CBSE Class 12 Physics Solution

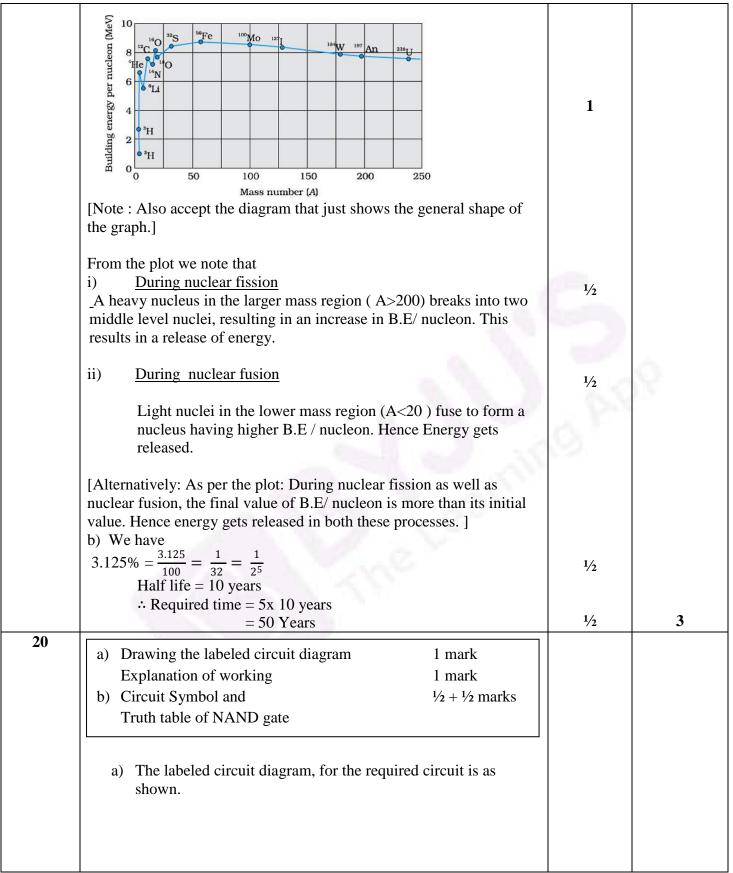
	PHYSICS		55/1
Q.NO.	Expected Answer/Value Points	Marks	Total Marks
1	Electron (No explanation need to be given. If a student only writes the formula for frequency of charged particle (or $v_c \alpha \frac{q}{m}$) award ½ mark)	1	1
2	 (a) Ultra violet rays (b) Ultra violet rays / Laser 	1/2 1/2	1
3	La Contraction Con	1/2	
	Applied voltage → The graph I ₂ corresponds to radiation of higher intensity [Note: Deduct this ½ mark if the student does not show the two graphs starting from the same point.] (Also accept if the student just puts some indicative marks, or words, (like tick, cross, higher intensity) on the graph itself.	1⁄2	Q 1
4	Daughter nucleus	1	1
5	Sky wave propagation	1	1
	(SECTION – B)		
6	Formula½ markStating that currents are equal½ markRatio of powers1mark		
	Power = $I^2 R$ The current, in the two bulbs, is the same as they are connected in series. $\therefore \frac{P_1}{P_2} = \frac{I^2 R_1}{I^2 R_2} = \frac{R_1}{R_2}$ $= \frac{1}{2}$	1/2 1/2 1/2 1/2	2
7	Writing the equation1 markFinding the current1 mark		
	By Kirchoff's law, we have, for the loop ABCD, +200 - $38i-10 = 0$	1	

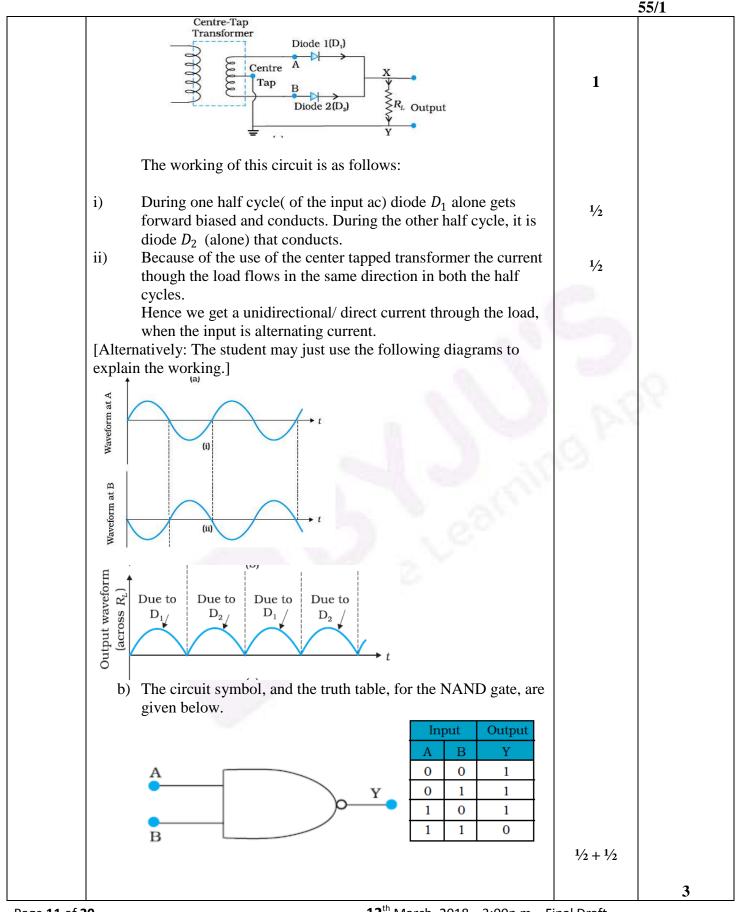
			55/1
$\therefore i = \frac{190}{38} A = 5A$ $A \qquad \qquad 10 V$ $A \qquad \qquad$	D	1	2
Alternative	ely:		
Finding the Net emf Stating that $I = \frac{V}{R}$ Calculating I	1 mark ½ mark ½ mark		
The two cells being in 'opposition', \therefore net $\varepsilon mf = (200 - 10)V = 190 V$ Now $I = \frac{V}{R}$ $\therefore I = \frac{190 V}{38 \Omega} = 5 A$ [Note: Some students may use the formulae $r = \frac{(r_1 r_2)}{(r_1 + r_2)}$	e $\frac{\varepsilon}{r} = \frac{\varepsilon_1}{r_1} + \frac{\varepsilon_2}{r_2}$, and 2)	1 1⁄2 1⁄2	2
For two cells connected in parallel They may then say that $r = 0$; ε is indeterminate and hence I is also indeterminate Award full marks(2) to students giving this OR	line of reasoning.]		
Stating the formula Calculating r	1 mark 1 mark		
We have $r = \left(\frac{l_1}{l_2} - 1\right)R = \left(\frac{l_1 - l_2}{l_2}\right)R$ $\therefore r = \left(\frac{350 - 300}{300}\right) >$ $= \frac{50}{300} \times 9\Omega = 1.5$		1 1/2	2
$=\frac{3}{300}\times9\Omega=1.5$	202	1/2	2
a) Reason for calling IF rays as heat raysb) Explanation for transport of momentum			
 a) Infrared rays are readily absorbed by the most of the substances and hence increat (If the student just writes that "infrared ray award ½ mark only) 	ses their thermal motion.	1	

			55/1
9	 b) Electromagnetic waves can set (and sustain) charges in motion. Hence, they are said to transport momentum. (Also accept the following: Electromagnetic waves are known to exert 'radiation pressure'. This pressure is due to the force associated with rate of change of momentum. Hence, EM waves transport momentum) 	1	2
9	Calculating the energy of the incident photon1 markIdentifying the metals1/2 markReason1/2 mark		
	The energy of a photon of incident radiation is given by $E = \frac{hc}{\lambda}$ $\therefore E = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{(412.5 \times 10^{-9}) \times (1.6 \times 10^{-19})} \text{eV}$	1/2	
	$\frac{1}{(412.5 \times 10^{-9}) \times (1.6 \times 10^{-19})} e^{V}$ $\approx 3.01 eV$ Hence, only Na and K will show photoelectric emission [Note: Award this ½ mark even if the student writes the name of only one of these metals]	1/2 1/2	
	<u>Reason:</u> The energy of the incident photon is more than the work function of only these two metals.	1/2	2
10	Formula for modulation index1 markFinding the peak value of the modulating signal1 mark		
	We have $\mu = \frac{A_m}{A_c}$	1	
	Here $\mu = 60\% = \frac{3}{5}$ $\therefore A_m = \mu A_c = \frac{3}{5} \times 15V$	1/2	
	$A_m = \mu A_c = \frac{1}{5} \times 15V$ $= 9V$ Section C	1/2	2
11	a) Finding the resultant force on a charge Q2 marksb) Potential Energy of the system1 mark		
	a) Let us find the force on the charge Q at the point C Force due to the other charge Q $F_1 = \frac{1}{4\pi\epsilon_o} \frac{Q^2}{(a\sqrt{2})^2} = \frac{1}{4\pi\epsilon_o} \left(\frac{Q^2}{2a^2}\right)$ (along AC) Force due to the charge q (at B), F_2 $= \frac{1}{4\pi\epsilon_o} \frac{qQ}{a^2}$ along BC	1/2	
	Force due to the charge q (at D), F_3 $=\frac{1}{4\pi\epsilon_o} \frac{qQ}{a^2} \text{ along DC}$	1/2	

			55/1
	$= \frac{1}{4\pi\epsilon_0} \cdot \frac{q^2}{l} [-4 + 2 - 8]$ $= \frac{(-10)}{4\pi\epsilon_0} \frac{q^2}{l}$ $\therefore \text{ Work done} = \frac{10 q^2}{4\pi\epsilon_0 l} = \frac{5q^2}{2\pi\epsilon_0 l}$	1/2 1/2	3
12	a) Definition and SI unit of conductivity $\frac{1}{2} + \frac{1}{2}$ marks b) Derivation of the expression for conductivity $1\frac{1}{2}$ marks Relation between current density and electric field $\frac{1}{2}$ mark a) The conductivity of a material equals the reciprocal of the resistance of its wire of unit length and unit area of cross section. [Alternatively: The conductivity (σ) of a material is the reciprocal of its resistivity (ρ)] (Also accept $\sigma = \frac{1}{\rho}$) Its SI unit is $\left(\frac{1}{ohm-metre}\right)/ohm^{-1}m^{-1}/(mho m^{-1})/siemen m^{-1}$ b) The acceleration, $\vec{a} = -\frac{e}{m}\vec{E}$ The average drift velocity, v_d , is given by $v_d = -\frac{eE}{m}\tau$ (τ = average time between collisions/ relaxation time) If <i>n</i> is the number of free electrons per unit volume, the current <i>I</i> is given by $I = neA v_d $ $= \frac{e^2A}{m}\tau n E $ But $I = j A$ (j = current density) We, therefore, get $ j = \frac{ne^2}{m}\tau E $, The term $\frac{ne^2}{m}\tau$ is conductivity. $\therefore \sigma = \frac{ne^2\tau}{m}$ $\Rightarrow J = \sigma E$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	3
13	a) Formula and Calculation of work done in the two cases (1+1) marks b) Calculation of torque in case (ii) 1 mark (a) Work done = $mB(\cos\theta_1 - \cos\theta_2)$ (i) $\theta_1 = 60^0, \theta_2 = 90^0$ \therefore work done = $mB(\cos60^0 - \cos90^0)$ $= mB(\frac{1}{2} - 0) = \frac{1}{2}mB$	1⁄2	

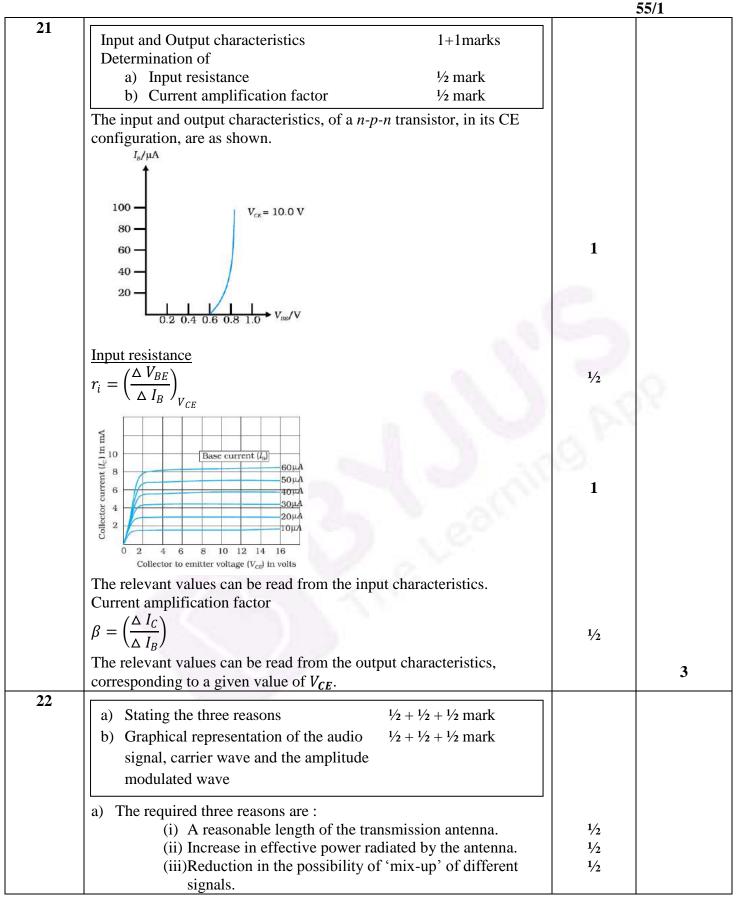
			55/1
	$=\frac{1}{2} \times 6 \times 0.44 \text{ J} = 1.32 \text{ J}$	1/2	
	(ii) $\theta_1 = 60^0, \theta_2 \stackrel{\scriptstyle 2}{=} 180^0$	1/2	
	$\therefore \text{work done} = mB(\cos 60^{\circ} - \cos 180^{\circ})$	72	
	$= mB\left(\frac{1}{2} - (-1)\right) = \frac{3}{2}mB$		
	$=\frac{3}{2} \times 6 \times 0.44 \text{ J} = 3.96 \text{ J}$	1⁄2	
	[Also accept calculations done through changes in potential energy.]		
	(b)		
	Torque = $ \vec{m} \times \vec{B} = mB \sin\theta$	1/2	
	For $\theta = 180^{\circ}$, we have		
	Torque = $6 \times 0.44 \sin 180^{\circ} = 0$ [If the student straight away writes that the torque is zero since	1/2	
	magnetic moment and magnetic field are anti parallel in this		3
	orientation, award full 1mark]		5
14	a) Expression for Ampere's circuital law ¹ / ₂ mark		
	Derivation of magnetic field inside the ring 1 mark	and the second	
	b) Identification of the material ¹ / ₂ mark		
	Drawing the modification of the field pattern 1 mark	100	-
		1.1	SQ
	a) From Ampere's circuital law, we have,	10.3	1. C.
	$\oint \vec{B} \cdot d\vec{l} = \mu_o \mu_r I_{enclosed} \tag{i}$	1/2	
	For the field inside the ring, we can write	100	
	$\oint \vec{B} \cdot d\vec{l} = \oint Bdl = B \cdot 2\pi r$		
	(r = radius of the ring)		
	Also, $I_{enclosed} = (2\pi rn)I$ using equation (i)	1/2	
	$\therefore B. 2\pi r = \mu_o \mu_r. (n. 2\pi r) I$	1/	
	$\therefore B = \mu_o \mu_r n I$	1/2	
	[Award these $\left(\frac{1}{2} + \frac{1}{2}\right)$ marks even if the result is written without giving		
	the derivation]		
	b) The material is paramagnetic.	1/2	
	The field pattern gets modified as shown in the figure below.		
	→ →	1	
			3
15	a) Diagram ¹ / ₂ mark		
	Polarisation by reflection 1 mark		
	b) Justification 1 mark		
	Writing yes/no ¹ / ₂ mark		
	a) The diagram showing polarization by reflection is as shown		
	a) The diagram, showing polarisation by reflection is as shown.[Here the reflected and refracted rays are at right angle to each		
	other.]		
Page 6 of 2		nal Draft	

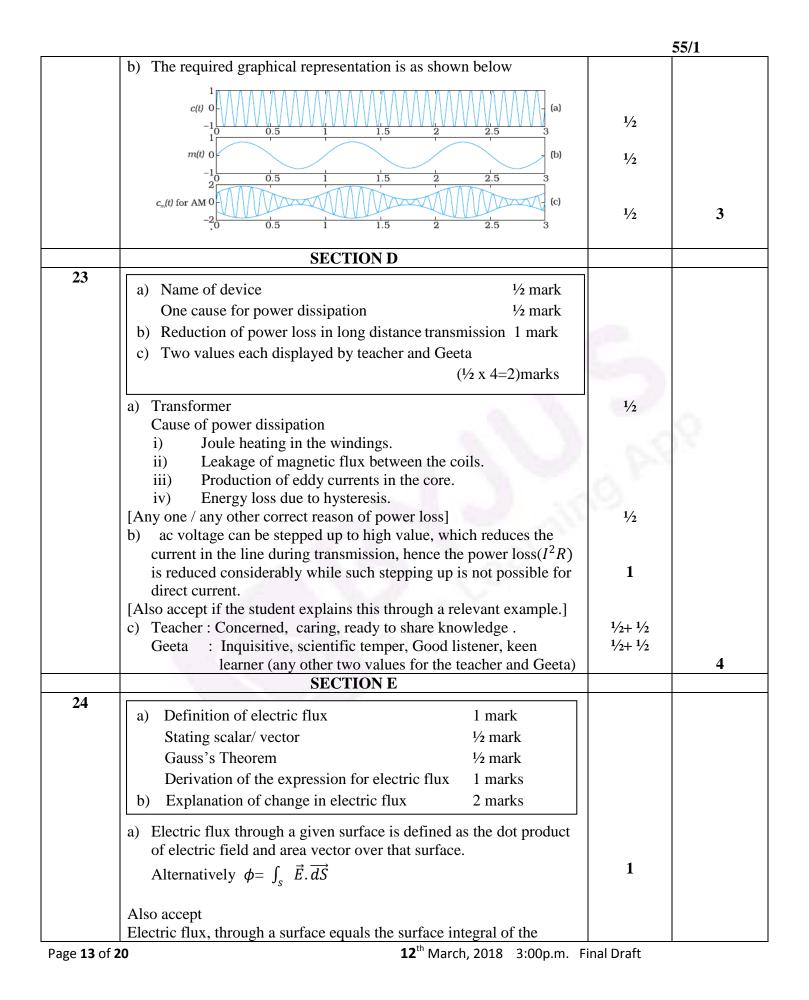

55/1 Incident Reflected $1/_{2}$ Refracted MEDIUM $\therefore r = \left(\frac{\pi}{2} - i_B\right)$ $1/_{2}$ $\therefore \ \mu = \left(\frac{\sin i_B}{\sin r} = \tan i_B\right)$ Thus light gets totally polarised by reflection when it is incident at an angle i_B (Brewster's angle), where $i_B = \tan^{-1}\mu$ $1/_{2}$ b) The angle of incidence, of the ray, on striking the face AC is $i = 60^{\circ}$ (as from figure) Also, relative refractive index of glass, with respect to the surrounding water, is $\mu_r = \frac{3/2}{4/3} = \frac{9}{8}$ Also $\sin i = \sin 60^0 = \frac{\sqrt{3}}{2} = \frac{1.732}{2}$ =0.866 1⁄2 For total internal reflection, the required critical angle, in this case, is given by $\sin i_c = \frac{1}{\mu} = \frac{8}{9} \simeq 0.89$ $1/_{2}$ $\therefore i < i_c$ Hence the ray would not suffer total internal reflection on striking the face AC $1/_{2}$ [The student may just write the two conditions needed for total internal reflection without analysis of the given case. The student may be awarded $(\frac{1}{2} + \frac{1}{2})$ mark in such a case.] 3 16 a) Finding the (modified) ratio of the maximum 2 marks and minimum intensities b) Fringes obtained with white light 1mark a) After the introduction of the glass sheet (say, on the second slit), we have $\frac{I_2}{I_1} = 50 \% = \frac{1}{2}$. Ratio of the amplitudes $=\frac{a_2}{a_1}=\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}}$ $1/_{2}$

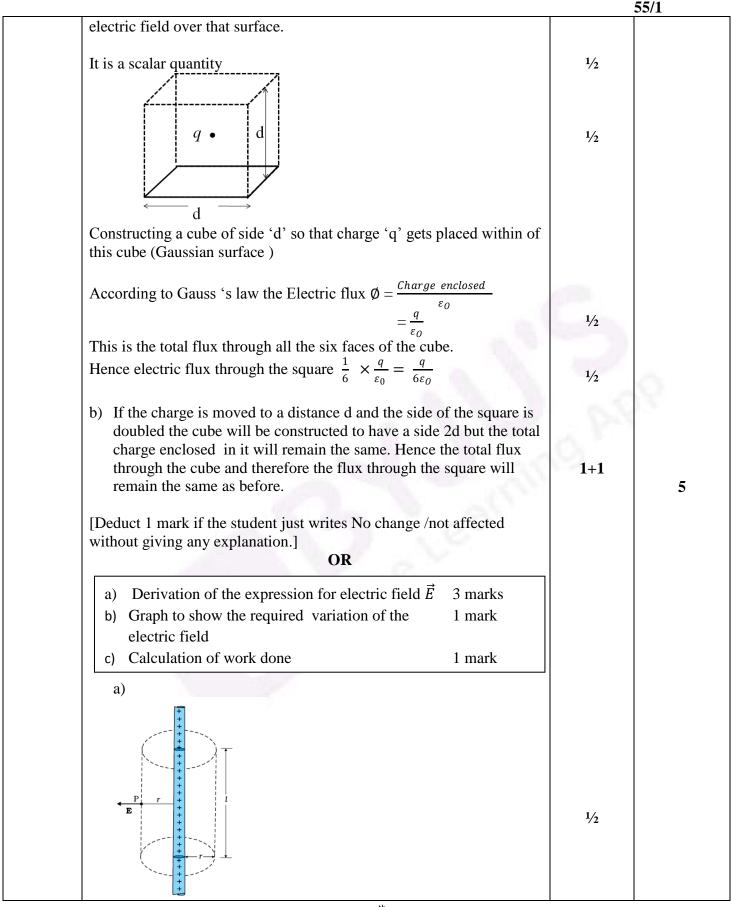

	2		55/1
	Hence $\frac{I_{max}}{I_{min}} = \left(\frac{a_1 + a_2}{a_1 - a_2}\right)^2$	1⁄2	
	$= \left(\frac{1+\frac{1}{\sqrt{2}}}{1-\frac{1}{\sqrt{2}}}\right)^2$ $= \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)^2$	1/2	
	$= \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)^2$		
	(≃ 34)	1/2	
	 b) The central fringe remains white. No clear fringe pattern is seen after a few (coloured) fringes on either side of the central fringe. [Note : For part (a) of this question, 	1	
	The student may	100	
	(i) Just draw the diagram for the Young's double slit experiment. Or (ii) Just state that the introduction of the glass sheet would	-	
	introduce an additional phase difference and the position of the central fringe would shift.	and a second	
	For all such answers, the student may be awarded the full (2) marks for this part of this question.]		Q 3
17	Lens maker's formula ¹ / ₂ mark	120	
	Formula for 'combination of lenses' $\frac{1}{2}$ markObtaining the expression for μ 2 marks	9	
	$\frac{1}{2} \text{ marks}$		
	Let μ_l denote the refractive index of the liquid. When the image of the needle coincides with the lens itself; its distance from the lens, equals the relevant focal length. With liquid layer present, the given set up, is equivalent to a combination of the given (convex) lens and a concavo plane / plano concave 'liquid lens'.	1⁄2	
	We have $\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$	1/2	
	and $\frac{1}{f} = \left(\frac{1}{f_1} + \frac{1}{f_2}\right)^{(K_1 - K_2)}$	1/2	
	as per the given data, we then have	1/2	
	$\frac{\frac{1}{f_2} = \frac{1}{y} = (1.5 - 1) \left(\frac{1}{R} - \frac{1}{(-R)}\right)$ $= \frac{1}{R}$	72	
	$\therefore \frac{1}{x} = (\mu_l - 1) \left(-\frac{1}{R} \right) + \frac{1}{y} = \frac{-\mu_l}{y} + \frac{2}{y}$	1⁄2	
	$\therefore \frac{\mu_l}{y} = \frac{2}{y} - \frac{1}{x} = \left(\frac{2x - y}{xy}\right)$ or $\mu_l = \left(\frac{2x - y}{xy}\right)$	1/	2
		1/2	3

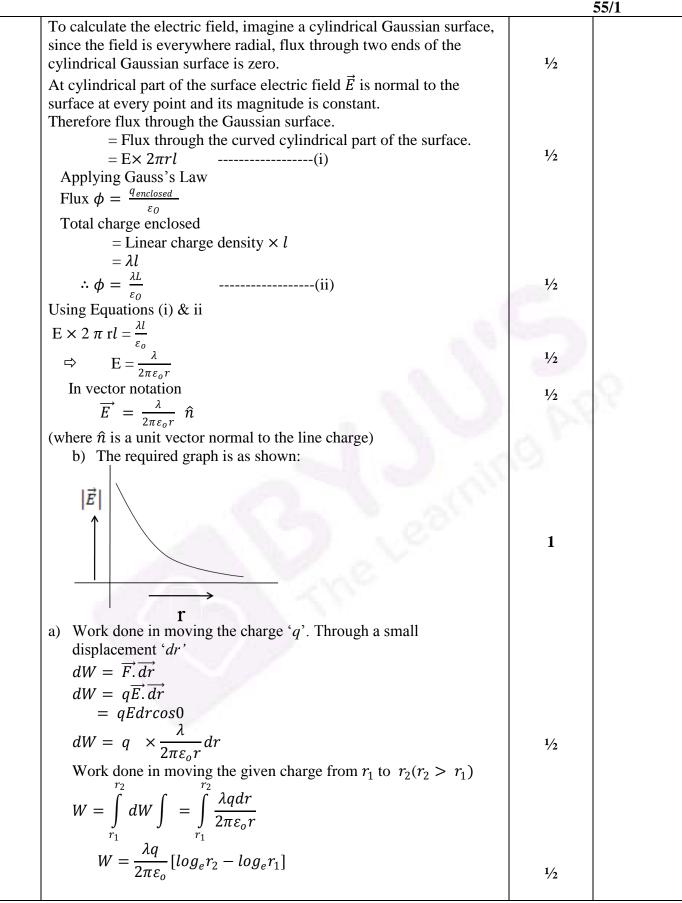
12th March, 2018 3:00p.m. Final Draft

10			33/1
18	a) Statement of Bohr's postulate 1 mark		
	Explanation in terms of de Broglie hypothesis ¹ / ₂ mark		
	b) Finding the energy in the $n = 4$ level 1 mark		
	Estimating the frequency of the photon ¹ / ₂ mark		
	a) Bohr's postulate, for stable orbits, states "The electron, in an atom, revolves around the nucleus only in those orbits for which its angular momentum is an integral multiple of $\frac{h}{2\pi}$ ($h =$ Planck's constant)," [Also accept $mvr = n \cdot \frac{h}{2\pi}$ ($n = 1,2,3,$) As per de Broglie's hypothesis $\lambda = \frac{h}{p} = \frac{h}{mv}$ For a stable orbit, we must have circumference of the orbit= $n\lambda$ ($n = 1,2,3,$)	1/2	
	$\therefore 2\pi r = n.mv$	1.1.1	
	or $mvr = \frac{nh}{2\pi}$	1/2	0
	Thus de –Broglie showed that formation of stationary pattern for intergral 'n' gives rise to stability of the atom.	1/2	1.5
	This is nothing but the Bohr's postulate b) Energy in the $n = 4$ level $= \frac{-E_o}{4^2} = -\frac{E_o}{16}$	1/2	
	∴ Energy required to take the electron from the ground state, to the $n = 4 \text{ level} = \left(-\frac{E_o}{16}\right) - \left(-E_o\right)$ $= \frac{-1+16}{16}$ $= \frac{15}{16}E_o$ $= \frac{15}{16} \times 13.6 \times 1.6 \times 10^{-19} \text{ J}$	1/2	
	Let the frequency of the photon be <i>v</i> , we have $hv = \frac{15}{16} \times 13.6 \times 1.6 \times 10^{-19}$ $\therefore v = \frac{15 \times 13.6 \times 1.6 \times 10^{-19}}{16 \times 6.63 \times 10^{-34}}$ Hz $\approx 3.1 \times 10^{15}$ Hz	72	
10	(Also accept 3×10^{15} Hz)	1/2	3
19	 a) Drawing the plot 1 mark Explaining the process of Nuclear fission and Nuclear fusion 1/2 + 1/2 marks b) Finding the required time 1 mark 		
	a) The plot of (B.E / nucleon) verses mass number is as shown.		
Page 9 of 20	12 th March 2018 3:00n m Ein		1

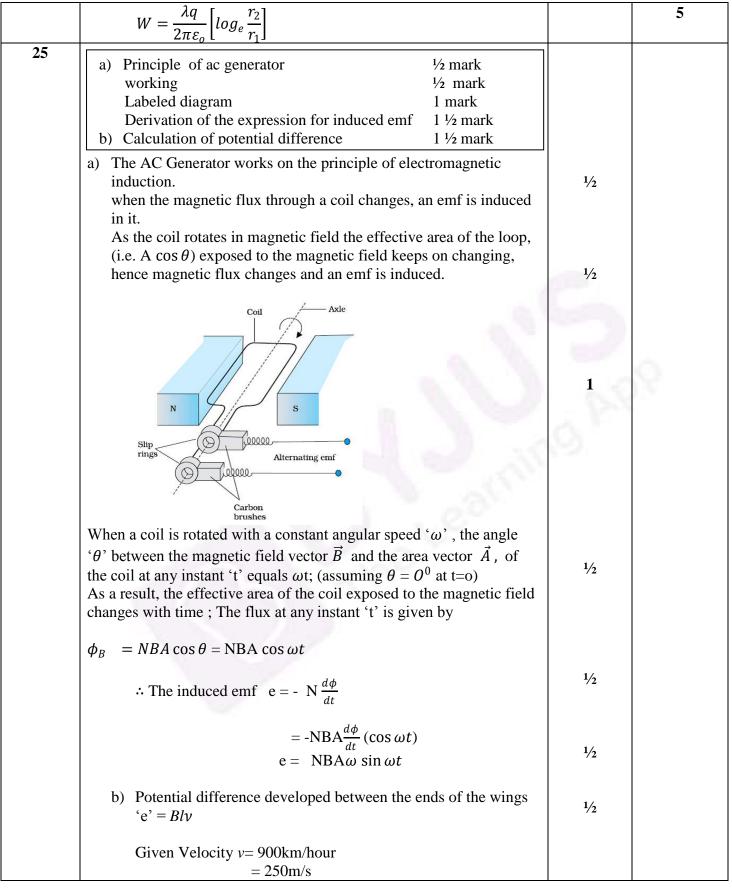


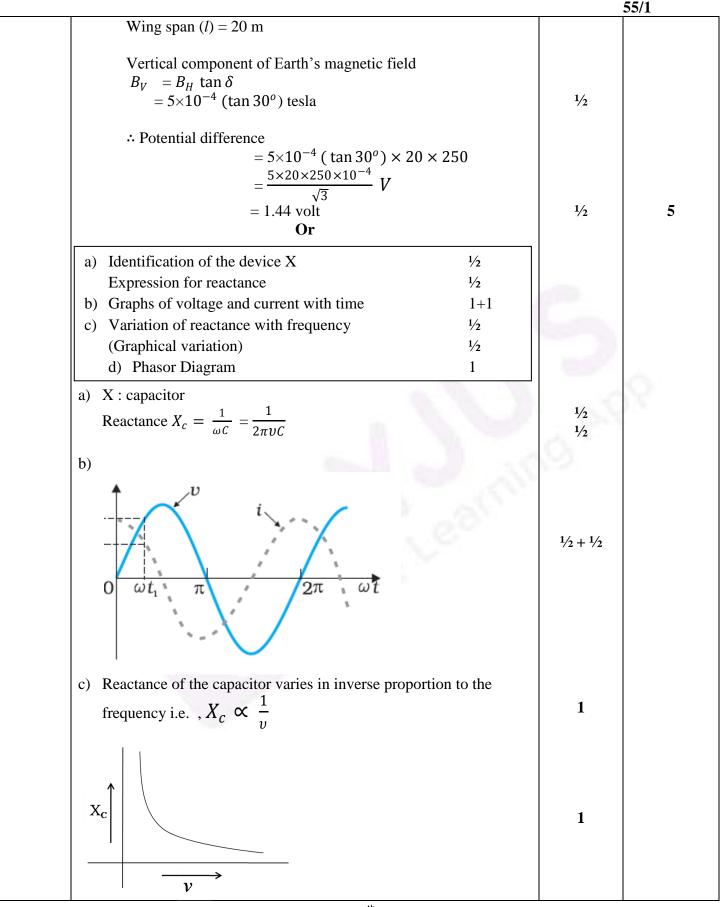




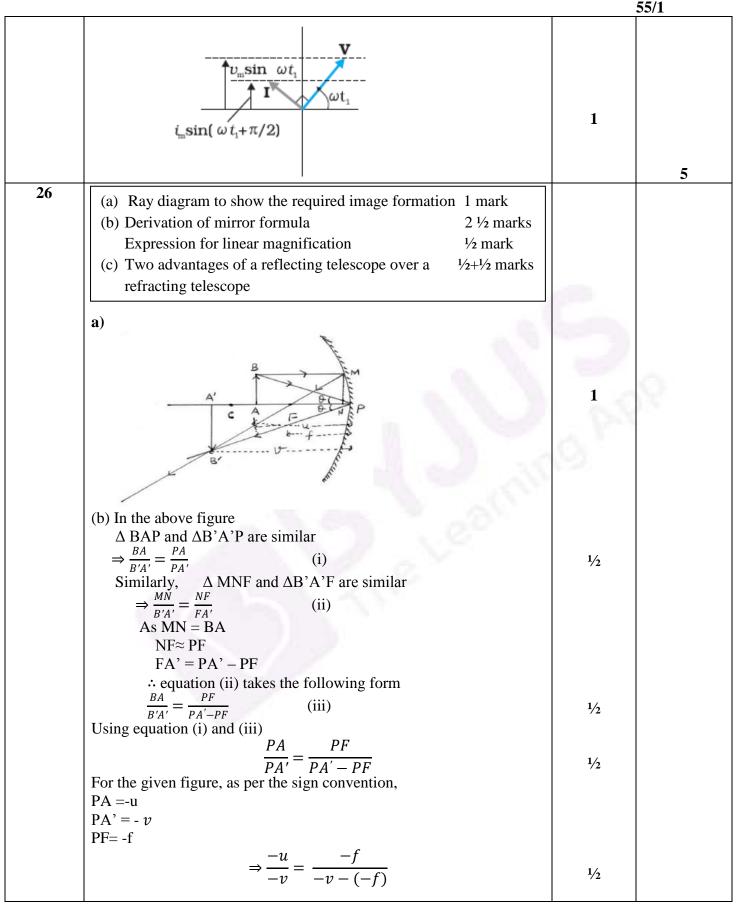

Page **11** of **20**

^{12&}lt;sup>th</sup> March, 2018 3:00p.m. Final Draft




Page 15 of 20

12th March, 2018 3:00p.m. Final Draft


55/1

12th March, 2018 3:00p.m. Final Draft

^{12&}lt;sup>th</sup> March, 2018 3:00p.m. Final Draft

	55/1
$\frac{u}{v} = \frac{f}{v - f}$	
v v - f uv -uf =vf	
Dividing each term by uvf, we get	
1 1 1	
$\frac{1}{f} - \frac{1}{v} = \frac{1}{u}$	
$\int V u$	
$\Rightarrow \frac{1}{f} = \frac{1}{v} + \frac{1}{u}$	1/2
f v u	
Linear magnification = - ν/u , (alternatively m = $\frac{h_i}{h_c}$)	1/2
c) Advantages of reflecting telescope over refracting telescope	/-
(i) Mechanical support is easier	
(ii) Magnifying power is large	
(iii) Resolving power is large	$\frac{1}{2} + \frac{1}{2}$
(iv) Spherical aberration is reduced	
(v) Free from chromatic aberration	the second second
(any two)	5
OR	
(a) Definition of wave front $\frac{1}{2}$ matrix	rk
Verification of laws of reflection 2 max	rks
(b) Explanation of the effect on the size and intensity of	
central maxima 1+ 1mar	ks
(c) Explanation of the bright spot in the shadow of the obstacle	
¹ /2 mark	c
/2 mar	
(a)The wave front may be defined as a surface of constant phase.	1/2
(Alternatively: The wave front is the locii of all points that are in	the
same phase)	
\ Incident	
Incident wavefront	
1 Waverront	
E Reflected	
B wavefront	1
M M N	
Lat gread of the ways in the medium have	
Let speed of the wave in the medium be ' v' Let the time taken by the wave from to advance from point P to	noint
Let the time taken by the wave front, to advance from point B to	point
Let the time taken by the wave front, to advance from point B to C is ' τ '	
Let the time taken by the wave front, to advance from point B to C is ' τ ' Hence BC = $v \tau$	point 1/2
Let the time taken by the wave front, to advance from point B to C is ' τ ' Hence BC = $v \tau$ Let CE represent the reflected wave front	
Let the time taken by the wave front, to advance from point B to C is ' τ ' Hence BC = $v \tau$ Let CE represent the reflected wave front Distance AE = $v \tau = BC$	
Let the time taken by the wave front, to advance from point B to C is ' τ ' Hence BC = $v \tau$ Let CE represent the reflected wave front	

	5	5/1
$\Rightarrow \angle i = \angle r$	1⁄2	
(b) Size of central maxima reduces to half,	1/2	
(:: Size of central maxima = $\frac{2\lambda D}{a}$)	1⁄2	
Intensity increases.	1/2	
This is because the amount of light, entering the slit, has increased and the area, over which it falls, decreases.	1/2	
(Also accept if the student just writes that the intensity becomes four fold)		
(c) This is because of diffraction of light. [<u>Alternatively:</u>	1/2	
Light gets diffracted by the tiny circular obstacle and reaches the centre of the shadow of the obstacle.]		
[Alternatively:		
There is a maxima, at the centre of the obstacle, in the diffraction pattern produced by it.]		5