Q. No.	Value Points/Expected Answers	Marks	Total Marks
		1	
1	For drawing against out is gurfaged for an electric dinels 1		
1	• For drawing equipotential surfaces for an electric dipole. 1		
	(Even if a student mentions or draws equatorial plane, award 1 mark.)	1	1
2		1	1
2	 For writing the expression for radius To find the change in the radius of the circular orbit 1/2 1/2 	76,	5
	$r = \frac{1}{B} \sqrt{\frac{2mV}{q}}$	1/2	
	$r' = \sqrt{2}r$	1/2	1
	Alternatively $r\alpha\sqrt{V}$	1/2	
	$\frac{r'}{r} = \sqrt{2}$		_
	Even if student writes $Bqv = \frac{mv^2}{r}$ award one mark	1/2	1
3			
	 For writing relationship between susceptibility and temperature 1/2 		
	• Calculating the temperature 1/2		
	$\chi_m \propto rac{1}{T}$	1/2	
	$T_2 = rac{{{{\mathcal{X}}_{m1}}}}{{{{\mathcal{X}}_{m2}}}} imes T_1$		
	$T_2 = \frac{1.2 \times 10^5}{1.44 \times 10^5} \times 300 = 250K$	1/2	1
	OR		
	• For identification of magnetic material 1		

Page 2 of 21 Marking Scheme

55/2/1

Q. No.	Value Points/Expected Answers	Marks	Total Marks
	It is diamagnetic material	1	1
4	For identification of semiconductor diode It is photodiada	1	1
	It is photodiode SECTION-B		
5	 To identify the part of the electromagnetic spectrum For writing its frequency range 1/2 1/2 		
	Microwaves Frequency range is 10^{10} to 10^{12} Hz	1/ ₂ 1/ ₂	1
	OR • Production of electromagnetic wave 1	XQ	
	Accelerated charge produces an oscillating electric field which produces an oscillating magnetic field, which is a source of oscillating electric field, and so on. Thus electromagnetic waves are produced.	1	1
6	 For writing expression for total current For showing that displacement current is the same as the current charging the capacitor 		
	$i = i_c + i_d$	1	
	Where i_c is conduction current and i_d is displacement current Outside the capacitor $i_d=0$ so $i=i_c$ Inside the capacitor $i_c=0$ so $i=i_d$	½ ½	2
7	 For writing expression for energy of photon For writing expression for kinetic energy of proton For proving the relationship between the two 		
	Energy of photon $E_p = \frac{hc}{\lambda}$	1/2	

Q. No.	Value Points/Expected Answers	Marks	Total Marks
		1	
	For proton $\lambda = \frac{h}{mv}$		
	mv	1/2	
	$m_{\rm V} = \frac{h}{\lambda}$		
	λ		
	Kinetic energy of proton $E_k = \frac{1}{2}mv^2$		
	This case should be proceed $\frac{D_k}{2}$	1/2	
	$E_k = \frac{1}{2} \frac{h^2}{m \lambda^2}$, 2	
	$E_p = \left(\frac{2m\lambda c}{h}\right) E_k$	1/2	2
	$E_p = \left(\frac{1}{h}\right) E_k$		
8	• For writing Einstein's photoelectric equation 1/2	1.1	
	• For writing $E_n = -\frac{13.6}{n^2}$	10	
	For finding the value of n	3.X	
		4.	
	From photoelectric equation $hv = \phi_0 + eV_s$	1/2	
	= 2 + 0.55 = 2.55 eV		
	C:		
	Given $E_n = -\frac{13.6}{n^2}$		
	The energy difference $\Delta E = -3.4 - (-2.55) eV = -0.85 eV$	1/2	2
	$\frac{-13.6}{n^2} = -0.85$	1/2	
	$\therefore n=4$	1/2	
	OR		
	Calculation of energy in excited state 1/2		
	• Formula ½		
	 Finding out the maximum number of lines 		
	Energy in ground state, $E_1 = -13.6eV$		
	Energy supplied=12.5eV		
	Energy in excited state, $-13.6+12.5=-1.1eV$	1/2	
	But, $E_n = \frac{-13.6}{n^2} = -1.1$		
	But, $E_n = \frac{1}{n^2} = -1.1$	1/2	
	n=3	1/2	
	Maximum number of lines=3	1/2	2

Q. No.	Value Points/Expected Answers	Marks	Total Marks
Q. No.	Value Points/Expected Answers • To draw the ray diagram of astronomical telescope • Expression for magnification Ray diagram Objective f_o Eyeptece f_e Or $m = \frac{\beta_o}{\alpha}$ • To draw the ray diagram of compound microscope • Expression for resolving power Ray diagram f_o f_e f_o f_e f_o f_e f_o	1½ 1½	2
	Objective A'	1½	2
	Resolving power= $\frac{2n\sin\beta}{1.22\lambda}$	1/2	

Page 5 of 21 Marking Scheme

55/2/1

Q. No.	Value Points/Expected Answers	Marks	Total Marks
10	• Relation $\frac{1}{2}$ • Modified relation in case of line of sight 1 • Range of frequency $\frac{1}{2}$ $d = \sqrt{2hR}$ In case of line of sight of communication $d = \sqrt{2h_RR} + \sqrt{2h_TR}$ Frequency range is above $40Mh_Z$	1/2 1 1/2	2
11	 Conditions Distinction between primary and secondary rainbow Conditions	1/2 1/2 1/2	2
13	• Explaining the cause of bluish color of sky 1 • Appearance of sun red at the time of sun rise and sun set 1 (a) Scattering is inversely proportional to the fourth power of wavelength. Or Shorter wavelength scatters more hence sky appear blue. (b) Red color is least scattered. So by the time light reaches the surface of earth all the colors except red get scattered away. • Calculation of impedance 2 • Calculation of inductance 1 $Z = \sqrt{R^2 + X_c^2}$ $R = \frac{V_R}{I_R} = 30\Omega$	1 1 1/2 1/2	2

Q. No.	Value Points/Expected Answers	Marks	Total Marks
	V 120		
	$X_c = \frac{V_c}{I_c} = \frac{120}{30} = 40\Omega$	1/2	
	$Z = \sqrt{(30)^2 + (40)^2} = 50\Omega$	1/	
	• • • • • • • • • • • • • • • • • • • •	1/2	
	$X_c = X_L$ As power factor =1		
	$100\pi L = 40$	1/2	
	$L = \frac{2}{5\pi} henry$	72	
	5π	1/2	3
	OR	1	
	Determining the garrier fungues for		
	 Determining the source frequency Calculating impedance 1/2 		
	• For showing potential drop across LC 1 ½		
	1 1 1	SV	
	(a) $\omega = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{5 \times 80 \times 10^{-6}}} = \frac{1}{\sqrt{400 \times 10^{-6}}}$		
		1	
	$\omega = \frac{1000}{20} = 50Hz$		
	(b) $Z = R = 40\Omega$	1/2	
	$I_m^{\text{max}} = \frac{230\sqrt{2}}{R} = \frac{230\sqrt{2}}{40} = 8.1A$	1/2	
	_	72	
	$V_c = I_m^{\text{max}} X_c = \frac{230\sqrt{2}}{40} \times \frac{1}{\omega C} = 2033 \text{ volt}$		
	$V_L = I_m^{\text{max}} X_L = \frac{230\sqrt{2}}{40} \times 2\pi v L = 2033 \text{ volt}$	1/2	
	$V_L - I_m X_L = 40 \qquad 40$,2	
	(c) $V_c - V_L = 0$	1/2	3
		72	3
14	Provide a data da constitución de la decidad decidad de la decidad		
14	• Reason to explain why n-p region of zener diode is heavily doped 1 ½		
	• Calculation of current through zener diode 1 ½		
	n and p regions of zener diode are heavily doped so that depletion region		
	formed is very thin and electric field at the junction is extremely high even		
	for a small reverse bias voltage.	1 ½	
	Current in the circuit is: V 5 1		
	$I = \frac{V}{R} = \frac{5}{250} = \frac{1}{50} = .02A$	1/2	
	Current through resistor of $1k\Omega$ is:		
L		1	

$I = \frac{15}{1000} = 0.015A$ As zener diode and $Ik\Omega$ resistor are in parallel, current through the zener diode is: $I = 0.02 - 0.015 = .005A$ 15 Diagram of cyclotron Explaining the working principle Showing frequency is independent of radius and speed Diagram: $Magnetic field out of the pages of the$	Q. No.	Value Points/Expected Answers	Marks	Total Marks
diode is: $I = 0.02 - 0.015 = .005A$ 15 • Diagram of cyclotron • Explaining the working principle • Showing frequency is independent of radius and speed Diagram: Working principle: The cyclotron uses crossed electric and magnetic fields which increases the kinetic energy of a charged particle without changing its frequency of revolution. $F_i = F_m$ $\frac{mv^2}{r} = qvB$ $\omega = \frac{qB}{m}$ $v = \frac{qB}{2\pi m}$ OR • Diagram of straight solenoid • Difference between toroid and solenoid (any one) 1 1 V2 3 1 V2 3 V2 4 4 4 4 4 4 4 4 4 4 4 4 4		$I = \frac{15}{1000} = 0.015A$	1/2	
• Explaining the working principle • Showing frequency is independent of radius and speed Diagram: Diagram: Deduction plate Destruction plate		diode is:	1/2	3
Working principle: The cyclotron uses crossed electric and magnetic fields which increases the kinetic energy of a charged particle without changing its frequency of revolution. $F_c = F_m \\ \frac{mv^2}{r} = qvB \\ \omega = \frac{qB}{m} \\ v = \frac{qB}{2\pi m}$ OR OR OR OR OR Diagram of straight solenoid Defection plate Port Difference between toroid and solenoid (any one) 1 Value of the paper of the cyclotron uses crossed electric and magnetic fields which increases the kinetic energy of a charged particle without changing its frequency of revolution. 1 Value of the paper of the paper of the cyclotron uses crossed electric and magnetic fields which increases the kinetic energy of a charged particle without changing its frequency of revolution. 1 Value of the paper of the cyclotron uses crossed electric and magnetic fields which increases the kinetic energy of a charged particle without changing its frequency of revolution. 1 Value of the paper of the cyclotron uses crossed electric and magnetic fields which increases the kinetic energy of a charged particle without changing its frequency of revolution. 1 Value of the paper of the cyclotron uses crossed electric and magnetic fields which increases the kinetic energy of a charged particle without changing its frequency of revolution. 7 OR OR	15	Explaining the working principle		
which increases the kinetic energy of a charged particle without changing its frequency of revolution. $F_c = F_m$ $\frac{mv^2}{r} = qvB$ $\omega = \frac{qB}{m}$ $v = \frac{qB}{2\pi m}$ OR OR OR OR Diagram of straight solenoid Derivation of magnetic field Difference between toroid and solenoid (any one) Difference between toroid and solenoid (any one)		Magnetic field out of the paper Exit Port Charged particle D ₁	1	9
$\frac{m v^2}{r} = q v B$ $\omega = \frac{qB}{m}$ $v = \frac{qB}{2\pi m}$ OR OR OR OR Diagram of straight solenoid Derivation of magnetic field Derivation of magnetic field Difference between toroid and solenoid (any one) Difference between toroid and solenoid (any one)		which increases the kinetic energy of a charged particle without changing its frequency of revolution.	1	
 OR Diagram of straight solenoid ½ Derivation of magnetic field 1+1/2 Difference between toroid and solenoid (any one) 1 		$\frac{mv^2}{r} = qvB$ $\omega = \frac{qB}{m}$	1/2	
 Derivation of magnetic field Difference between toroid and solenoid (any one) 			1/2	3
		Derivation of magnetic field 1+1/2		

Q. No.	Value Points/Expected Answers	Marks	Total Marks
Q. No.	Derivation: Let n be the number of turns per unit length. The total number of turns is nh . The enclosed current is $I_e = I(nh)$ From Ampere's circuital law $BL = \mu_0 I_e$ $Bh = \mu_0 I(nh)$ $B = \mu_o nI$ Difference between toroid and solenoid (any one) (a) Solenoid behaves like a bar magnet whereas toroid does not. Or If student writes solenoid is straight and the toroid is circular give half mark. Or there is fringe effect in case of straight solenoid but not	1/2 1 1	Total Marks
16	Proving magnetic moment as $\frac{e \text{vr}}{2}$ 2 Deducing expression of the magnetic moment of hydrogen atom 1 The magnetic moment is $m = IA$ But current is $I = \frac{e}{T} = \frac{e \text{v}}{2\pi r}$ Where $T = \frac{2\pi r}{v}$ and the area, $A = \pi r^2$ $m = \frac{e \text{v}}{2\pi r} \pi r^2 = \frac{e \text{vr}}{2}$ But from Bohr's second postulate $m_e \text{vr} = \frac{nh}{2\pi} = \frac{h}{2\pi}$ for $n=1$ $vr = \frac{nh}{2\pi m_e}$ Hence the magnetic moment is	1/2 1/2 1/2 1/2	3

Q. No.	Value Points/Expected Answers	Marks	Total Marks
	$m = \frac{e}{2} \frac{h}{2\pi m_e} = \frac{eh}{4\pi m_e} \text{(Here n=1)}$	1/2	
17	Diagram Deducing electric field expression (i) To the left of first sheet (ii) To the right of second sheet (iii) Between the two sheets 1/2+1/2+1/2 Diagram		
	\vec{E}_1 \vec{E}_2 \vec{E}_2 \vec{E}_2 \vec{E}_3 \vec{E}_4 \vec{E}_4 \vec{E}_5 \vec{E}_7 \vec{E}_8 \vec{E}_8 \vec{E}_8 \vec{E}_8 \vec{E}_8 \vec{E}_9 \vec{E}_9 \vec{E}_9	1½	9
	Electric field in the region left of first sheet $E_I = E_1 + E_2$ $E_I = \frac{\sigma}{\varepsilon} - \frac{\sigma}{2\varepsilon}$		3
	$E_{I} = +\frac{\sigma}{2\varepsilon_{0}}$ It is towards right Electric field in the region to the right of second sheet $E_{II} = \frac{\sigma}{2\varepsilon_{0}} - \frac{\sigma}{\varepsilon_{0}}$	1/2	
	$E_{II} = -\frac{\sigma}{2\varepsilon_0}$ It is towards left Electric field between the two sheets	1/2	

	Marking Scheme 55/2/1			
Q. No.	Value Points/Expected Answers	Marks	Total Marks	
	$E_{III} = E_1 + E_2$ $E_{III} = \frac{\sigma}{\varepsilon_0} + \frac{\sigma}{2\varepsilon_0}$ $E_{III} = \frac{3\sigma}{2\varepsilon_0}$ Electric field is towards the right	1/2		
	Diagram ½ Finding the surface charge density in the inner and outer surface of the shell 1+1/2 Electric field in the cavity 1	3		
	(a) Diagram +q r Q+q r	1/2	2	
	The surface charge density on inner surface of the shell is $\sigma_1 = -\frac{q}{4\pi r_i^2}$	1		
	The surface charge density on outer shell is $\sigma_2 = \frac{Q+q}{4\pi r_2^2}$	1/2		
	(b) Consider a Gaussian surface inside the shell, net flux is zero since $q_{net}=0$. According to Gauss's law it is independent of shape and size of shell.	1	3	
18	• Derive expression for amplitude modulated wave. 2 • Deducing expression for lower and upper side bands. ½ • Obtaining expression for modulation index. ½ Let a carrier wave be given by $c(t) = A_c \sin \omega_c t$ where $\omega_c = 2\pi f_c$ And signal wave be $m(t) = A_m \sin \omega_m t$ where $\omega_m = 2\pi f_m$ The modulated signal is $c_m(t) = (A_c + A_m \sin \omega_m t \) \sin \omega_c t$	1/2		

Q. No.	55/2/1 Value Points/Expected Answers	Marks	Total Marks
Q. NO.	Value Politis/ Expected Allswers	IVIALKS	TOTAL IVIALES
	$c_{m}(t) = A_{c}(1 + \frac{A_{m}}{A_{c}}\sin\omega_{m}t)\sin\omega_{c}t$ $c_{m}(t) = A_{c}\sin\omega_{c}t + \mu \frac{A_{c}}{2}\cos(\omega_{c} - \omega_{m})t - \mu \frac{A_{c}}{2}\cos(\omega_{c} + \omega_{m})t$	1/2	
	The modulation index $\mu = \frac{A_m}{A_c}$ Lower frequency band $\omega_c - \omega_m$ Upper frequency band $\omega_c + \omega_m$	1/2 1/2 1/2	3
19	 Draw a plot of α-particle scattering to show variation of scattering particle. Describe briefly how large scattering explains existence of nucleus.	1 1/2 1/2	

Q. No.	Value Points/Expected Answers	Marks	Total Marks
	From the picture it is clear that for small impact parameter suffers large scattering thus it shows the upper limit to the size of nucleus.	1/2	3
20	(i) Change in capacitance 1 (ii) Change in electric field 1 (iii) Change in electric density 1 Dielectric slab of thickness 5mm is equivalent to an air capacitor of thickness $= \frac{5}{10}$ mm. Effective separation between the plates with air in between is $= (5+0.50)$ mm $= 5.5$ mm (i) Effective new capacitance	1/2	9
	(ii) Effective new capacitance $= 200 \mu F \times \frac{5mm}{5.5mm} = \frac{2000}{11} \mu F$ $\approx 182 \mu F$ (ii) Effective new electric field $= \frac{100 V}{5.5 \times 10^{-3} m} = \frac{20000}{11}$ $\approx 18182 V / m$ (iii) $\frac{New \ energy \ stored}{Original \ energy \ stored} = \frac{\frac{1}{2}CV^2}{\frac{1}{2}CV^2} = \frac{C}{C} = \frac{10}{11}$	1 1/2	
	New Energy density will be $\left(\frac{10}{11}\right)^2$ of the original energy density $=\frac{100}{121}$ of the original energy density. Note: If the student writes $C = \frac{A\varepsilon_0}{d}$ $C_m = \frac{KA\varepsilon_0}{d}$		

Q. No.	Value Points/Expected Answers	Marks	Total Marks
	$E' = \frac{V}{d}$ $U = \frac{1}{2} \varepsilon_0 E^2$ Award full marks		
21	• Reason for difficulty in detecting presence of anti-neutrino during $\beta-decay$ $\frac{1}{2}$ • Define decay constant of radioactive nucleus $\frac{1}{2}$ • Derive expression for mean life in terms of decay constant $\frac{1}{2}$		
	 Penetrating power is high Do not interact with matter (weak interaction) any one Decay constant is the reciprocal of the time duration in which undecayed radioactive nuclei reduce to 1/e times the nuclei present initially. \(\tau \) = \frac{\text{total life time of all nuclei}}{\text{total number of nuclei}} \) 	¹ / ₂ 1 ¹ / ₂	2
	$\tau = \frac{\int_{0}^{t} t dt}{N_{0}}$ $\tau = \frac{\int_{0}^{\infty} t (N_{0} \lambda \varepsilon^{-\lambda t} dt)}{N_{0}} = \lambda \int_{0}^{\infty} t e^{-\lambda \tau} dt$ 1	1/2	
	$ \begin{array}{c} $	1/2	3
	(1) Short rang force(2) Strongest force(3) Attractive in nature(4) Does not depend on charge (any two)	1	

Q. No.	Value Points/Expected Answers	Marks	Total Marks
	(b) Figure Note that the second of the seco	1 1/2	
	$r < r_0$ repulsive force $r > r_0$ attractive force	1/2	3
22	Tracing path of ray passing through prism Calculating angle of emergence and angle of deviation 1½+1/2 Ray diagram: A=60°	1	
	• $A=60^{\circ}$ • $\frac{2}{\sqrt{3}}\sin 60^{\circ} = \sin r$ • $\sin r = \frac{2\sqrt{3}}{2\sqrt{3}} = 1$ • $r=90^{\circ}$ Angle of deviation is equal to 30°	1½	3
23	 Proving the phase difference Calculation of Amplification factor Calculation of load resistance 		

O N-	55/2/1	D. A. a. alaa	Tatal Maulia
Q. No.	Value Points/Expected Answers	iviarks	l otal Marks
Q. No.	Input signal, $V_i = \Delta I_B r_i$ Output signal, $V_o = -\Delta I_c R_L$ Voltage amplification, $A_V = \frac{V_o}{V_i}$ • $A_V = -\frac{\Delta I_B}{\Delta I_C} \times \frac{r_i}{R_L}$ • $A_V = -\beta \times \text{resistance gain}$ Here negative sign indicates that output is 180° out of phase w.r.t. input signal. • $\beta = \frac{\Delta I_C}{\Delta I_B} = \frac{4 \times 10^{-3}}{30 \times 10^{-6}} = \frac{400}{3}$ $r_i = \frac{\Delta V_{BE}}{\Delta I_B} = \frac{0.02}{30 \times 10^{-6}} = \frac{2 \times 10^{-2}}{3 \times 10^{-5}}$ • $r_i = \frac{2}{3} \times 10^3 \Omega$ $A_V = \beta \frac{R_L}{r_i}$	1/ ₂ 1/ ₂	Total Marks
24	$R_L = \frac{A_V \times r_i}{\beta} = \frac{400 \times 2 \times 10^3 \times 3}{400 \times 3} = 2 \times 10^3 \Omega$ • Showing the plot of variation of resistivity • Expression for resistivity 1 • Explaining variation of resistivity for conductor and semiconductor $\frac{1}{2} + \frac{1}{2}$ $\frac{1}{$	1/2	

Q. No.	Value Points/Expected Answers	Marks	Total Marks
	 ρ = m/(ne²τ) In case of conductors with increase in temperature, relaxation time decreases, so resistivity increases. In case of semiconductors with increase in temperature number density (n) of free electrons increases, hence resistivity increases. 	1 1/2 1/2	3
25	• Deriving expression for e.m.f. 3 • Finding induced e.m.f. between the axel and rim of wheel 2 Flux linked with the coil at any instant of time is: $\phi = \text{NBA}\cos \omega t$ $\frac{d\phi}{dt} = \text{NBA}\omega(-\sin \omega t) \text{ S}$ $\varepsilon = -\frac{d\phi}{dt}$ $\varepsilon = \text{NBA}\omega \sin \omega t$ $\varepsilon = \varepsilon_0 \sin \omega t (\text{Here } \varepsilon_0 = \text{NBA}\omega)$ (b) $l = 0.5m$, $v = 120rpm = 2rps$ $\omega = 2\pi v = 4\pi \text{ rad / s}, B = 4 \times 10^{-4}T, \delta = 30^{0}$ $B_H = 4 \times 10^{-4} \times \frac{\sqrt{3}}{2}$ $B_H = 2\sqrt{3} \times 10^{-4}T$ $\varepsilon = \frac{1}{2}B\omega l^2$ $\varepsilon = \frac{1}{2} \times 2\sqrt{3} \times 10^{-4} \times 4\pi \times (0.5)^2$	1/ ₂ 1 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ 1	
	$\varepsilon = 5.4 \times 10^{-4} volt$ OR • Deriving expression for magnetic energy stored in inductor and expression for energy density • Calculating the resultant magnetic force and torque $2\frac{1}{2} + \frac{1}{2}$ (a) When external source supplies current to the inductor, e.m.f. is induced in it due to self induction. So the external supply has to do work to establish current. The amount of work done is: $dw = \varepsilon Idt \qquad \because \varepsilon = L \frac{dI}{dt}$ $dw = LIdt$	1 1/2	5

	Marks	Total Marks
$W = \frac{1}{2}LI^{2}$ Energy density = $\frac{Energy}{Volume}$ $u = (1/2LI^{2})/volume$ (b)	1 1/2	
$I_1 = IA$ $\downarrow 10 \text{ cm}$ $\downarrow r_1$ $\downarrow r_2 = 0.2A$	2	3
Force of attraction experienced by the length SP of the loop per unit length $F_{\rm l}=\frac{2\mu_0I_{\rm l}I_2}{4\pi r_{\rm l}}$	1/2	4
$f_1 = \frac{2 \times 10^{-7} \times 1 \times 0.2}{10 \times 10^{-2}} = 4 \times 10^{-7} Nm^{-1}$ Force is attractive	1/2	
$f_2 = \frac{2\mu_0 I_1 I_2}{4\pi r_2}$ $f_2 = \frac{2 \times 10^{-7} \times 1 \times 0.2}{15 \times 10^{-2}} = 2.6 \times 10^{-7} Nm^{-1}$	1/2	
Force is repulsive So the net force experienced by the loop is (per unit length) $f = (f_1 - f_2)$ Total force experienced by the loop is: $F = (f_1 - f_2)l = (1.4 \times 10^{-7}) \times 5 \times 10^{-2}$	1/2	
$F = 7 \times 10^{-7} N$ Net force is attractive in nature As the lines of action of forces coincide torque is zero.	1/2	5

	55/2/1		
Q. No.	Value Points/Expected Answers	Marks	Total Marks
26	 Diagram production of polarized light by scattering of sun light 1 Explanation 1 Calculation of intensity of light transmitted through P₁, P₂ and P₃ ½ +1+1½ 		
	Diagram:		
	Incident Sunlight (Unpolarised)	1	
	``` } 		
	Scattered Light (Polarised)		ò
	To Observer	XX	
	Explanation: Charges accelerating parallel to the double arrows do not radiate energy towards the observer. The radiation scattered by the molecules therefore is polarised perpendicular to the plane of the figure. ALTERNATIVELY: If the student writes "scattered light when viewed in a perpendicular direction is found to be polarised " (award one mark)		
	Intensity of light transmitted by 1 st Polaroid is, $I_1 = \frac{I}{2}$	1	
	Intensity of light transmitted by 2 nd Polaroid is,		
	$I_2 = I_1 \cos^2 45^\circ = \frac{I}{2} \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{I}{4}$	1/2	
	Intensity of light transmitted by 3 rd Polaroid is, $I_3 = I_2 \cos^2 45^0 = \frac{I}{2} \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{I}{8}$	1	5
	OR	1½	3
	 Reason		
	$y_1 = a\cos(\omega t + \phi)$ $y_2 = a\cos(\omega t + \phi)$	1/2	

Q. No.	Value Points/Expected Answers	Marks	Total Marks
Q. No.	So resultant displacement is give by $y = y_1 + y_2 \\ y = a\cos\omega t + a\cos(\omega t + \phi) \\ y = 2a\cos(\phi/2)\cos(\omega t + \phi/2)$ The amplitude of the resultant displacement is $2a\cos(\phi/2)$ and therefore intensity at that point will be $I = 4I_0\cos^2(\phi/2)$ For constructive interference: $\phi = 0, \pm 2\pi, \pm 4\pi, \ldots$. For destructive interference: $\phi = \pm \pi, \pm 3\pi, \pm 5\pi, \ldots$. (c) Position of second maxima $y_2 = \frac{5}{2}\frac{\lambda D}{a}$ Separation between the positions of the second maxima with λ_1 and λ_2 is: $\Delta y = \frac{5D(\lambda_2 - \lambda_1)}{2a} = \frac{5\times 1.5\times (596 - 590)\times 10^{-9}}{2\times 2\times 10^{-6}} = 11.25\times 10^{-3}m$ • Circuit diagram and describing the method to measure internal resistance of cell by potentiometer $1+1$ • Reason 1 • Calculating balancing length and reason (circuit works or not)	1 1/2 1/2 1 1 1	Total Marks
	(a) Circuit diagram: $ K_2 $ $ K_3 $ $ K_4 $ $ K_2 $ $ K_2 $ $ K_2 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_2 $ $ K_2 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_2 $ $ K_2 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_2 $ $ K_2 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_2 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_4 $ $ K_1 $ $ K_2 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_1 $ $ K_2 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_1 $ $ K_2 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_1 $ $ K_2 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_4 $ $ K_1 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_4 $ $ K_4 $ $ K_5 $ $ K_5 $ $ K_5 $ $ K_7 $ $ K_7 $ $ K_8 $ $ K_8 $ $ K_1 $ $ K_1 $ $ K_2 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_4 $ $ K_5 $ $ K_5 $ $ K_7 $ $ K_7 $ $ K_8 $ $ K_7 $ $ K_8 $ $ K_8 $ $ K_1 $ $ K_1 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_4 $ $ K_5 $ $ K_6 $ $ K_7 $ $ K_8 $ $ K_8 $ $ K_9 $ $ K_1 $ $ K_1 $ $ K_2 $ $ K_1 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_4 $ $ K_2 $ $ K_3 $ $ K_4 $ $ K_5 $ $ K_7 $ $ K_8 $ $ K_8 $ $ K_8 $ $ K_9 $	1 1/2	

Q. No.	Value Points/Expected Answers	Marks	Total Marks
	$V = kl_2 \qquad (2)$ As $r = \left(\frac{E}{V} - 1\right)R$ $r = \left(\frac{l_1}{l_2} - 1\right)R$	1/2	
	(b) The potentiometer is preferred over the voltmeter for measurement of e.m.f. of a cell because potentiometer draws no current from the voltage source being measured. (c) $V = 5V$, $R_{AB} = 50\Omega$, $R = 450\Omega$	½ S	
	$I = \frac{5}{450 + 50} = \frac{1}{100} = 0.01A$ $V_{AB} = 0.01 \times 50 = 0.5V$	1/2	
	$k = \frac{0.5}{10} = 0.05Vm^{-1}$ $l = \frac{V}{k} = \frac{300 \times 10^{-3}}{0.05} = 6m$	1/2	2
	$l = \frac{1}{k} = \frac{1}{0.05} = 0M$ With 2V driver cell current in the circuit is $I = \frac{2}{450 + 50} = 0.004A$.	1/2	
	P.d. across AB is $=0.004\times50=200$ mV. Hence the circuit will not work.	1/2	
	OR		
	 State the working principle of meter bridge 1 Reasons 1/2 +1/2 Calculation of potential difference using Kirchhoff's rules 3 (a) Meter bridge is based on the principle of balanced Wheatstone bridge. 		
	 (b) (i) Thick copper strips are used to minimize resistance of connections which are not accounted for in the bridge formula (ii) Balance point is preferred near midpoint of bridge wire to minimize percentage error in resistance (R). 	1 1/2 1/2	
	(c)		

Q. No.	Value Points/Expected Answers	Marks	Total Marks
۵. ۱۱۰۰	Taide Forma, Expedica Allowers	i i i i i i i i i i i i i i i i i i i	Total Marks
	A I 8V 252 B J2 1-52 C I 4-52 F	1	
	$I = I_1 + I_2$ (1) In loop ABCDA $-8 + 2I_1 - 1 \times I_2 + 6 = 0$ (2) In loop DEFCD $-4I - 1 \times I_2 + 6 = 0$ $4I + I_2 = 6$	1 1/2	9
	$4(I_1 + I_2) + I_2 = 6$ $4I_1 + 5I_2 = 6 \qquad (3)$ From equations (1) and (2) we get $I_1 = \frac{8}{7}A, \ I_2 = \frac{2}{7}A, \ I = \frac{10}{7}$ Potential difference across resistor 4Ω is: $V = \frac{10}{7} \times 4 = \frac{40}{7} volt$	1/2	5