_B and input signal voltage V_i		
	Given $R_c = 2k\Omega$ = 2 x 10 ³ Ω	1/2	

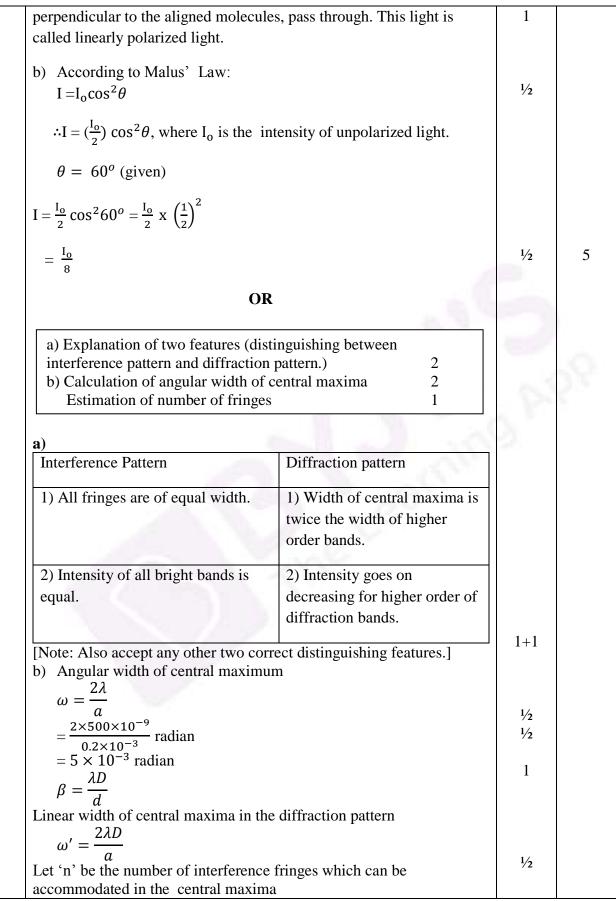

		r	
	$V_{CE} = I_c R_c$		
	$I_c = \frac{V_{CE}}{R_c} = \frac{2}{2 \times 10^3} A$		
	$= 10^{-3}A$		
	$= 1 \mathrm{m}A$	1⁄2	
	current gain		
	$\beta = \frac{I_c}{I_B}$	1/2	
		/2	
	$\therefore 100 = \frac{10^{-3}}{I_B}$		
	$\therefore I_B = 10^{-5} A$	1/2	
	Input signal voltage	, _	
	$V_i = I_B R_B$ = 1 x 10 ⁻⁵ × 10 ³ Ω	1⁄2	
	$=10^{-2}V$	1/	
	[Note : Give full credit if student calculates the required quantities by any	1/2	3
014	other alternative method]		
Q14	(i) Two important features of Einstein's photo electric equation $\frac{1}{2} + \frac{1}{2}$	and a	
	(ii) Explanation of observations and finding value of work function of	100.00	0.0
	Surface Q 1+1	1.1	38
		- 22-	
	(i) Maximum kinetic energy (K_{max}) , of emitted electrons, depends linearly	S. C.	
	on frequency of incident radiations $(KE) = h_{1} + h_{2}$	$\frac{1}{2} + \frac{1}{2}$	
	$(KE)_{max} = h\nu - h\nu_o$ Existence of threshold frequency for the metal surface $\phi_0 = h\nu_o$	/2 1 /2	
	(Any other relevant feature)		
	(ii) Since no photoelectric emission takes place from P it means frequency of		
	incident radiation (10 ¹⁵ Hz) is less than its threshold frequency $(v_o)_p$.	1/2	
	Photo emission takes place from Q but kinetic energy of photoelectrons		
	is zero. This implies that frequency of incident radiation is just equal to	1/2	
	the threshold frequency of Q.		
	For Q, work function $\phi_0 = hv_0$		
	$=\frac{6.6\times10^{-34}\times10^{15}}{1.6\times10^{-19}} eV$	1⁄2	
	$=4.125\mathrm{eV}$	1/2	3
Q15	(i) Calculation of phase difference between current and voltage 1		
	(1) Calculation of phase difference between current and voltage 1 Name of quantity which leads ¹ / ₂		
	(ii) Calculation of value of 'C', is to be connected in parallel $1\frac{1}{2}$		
	(i) $X_L = \omega L = (1000 \times 100 \times 10^{-3})\Omega = 100\Omega$		
		1/	
	$X_C = \frac{1}{\omega C} = \left(\frac{1}{1000 \times 2 \times 10^{-6}}\right) \Omega = 500\Omega$	1/2	
	Phase angle		
		1	

1/2	
rent leads voltage $\frac{1}{2}$	
14	
72	
1/2	
Nº D	
1/2	3
by an electric 2 1	
1/2	
1/2	
ences a translatory	
1	3
d reverse bias $\frac{1}{2} + \frac{1}{2}$	
everse bias $\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	
	rent leads voltage $ \begin{array}{c} 1/2\\ 1/2\\ 1/2\\ 1/2\\ 1/2\\ 1/2\\ 1/2\\ 1/2\\$




	(ii)		
	(11) $ \begin{array}{c} $	1/2 1/2	
	$\therefore i = \sin^{-1}(\sqrt{2} . \sin 15^o)$	1/2	3
Q19	 Definition of amplitude modulation 1 Explanation of two factors justifying the need of modulation 2 It is the process of superposition of information/message signal over a carrier wave in such a way that the amplitude of carrier wave is varied according to the information signal/message signal. Direct transmission, of the low frequency base band information signal, is not possible due to the following reasons; (i) Size of Antenna: For transmitting a signal, minimum height of antenna should be ^λ/₄; with the help of modulation wavelength of signal decreases, hence height of antenna becomes manageable. (ii) Effective power radiated by an antenna: Effective power radiated by an antenna varies inversely as λ², hence effective power radiated into the space, by the antenna, increases. (iii)To avoid mixing up of signals from different transmitters. (Any two) 	1 1 1/2 + 1/2	3
Q20	Equivalent capacitance in series1/2Energy in series combination1/2Charge in series combination1/2Equivalent capacitance in parallel combination1/2Energy in parallel combination1/2Charge in parallel combination1/2Charge in parallel combination1/2		

	two) Mother : Inquisitive, scientific temper/keen to learn/has no airs(any	$\frac{1}{2} + \frac{1}{2}$	
	two)(or any other two similar values) b) $\frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1⁄2	
	As the refractive index of plastic material is less than that of glass	1/2	
	material therefore, for the same power $(= 1/f)$, the radius of currature	1/	
	of plastic material is small. Therefore plastic lens is thicker.	$\frac{1/2}{1/2}$	
	Alternatively, If student just writes that plastic has a different	, _	4
	refractive index than glass, award one mark for this part.		
Q24	(i) Derivation of the expression for drift velocity 2		
	Deduction of Ohm's law 2		
	(ii)Name of quantity and justification $\frac{1}{2} + \frac{1}{2}$	1	
	Let an electric field E be applied the conductor. Acceleration of each		
	electron is eE	1/2	
	$a = -\frac{eE}{m}$	1000	0
	Velocity gained by the electron <i>eE</i>	1/2	37
	$v = -\frac{eE}{m}t$	10	
	Let the conductor contain n electrons per unit volume. The average value of time t' between their successive collisions is the relevation	14	
	value of time 't', between their successive collisions, is the relaxation time, ' τ '.	1/2	
	Hence average drift velocity $v_d = \frac{-eE}{m} \tau$	1⁄2	
	The amount of charge, crossing area A, in time Δt , is	14	
	$\equiv neAv_d\Delta t = I\Delta t$	1/2	
	Substituting the value of v_d , we get $(eE\tau)$		
	$I\Delta t = neA\left(\frac{eE\tau}{m}\right)\Delta t$	1/2	
	$\therefore I = \left(\frac{e^2 A \tau n}{m}\right) E = \sigma E, \left(\sigma = \frac{e^2 \tau n}{m} \text{ is the conductivity}\right)$	72	
	But $I = JA$, where J is the current density	14	
	\Rightarrow J = $\left(\frac{e^2 \tau n}{m}\right) E$	1/2	
	$\Rightarrow \mathbf{J} = \sigma \mathbf{E}$	1⁄2	
	This is Ohm's law		
	[Note : Credit should be given if the student derives the alternative		
	form of Ohm's law by substituting $E = \frac{v}{\ell}$]		
	ii) Electric current well remain constant in the wire.	1/2	
	All other quantities, depend on the cross sectional area of the wire.	² /2 1/2	5
	OR		



SET: DELHI 55/1/3

	a) When ac voltage is applied to primary coil the resulting current produces an alternating magnetic flux, which also links the secondary coil. The induced emf, in the secondary coil, having N_s turns, is $e_s = -N_s \frac{d\varphi}{dt}$ This flux, also induces an emf, called back emf, in the primary coil.		
	$e_p = -N_p \frac{d\varphi}{dt}$ But $e_p = V_p$ and $e_s = V_s$	1/2	
	$\Rightarrow \frac{V_s}{V_p} = \frac{N_s}{N_p}$ For an ideal transformer	1/2	
	$l_p V_p = i_s V_s$	1/2	
	$\Rightarrow \frac{V_s}{V_p} = \frac{i_p}{i_s}$	1/2 1/2	0
	b) $\frac{N_s}{N_p} = \frac{V_s}{V_p}$ $\frac{N_s}{3000} = \frac{220}{2200}$	1⁄2	
	$3000 2200$ $\therefore N_s = 300$	1⁄2	5
Q26	 a) Distinction between unpolarised and linearly polarized light 2 Obtaining linearly polarized Light 1 b) Calculation of intensely of light 2 a) In an unpolarized light, the oscillations, of the electric field, are in random directions, in planes perpendicular to the direction of prepagation. For a polarized light the assillations are aligned. 	1	
	propagation. For a polarized light, the oscillations are aligned along one particular direction. Alternatively		
	Polarized light can be distinguished, from unpolarized light, when it is allowed to pass through a polaroid. Polarized light does can show change in its intensity, on passing through a Polaroid; intensity	1	
	remains same in case of unpolarized light.	1	
	When unpolarised light wave is incident on a polaroid, then the electric vectors along the direction of its aligned molecules, get absorbed; the electric vector, oscillating along a direction		
	14 of 16 Fifth Draft		22 2017

SET: DELHI 55/1/3

$ \begin{array}{c} \therefore n \times \beta = \omega' \\ n = \frac{2\lambda D}{\frac{2}{\lambda D}} \times \frac{d}{\lambda D} \end{array} $		
$n = \frac{2a}{a}$ [Award the last ½ mark if the student writes the answers as 2 (taking $d=a$), or just attempts to do these calculation.]	1⁄2	5

