CBSE Class 12 Physics Solution

55/5/1

Sr. No.	Value Points / Expected Answers	Marks	Total Marks
1.	 SECTION - A E = 0 inside the conductor & has no tangential component on the surface. ∴No work is done in moving charge inside or on the surface of the conductor. &Potential is constant. [Even if a student writes "because E = 0 inside the conductor" - award full marks Or No work is done in moving a charge inside the conductor - award full marks.] 	1/2 1/2	1
2.	Any one property of paramagnetic materials. (e.g. (i) It attracts field lines, weakly. (ii) It moves from weaker towards stronger field. or any other property.) OR No.	1	1
3.	$\lambda = \frac{h}{p}$ $\lambda = \frac{p}{p}$ [If only the graph is drawn by the student, award full one mark]	1/2 1/2	1
4.	ον	1	1
5.	OR gate B out OR AND gate	1/2 1/2 1/2 1/2	1
6.	Diagram -1/2Expression for torque -1Direction of torque -1/2		

7.	Energy stored in series combination - 1 Energy stored in parallel combination - 1		
	$C_s = 6 pF$	1⁄2	
	$E_s = -C_s V^2 = - \times 6 \times 10^{-12} \times 50 \times 50 = 7500 \times 10^{-12} \text{ J } 2$		2
	$= 7.5 \times 10^{-9} \mathrm{J}$	1/2	2
	$C_p = 24 \ pF$	1/2	
	$_{E_p} = \frac{1}{2}C_p V^2 = \frac{1}{2} \times 24 \times 50 \times 50 \times 10^{-12}$		
	$= 3 \times 10^{-8} \text{ J}$	1/2	
8.	Expression for X- $\frac{1}{2}$ Expression for Y- $\frac{1}{2}$ Expression for product XY-1 $X = nR$ $Y = \frac{R}{n}$	1/2 1/2	2
	$XY=R^2$	1	
9.	Expression for resultant magnetic field -1½Direction of resultant field -½		
	$B_{1} = \frac{\mu o I}{2R}$ $B_{2} = \frac{\mu o \sqrt{3}I}{2R}$	1⁄2	
	$B = \sqrt{B_1^2 + B_2^2}$ $= \sqrt{\left(\frac{\mu oI}{2}\right)^2 + \left(\frac{\mu o\sqrt{3}I}{2}\right)^2}$	1⁄2	
	$V(2R) (2R)$ $B = \frac{\mu o I}{R}$ For Direction	1/2	
	B_1 B_2 B_2 B_1		
	$\tan\theta = \frac{B_1}{B_2} \implies \theta = 30^0$	1⁄2	2

		T	1
	a) Condition for no deflection - 1		
10.	b) Conclusion for greater radius - 1		
	(a) No deflection if electron moves parallel or anti parallel to the magnetic field	1	
	(b)	1	
	$r = \frac{mv}{r}$	1⁄2	
	Bq r. B.		
	$\frac{r_1}{r_2} = \frac{B_2}{B_1}$	1/2	
	As $B_1 \langle B_2 \rangle = r_2 \langle r_1 \rangle$		
	Alternatively		
	$[r = \frac{l}{B}]$	1⁄2	2
	r_2 is smaller because B]	1⁄2	
	Expression for frequency of side bands - 1/2		
11.	Carrier frequency - ½	Q	
	Modulating frequency - ¹ / ₂		
	Band width - ¹ / ₂		
	$f_{-} = f_{+} + f_{-} = 660 \ kH_{7}$	1/2	
	$f_{I} = f_{c} f_{m} = 640 kHz$	72	
	$\therefore 2f_c = 1300 \text{ kHz}$		
	$\therefore f_c = 650 \ kHz$	1/2	
	and $2f_{\rm m}=20 \ kHz$	1/2	
	$fm=10 \ kHz$	72	
	Band width $= f_u - f_1$		
	$=2f_{ m m}$		
	$= 20 \ kHz$	1/2	
	OR		
	Frequency of two side bands - $\frac{1}{2} + \frac{1}{2}$ Amplitude of side bands -1		
	$f_u = f_c + f_m = (10000 + 10) kHz$		
		1	

$$\begin{array}{c|c} Q = q_{1} + q_{2} \\ = 4\pi\sigma(r^{2} + R^{2}) \\ Potential at common centre \\ V = \frac{1}{4\pi\sigma_{0}} \left[\frac{q_{1}}{r} + \frac{q_{1}}{R} \right] \\ = \frac{1}{4\pi\sigma_{0}} \left[\frac{4\pi r^{2}\sigma}{r} + \frac{4\pi R^{2}\sigma}{R} \right] \\ = \frac{1}{4\pi\sigma_{0}} \left[\frac{Q(r+R)}{r^{2} + R^{2}} \right] \\ = \frac{(r+R)\sigma}{r_{0}} \\ = \frac{1}{4\pi\sigma_{0}} \left[\frac{Q(r+R)}{r^{2} + R^{2}} \right] \\ V_{2} \\ Relation for potential of shells A, B, C - \frac{1+1+1/2}{V_{2}} \\ Relation for wa, b, c \\ V_{4} = \frac{kQ_{6}}{a} + \frac{kQ_{c}}{b} + \frac{kQ_{c}}{c} \\ V_{5} = \frac{1}{c_{0}} \left[\frac{4\pi a^{2}\sigma}{a} - \frac{4\pi b^{2}\sigma}{a} + \frac{4\pi c^{2}\sigma}{c} \right] \\ = \frac{\sigma}{c_{0}} \left[a^{-b} + c \right] \\ V_{8} = \frac{kQ_{6}}{c} + \frac{kQ_{6}}{b} + \frac{kQ_{c}}{c} \\ V_{8} = \frac{1}{4\pi\sigma_{0}} \left[\frac{4\pi a^{2}\sigma}{b} - \frac{4\pi b^{2}\sigma}{c} + \frac{4\pi c^{2}\sigma}{c} \right] \\ V_{6} = \frac{1}{c_{0}} \left[\frac{a^{2} - b^{2}}{b} + c \right] \\ V_{6} = \frac{1}{c_{0}} \left[\frac{a^{2} - b^{2}}{c} + \frac{4\pi c^{2}\sigma}{c} \right] \\ V_{7} = \frac{kQ_{6}}{c} + \frac{kQ_{6}}{c} + \frac{kQ_{7}}{c} + \frac{4\pi c^{2}\sigma}{c} \right] \\ (b) \end{array}$$

(

	$V_{A} = V_{C}$ $a - b + c = \frac{a^{2} - b^{2}}{c} + c$ $c = a + b$	1/2	3
14.	Principle -1Working & expression for deflection -1Current Sensitivity -1Principle - A current carrying coil experiences a torque in a magnetic field.Working - When current is passed through the coil torque produced is $\tau = NIAB \sin \theta = NIAB (\theta = 00^\circ)$ Restoring torque $\tau' = k\phi$ At equilibrium $\tau = \tau'$ NIAB = $k\phi$ $\phi = \left(\frac{NAB}{k}\right)I$ Current sensitivity: $\frac{\phi}{I} = \frac{NAB}{k}$ [Alternatively: It is deflection per unit current]OR PARTConversion of galvanometer into ammeter -1Effective resistance of ammeter -1Effective resistance of ammeter -1Effective resistance of ammeter -1Use the galvanometer into an ammeter when a suitable shunt resistance is connected in parallel with the galvanometer.Image: suitable shunt resistance is connected in parallel with the galvanometer.Image: suitable shunt resistance is connected in parallel with the galvanometer.Image: suitable shunt resistance is suitable shunt resistan	1 1/2 1/2 1 1/2 1/2 1/2	

Gate =
$$(l - l_R)Sl$$
 l_2 $S = (\frac{l_R}{l - l_R})G$ l_2 $R_{eff} = \frac{GS}{G + S}$ 115.Derivation of expression for average power -
Definition of Power factor and it's maximum value -
11 $P_i = V_x \sin w l_x \sin(wt + \Phi)$
 $= V_x l_x \sin w t (\sin wt \cos \Phi + \cos w x \sin \Phi)$ l_2 $P = VI$ sin² wt cos $\Phi + \frac{2V_x l_x}{2}$ sin wt cos $\psi r \sin \Phi$ l_2 $P = VI$ sin² wt cos $\Phi + \frac{2V_x l_x}{2}$ sin $w t \cos w x \sin \Phi$ l_2 $P = VI$ sin² wt cos $\Phi + \frac{2V_x l_x}{2} \sin 2wt \sin \Phi$ l_2 $P_{wx} = \int_{0}^{L} \frac{P_x dt}{7}$ $l = \frac{V_x l_x}{\sqrt{2}} \cos \Phi$ $P_{wx} = \int_{0}^{L} \frac{P_x dt}{2}$ $V_x l_x \sin 2wt \sin \Phi$ $P_{wx} = \int_{0}^{L} \frac{P_x dt}{2}$ $V_x l_x \sin 2wt \sin \Phi$ $P_{wx} = \int_{0}^{L} \frac{P_x dt}{2}$ $V_x l_x \sin 2wt \sin \Phi$ $P_{wx} = \int_{0}^{L} \frac{P_x dt}{2}$ $V_x l_x \sin 2wt \sin \Phi$ $P_{wx} = \int_{0}^{L} \frac{P_x dt}{2}$ $V_x l_x \sin 2wt \sin \Phi$ $P_{wx} = \int_{0}^{L} \frac{P_x dt}{2}$ $V_x l_x \sin 2wt \sin \Phi$ $P_{wx} = \int_{0}^{L} \frac{P_x dt}{2}$ $V_y l_x \sin 2wt \sin \Phi$ $P_{wx} = \int_{0}^{L} \frac{P_x dt}{2}$ $V_y l_x \sin 2wt \sin \Phi$ $P_{wx} = \int_{0}^{L} \frac{P_x dt}{2}$ $V_y l_x \sin 2wt \sin \Phi$ $P_{wx} = \int_{0}^{L} \frac{P_x dt}{2}$ $V_y l_x \sin 2wt \sin \Phi$ $P_{wx} = \int_{0}^{L} \frac{P_x dt}{2}$ $V_y l_x \sin 2wt \sin \Phi$ $P_{wx} = \int_{0}^{L} \frac{P_x dt}{2}$ $V_y l_x \sin 2wt \sin \Phi$ $P_{wx} = \int_{0}^{L} \frac{P_x dt}{2}$ $V_y l_x \sin 2wt \sin \Phi$ $P_{wx} = \int_{0}^{L} \frac{P_x dt}{2}$ $V_y l_x \sin 2wt \sin \Phi$ $P_{wx} = \int_{0}^{L} \frac{P_x dt}{2}$ $V_y l_x \sin 2wt \sin \Phi$ $P_{wx} = \int_{0}^{L} \frac{P_x dt}{2}$ $V_y l_x \sin 2wt \sin$

	Displacement current is the output of current of the output of current of the output	current due to the changing of electric flux.		1	
	$I_d = \varepsilon_0 \frac{d\phi_e}{d\phi_e}$			1	
	Yes, the value of displaceme	ent is equal to the conduction current			
	[Explanation not required]	in is equal to the conduction current.		1	3
					5
17.	Value of $v+u$	1/2			
	Value of v - u Calculation of v and u	1/2			
	Calculation of f	1			
	v+u = 90			1⁄2	
	v-u = 20			1⁄2	
	v = 55 cm			1⁄2	
	u = 35 cm			1⁄2	
				1	
	$f = \frac{55x35}{55+35} = 21.4 \text{ cm}$	1			
	F d d				
	[or any other correct met	OR			
	Γ	Diagram	1/2		
		Image distance for convex lens	1		
		Image distance for concave lens	1		
	1.1	Explanation of the result change	1 1/2		
		$f_{1} = 20 \text{ cm}$		1/2	
	For Image formed by conv	ex lens:			
	$\frac{1}{1}$ $-\frac{1}{1}$ $-\frac{1}{1}$				
	$f^{-}v^{-}u$				
	$\frac{1}{} = \frac{1}{-+}$				
	20 v 30				

		$v = \frac{20X30}{30 - 20} = 60cm$	1	
		u for concave lens = $+30$ cm		
		$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$		
		$\frac{1}{-15} = \frac{1}{\nu} - \frac{1}{30}$		
		$v = \frac{15X30}{15-30} = -30cm$	1	
		No, the result will not change from principle of reversibility	1⁄2	3
-				
		(a) Definition of Wave front 1		
	18.	Geometrical Construction & explanation $\frac{1}{2} + \frac{1}{2}$ (b) Shape of Wave front1	0	
		(a) Wave front : It is the locus of the medium or points of a medium which are in the same phase of disturbance	1	
		$F_1 \qquad G_1$ $A_1 \qquad A_2$ $B_1 \qquad B_2$ $C_1 \qquad C_2$ $D_1 \qquad D_2$ $F_2 \qquad G_2$ $t = 0 \qquad t = \tau$	ν2	
		Geometrical Construction :		
		The wave is propagating to the right. F_1F_2 is the plane wavefront at t=0 &G ₁ G ₂ is the wave front at a later time t, the lines A ₁ , A ₂ , B ₁ B ₂ etc. are normal to both F_1F_2 and G_1G_2 represent rays. $A_1A_2 = B_1 B_2 = c\tau$	1⁄2	
		(b)Spherical Wave front	1/2	

	Planck constant $h = \frac{lm}{2n}$	1/2	
	(b) Intercept on V ² _{max} , axis, $\frac{2\phi_0}{m} = l$		
	Work function $\phi_0 = \frac{ml}{r}$	1	
	(c) Threshold frequency is the intercept on v axis i.e. $v_0 = n$	1/2	3
21.	(i) Radius of 1^{st} orbit of muonic hydrogen atom $1\frac{1}{2}$		
	(ii) Expression for Energy 1 St orbit 1 ¹ / ₂		
	In Bohr's Model of hydrogen atom the radius of n th orbit is given by $r_n = \frac{n^2 h^2}{4\pi^2 e^2 m_n}$		
	$r_1 \alpha \frac{1}{m_e}$ (as n=1)	1/2	
	Similarly	Q.	
	$r_{\mu} \propto \frac{1}{m_u}$	1⁄2	
	$\frac{r_{\mu}}{r_{e}} = \frac{m_{e}}{m_{\mu}} = \frac{1}{207}$ $\therefore r_{\mu} = 2.56 \text{ x } 10^{-13} \text{ m}$	1⁄2	
	Energy of electron in n th orbit		
	$E_n = \frac{-2\pi^2 m e^4}{n^2 h^2}$		
	$E_n \alpha m_e$ (as n=1)	1⁄2	
	$\therefore \frac{E_{\mu}}{E_{e}} = \frac{m_{\mu}}{m_{e}} = 207$	1⁄2	
	$\therefore E_{\mu} = 207 E_e$ $= -207 \times 13 6 \text{ eV}$		
	= -2.8 keV	1⁄2	3
	relation $r_n \alpha n^2$ and $E_n \alpha 1/n^2$ award full mark]		
	(a) Defining Isotopes and example $\frac{1}{2} + \frac{1}{2}$		
22.	Defining Isobars and example $\frac{1}{2} + \frac{1}{2}$ Example of each		
	(b) Mass of nuclear & example $\frac{1}{2} + \frac{1}{2}$		

(a) Isotopes have same atomi	c number & isobars have same mass num	nber $\frac{1}{2} + \frac{1}{2}$
 Examples of Isotopes ¹²/₆ C Examples Isobars ²/₂ H (b) Mass of a nucleus is less t some mass is converted it mass of ¹⁶/₆ O nucleus is less 	$C_{16}, {}^{14}_{6}C_{16}$ than its constituents because in the bound to binding energy which is energy equiv ss than the sum of masses of 8 protons ar	d state. valent of mass defect e.g. $\frac{1}{2} + \frac{1}{2}$ nd 8 neutrons
0	OR	
(a) Classificat (b) Non dependent on size of the second se	ion of nuclides ndence of nuclear density nucleus	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ 11/2
(i) Isotones: ${}^{198}_{60}Hg \& {}^{197}_{79}Au$ (ii)Isotopes: ${}^{12}_{6}C$, ${}^{14}_{6}C$ (iii) For Isobars: ${}^{3}_{2}He$, ${}^{3}_{1}H$ The radius of a nucleus having r_0 is	g mass number A is $R = r_o A^{1/3}$ constant.	1/2 1/2 1/2 1/2
Volume of the nucleus= $\frac{4}{3}\pi R^3$ If 'm' be the average mass of	${}^{3} = \frac{4}{3}\pi (r_{o}A^{1/3})^{3}$ = $\frac{4}{3}\pi (r_{o})^{3}A$ a nucleon then mass of the nucleus= mA	1/2
Nuclear density $=\frac{mass}{Volume} = \frac{4}{3\pi}$ i.e. nuclear density is independent	$\frac{mA}{c(r_o)^3A} = \frac{3m}{4\pi r_o^3}$ dent of the size of the nucleus.	1/2
 (a)Identification of dio (b)Circuit diagram (c)One use The diode used is Zener diode 	de 1 1 1	

	$I = \frac{V}{R_{eq}} = \frac{1.4}{8.5} A$ And	1	
	$V = E_{eq} - Ir_{eq}$ $\Rightarrow 1.4 = 1.5 - \frac{1.4}{8.5} X \frac{r}{2}$ $\Rightarrow r = 1.21\Omega$	1	5
26. (a)	(i) (a) (i)Expression induced emf & current 1+1 (ii)For force and its direction 1½ (iii)Expression for power 1 (b) Effect on the force 1/2 $ \begin{array}{c} $		
	$\varepsilon = \frac{bl^2 \omega}{2}$ [Student may use any method to arrive at this result] $L = \varepsilon = \frac{bl^2 \omega}{2}$	1	
	$I = \frac{1}{R} = \frac{1}{2R}$	1	

	(ii) $F=I(1 \times b)$	1⁄2	
	$F = \frac{bl^2 \omega B}{2 P}$	1/2	
	2R Direction of forms is norman disular to both 1 and \vec{P}	1/2	
	Direction of force is perpendicular to both I and B	, <u> </u>	
	iii)		
	$b = (bl^2 \omega)^2 b$	1/2	
	$Power = i^2 R = \left(\frac{1}{2R}\right) R$		
	$h^2 l^4 \omega^2$		
	$=\frac{\partial P}{\partial R}$	1⁄2	
	+A	1.(
(b)	Since induced current will reduce, it will be a little easier to remove the coil	1/2	
	[Even if student writes induced current decreases award ¹ / ₂ mark]		
	OR		
	(a) Expression for induced emf and current $1\frac{1}{2}+1$		
	Their neak values $\frac{1}{4} + \frac{1}{4}$		
	Graph 1		
	(b) Nature of rod ¹ / ₂	Ch.	
		1	
	(a)		
	$\phi = N \vec{B}. \vec{A}$	1/2	
	$\phi = NBA\cos\omega t$	/2	
	$-d\phi$	1⁄2	
	$\varepsilon = \frac{dt}{dt}$		
	$\varepsilon = NBA\omega\sin\omega t$	1/2	
	here $\epsilon_{e} = NBA\omega$	1/2	
	$c NBA\omega$	1/2	
	$i = \frac{c}{R} = \frac{1}{R} \frac{1}{R} \sin \omega t$, 2	
	K K		
	. NBA ω	1⁄2	
	$l_0 = \frac{1}{R}$		
	5. I		
	$\sqrt{1}$	1	
		1	

Magnification produced by eye pieces is		
$m_e = \frac{v_e}{ u_e } = \frac{40}{40/3} = 3$		
Diameter of the image formed by the objective is	1/2	
d = 6/3 = 2cm		
If D be the diameter of the SUN then the angle subtended by it on the objective will be $\alpha = \frac{D}{1.5 \times 10^{11}} rad$		
Angle subtended by the image at the objective		
= angle subtended by the SUN		
$\therefore \alpha = \frac{size of image}{f_o} = \frac{2}{200} = \frac{1}{100} rad.$		
$\therefore \frac{D}{1.5 \times 10^{11}} = \frac{1}{100}$	1/2	5
$D = 1.5 \times 10^9 m$	Q.	
 en 2 100		