CBSE Class 9 Maths Sample Paper SA 1

SUBJECT: MATHEMATICS

CLASS : IX
MAX. MARKS : 80
DURATION : 3 to $3 \frac{1}{2}$ hours

General Instruction:

(i) All questions are compulsory.
(ii) This question paper contains $\mathbf{3 0}$ questions divided into four Sections A, B, C and D.
(iii) Section A comprises of 8 questions of $\mathbf{1}$ mark each. Section B comprises of 6 questions of $\mathbf{2}$ marks each. Section C comprises of 10 questions of $\mathbf{3}$ marks each and Section D comprises of 10 questions of $\mathbf{4}$ marks each.
(iv) There is no overall choice. However, an internal choice has been provided in one question of 2 marks, three questions of 3 marks each and two questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of Calculators is not permitted

$\underline{\underline{\text { SECTION - A }}}$

Q. 1 If $x^{2}+k x+6=(x+2)(x+3)$ for all x, the value of k is
(A) 1
(B) -1
(C) 5
(D) 3
Q. $2 \mathrm{p}(\mathrm{x})=2 \mathrm{x}^{4}-3 \mathrm{x}^{3}+2 \mathrm{x}^{2}+2 \mathrm{x}-1$ is divided by $(\mathrm{x}-2)$ and $\mathrm{q}(\mathrm{x})=3 \mathrm{x}^{3}-2 \mathrm{x}^{2}+\mathrm{x}-1$ is divided by $(x-1)$. So, twice the sum of the remainders is:
(A) 21
(B) 35
(C) 54
(D) 40
Q. 3 In $\triangle A B C$ and $\triangle D E F, A B=D F$ and $\angle A=\angle D$. The two triangles will be congruent by SAS axiom if:
(A) $B C=E F$
(B) $A C=D E$
(C) $B C=D E$
(D) $A C=E F$
Q. 4 If a straight line falling on two straight lines makes the interior angles on the same side of it, whose sum is 120°, then the two straight lines, if produced indefinitely, meet on the side on which the sum of angles is
(A) less than 120°
(B) greater than 120°
(C) is equal to 120°
(D) greater than 180°
Q. 5 The lengths of a triangle are $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm . Then the length of perpendicular from the opposite vertex to the side whose length is 8 cm is:
(A) 5 cm
(B) 4 cm
(C) 6 cm
(D) 2 cm
Q. 6 If $(\sqrt{5}+\sqrt{6})^{2}=a+b \sqrt{30}$ then a and b respectively are
(A) 12 and 2
(B) $\sqrt{5}$ and $\sqrt{6}$
(C) 11 and 2
(D) 10 and $2 \sqrt{30}$
Q. 7 The sides of a triangular park are in the ratio of 2: 6:7 and its perimeter is 300 m . Then its area is:
(A) $154 \sqrt{57} \mathrm{~cm}^{2}$
(B) $215 \sqrt{45} \mathrm{~cm}^{2}$
(C) $340 \sqrt{56} \mathrm{~cm}^{2}$
(D) $300 \sqrt{55} \mathrm{~cm}^{2}$
Q. 8 The area of a rectangle is $x^{2}+9 x+14$, what are the dimensions of rectangle if $x=2$.
Options:
(A) 14 and 2
(B) 6 and -6
(C) 9 and 4
(D) 18 and 2

SECTION - B

Q. 9 Evaluate: $\sqrt[3]{(343)^{-2}}$
Q. 10 In the fig.1, sides QP and RQ of $\triangle \mathrm{PQR}$ are produced to points S and T respectively. If $\angle \mathrm{SPR}=135^{\circ}$ and $\angle \mathrm{PQT}=110^{\circ}$, find $\angle \mathrm{PRQ}$.

Fig. 1
Q. 11 Factorise: $7 \sqrt{2} x^{2}-10 x-4 \sqrt{2}$
Q. 12 If $a+b+c=7$ and $a b+b c+c a=20$, find the value of $a^{2}+b^{2}+c^{2}$.
Q. 13 In fig.2, $A B \| C D$ then find the value of x.

Fig. 2
OR
In fig, $\angle \mathrm{B}<\angle \mathrm{A}$ and $\angle \mathrm{C}<\angle \mathrm{D}$ show that $\mathrm{AD}<\mathrm{BC}$.

Q. 14 See fig.4, and write the following:

Fig. 4
(i) Co - ordinates of point A
(ii) Abscissa of point D
(iii) The point indentified by the co - ordinates $(5,4)$
(iv) Co - ordinates of point C

SECTION - C

Q. 15 If $x=(3+\sqrt{8})$, find the value of $\left(x^{2}+\frac{1}{x^{2}}\right)$.

OR

Express $5.3 \overline{47}$ in the form $\frac{p}{q}$ where p and q are integers and $q \neq 0$.
Q. 16 Factorize $(x-3 y)^{3}+(3 y-7 z)^{3}+(7 z-x)^{3}$
Q. 17 Factorise: $2 \sqrt{2} a^{3}+8 b^{3}-27 c^{3}+18 \sqrt{2} a b c$.
Q. 18 In fig.5, $\triangle A B C$, is an isosceles triangle in which $A B=A C$, side $B A$ is produced to D such that $A D=A B$. Show that $\angle B C D$ is a right angle.

Fig. 5
Q. 19 In fig.6, D is a point on side $B C$ of $\triangle A B C$ such that $A D=A C$. Show that $A B>$ AD.

Fig. 6
Q. 20 A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are $15 \mathrm{~cm}, 14 \mathrm{~cm}$ and 13 cm and the parallelogram stands on the base 15 cm , find the height of parallelogram.
Q. 21 In the fig.7, $\angle \mathrm{X}=72^{\circ}, \angle \mathrm{XZY}=46^{\circ}$. If YO and ZO are bisectors of $\angle \mathrm{XYZ}$ and $\angle X Z Y$ respectively of $\triangle X Y Z$, find $\angle O Y Z$ and $\angle Y O Z$.

Fig. 7

Or

In fig.8, $A D$ and $C E$ are the angle bisectors of $\angle A$ and $\angle C$ respectively. If $\angle A B C=90^{\circ}$ then find $\angle A O C$.

Fig. 8
Q. 22 In $\triangle A B C, B E$ and $C F$ are altitudes on the sides $A C$ and $A B$ respectively such that $B E=C F$. Using RHS congruency rule, prove that $A B=A C$.
Q. 23 Find the value of a and b if $\frac{\sqrt{11}+\sqrt{7}}{\sqrt{11}-\sqrt{7}}=a-\sqrt{77} b$.

OR

If $\frac{2}{\sqrt{3}+\sqrt{5}}+\frac{5}{\sqrt{3}-\sqrt{5}}=a \sqrt{3}+b \sqrt{5}$, find a and b.
Q. 24 Find the area of a square the coordinates of whose vertices are (0,0),(2,0),(2,2) and (0,2).

SECTION - D

Q.25. Find the values of a and b if:
$\frac{7+3 \sqrt{5}}{3+\sqrt{5}}-\frac{7-3 \sqrt{5}}{3-\sqrt{5}}=a+\sqrt{5 b}$

Or

If $a=7-4 \sqrt{3}$, find the value of $\sqrt{a}+\frac{1}{\sqrt{a}}$
Q. 26 The polynomial $p(x)=x^{4}-2 x^{3}+3 x^{2}-a x+3 a-7$ when divided by $(x+1)$ leaves the remainder 19. Find the value of a. Also find the remainder, when $p(x)$ is divided by $x+2$.

Or

Find the values of a and b so that $(x+1)$ and ($x-1$) are factors of $x^{4}+a x^{3}-3 x^{2}+2 x+b$.
Q. 27 Prove "If two lines intersect each other, then the vertically opposite angles are equal".
Q. 28 In the fig.9, the sides $A B$ an $A C$ of $\triangle A B C$ are produced to point E and D respectively. If bisectors $B O$ and $C O$ of $\angle C B E$ and $\angle B C D$ respectively meet at point O , then prove that
$\angle B O C=90^{\circ}-\frac{1}{2} \angle B A C$.

Fig. 9
Q. 29 (i) Multiply $9 x^{2}+25 y^{2}+15 x y+12 x-20 y+16$ by $3 x-5 y-4$ using suitable identity.
(ii) Factorise: $a^{2}+b^{2}-2(a b-a c-b c)$.
Q. 30 In the fig.10, D and E are points on the base $B C$ of a $\triangle A B C$ such that $A D=A E$ and $\angle B A D=\angle C A E$. Prove that $A B=A C$.

Fig. 10
Q. 31 Find the value of:

$$
\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}
$$

Q. 32 Factorize: $\frac{1}{27}(2 x+5 y)^{3}+\left(-\frac{5}{3} y+\frac{3}{4} z\right)^{3}-\left(\frac{3}{4} z+\frac{2}{3} x\right)^{3}$
Q. 33 Find the perimeter of a triangle whose vertices are $(0,4),(3,0)$ and $(-3,0)$.
Q. 34 (i)In triangle $A B C, A B=B C$; angle B is half of angle A. Is $A B>A C$? Give reason for your answer
(ii) The sides of $A B, B C, A C$ a triangle $A B C$ are $2.8 \mathrm{~cm}, 3.7 \mathrm{~cm}$ and 4.1 cm respectively. What is the relation ship between the angles A, B, and C ?

