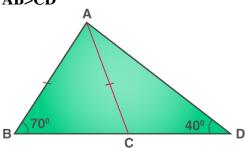


EXERCISE 11 PAGE: 142

# 1. From the following figure, prove that: AB>CD



#### **Solution:**

In  $\triangle$  ABC,

AB = AC[Given]

 $\therefore \angle ACB = \angle B[angles opposite to equal sides are equal]$ 

 $\angle$  B =  $70^{\circ}$  [Given]

 $\Rightarrow \angle ACB = 70^0 \dots (i)$ 

Now,

 $\angle$  ACB +  $\angle$  ACD = 180° [BCD is a straight line]

 $\Rightarrow$ 70° +  $\angle$  ACD = 180°

 $\Rightarrow \angle ACD = 110^0 \dots (ii)$ 

In  $\triangle$  ACD,

 $\angle CAD + \angle ACD + \angle D = 180^{\circ}$ 

 $\Rightarrow \angle CAD + 110^0 + \angle D = 180^0 [From (ii)]$ 

 $\Rightarrow \angle CAD + \angle D = 70^{\circ}$ 

But  $\angle D = 40^0$  [Given]

 $\Rightarrow \angle CAD + 40^0 = 70^0$ 

 $\Rightarrow \angle CAD = 30^{\circ}$  .....(iii)

In  $\triangle$  ACD,

 $\angle$  ACD =  $110^{0}$  [From (ii)]

 $\angle$  CAD =  $30^{\circ}$  [From (iii)]

 $\angle$  D =  $40^{\circ}$  [Given]

 $\therefore$  ZD > ZCAD

⇒ AC > CD

[Greater angle has greater side opposite to it]

Also,

AB = AC[Given]

Therefore, AB > CD.

# 2. In a triangle PQR; QR = PR and $\angle$ P=360. Which is the largest side of the triangle? Solution:



In 
$$\triangle$$
 PQR,

$$QR = PR[Given]$$

$$\therefore \angle P = \angle Q[\text{angles opposite to equal sides are equal}]$$

$$\angle$$
 P = 36<sup>0</sup>[Given]

$$\Rightarrow \angle Q = 36^{\circ}$$

In 
$$\triangle$$
 PQR,

$$\angle P + \angle Q + \angle R = 180^{\circ}$$

$$\Rightarrow$$
 36<sup>0</sup> + 36<sup>0</sup> +  $\angle$  R = 180<sup>0</sup>

$$\Rightarrow \angle R + 72^0 = 180^0$$

$$\Rightarrow \angle R = 108^{\circ}$$

Now,

$$\angle R = 108^{\circ}$$

$$\angle P = 36^{\circ}$$

$$\angle Q = 36^{\circ}$$

Since  $\angle R$  is the greatest, therefore, PQ is the largest side.

# 3. If two sides of a triangle are 8 cm and 13 cm, then the length of the third side is between a cm and b cm. Find the values of a and b such that a is less than b.

## **Solution:**

We know that,

The sum of any two sides of the triangle is always greater than third side of the triangle.

Third side < 13 + 8 = 21 cm.

We also know that.

The difference between any two sides of the triangle is always less than the third side of the triangle.

Third side > 13 - 8 = 5 cm.

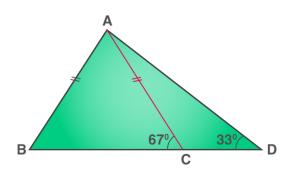
Therefore, the length of the third side is between 5 cm and 9 cm, respectively.

The value of a = 5 cm and b = 21 cm.

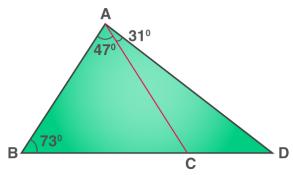
# 4. In each of the following figures write BC, AC and CD in ascending order of their lengths.

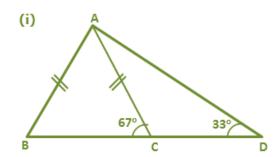
**(i)** 











In ΔABC,

AB = AC

⇒∠ABC = ∠ACB (angles opposite to equal sides are equal)

⇒∠ABC = ∠ACB = 67°

 $\Rightarrow \angle BAC = 180^{\circ} - \angle ABC - \angle ACB$  (angle sum property)

 $\Rightarrow$   $\angle$ BAC = 180° - 67° - 67° = 46°

Since ZBAC < ZABC, we have

BC < AC ....(1)

Now, $\angle$ ACD = 180° -  $\angle$ ACB (linear pair)

 $\Rightarrow$   $\angle$ ACD = 180° - 67° = 113°

Thus, in ∆ACD,

 $\angle$ CAD = 180° -  $\angle$ ACD -  $\angle$ ADC

 $\Rightarrow$   $\angle$ CAD = 180° - 113° - 33° = 34°

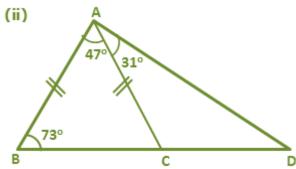
Since ∠ADC < ∠CAD, we have

AC < CD ....(2)

From (1) and (2), we have

BC < AC < CD



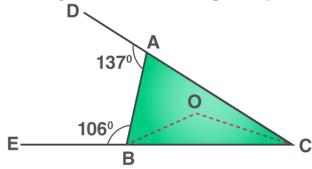


In  $\triangle$ ABC,  $\angle$ BAC <  $\angle$ ABC  $\Rightarrow$  BC < AC ....(1) Now,  $\angle$ ACB = 180° -  $\angle$ ABC -  $\angle$ BAC  $\Rightarrow$   $\angle$ ACB = 180° - 73° - 47°  $\Rightarrow$   $\angle$ ACB = 60° Now,  $\angle$ ACD = 180° -  $\angle$ ACB  $\Rightarrow$   $\angle$ ACD = 180° - 60° = 120° Now, in  $\triangle$ ACD,  $\angle$ ADC = 180° -  $\angle$ ACD -  $\angle$ CAD  $\Rightarrow$   $\angle$ ADC = 180° - 120° - 31°  $\Rightarrow$   $\angle$ ADC = 29° Sin  $\bigcirc$   $\bigcirc$  ADC <  $\angle$ CAD, we have AC < CD ....(2)

From (1) and (2), we have

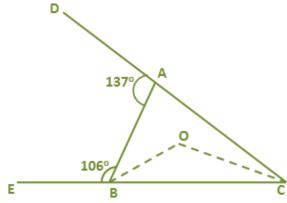
BC < AC < CD

5. Arrange the sides of triangle BOC in descending order of their lengths. BO and CO are bisectors of angles ABC and ACB respectively.



**Solution:** 



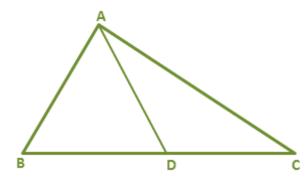


∠BAC = 
$$180^\circ$$
 - ∠BAD =  $180^\circ$  -  $137^\circ$  =  $43^\circ$   
∠ABC =  $180$  - ∠ABE =  $180^\circ$  -  $106^\circ$  =  $74^\circ$   
Thus, in △ABC,  
∠ACB =  $180^\circ$  - ∠BAC - ∠ABC  
⇒ ∠ACB =  $180^\circ$  -  $43^\circ$  -  $74^\circ$  =  $63^\circ$   
Now, ∠ABC = ∠OBC + ∠ABO  
⇒ ∠ABC =  $2$ ∠OBC (OB is biosector of ∠ABC)  
⇒  $74^\circ$  =  $2$ ∠OBC  
⇒ ∠OBC =  $37^\circ$   
Similarly,  
∠ACB = ∠OCB + ∠ACO  
⇒ ∠ACB =  $2$ ∠OCB (OC is bisector of ∠ACB)  
⇒  $63^\circ$  =  $2$ ∠OCB  
⇒ ∠OCB =  $31.5^\circ$   
Now, in △BOC,  
∠BOC =  $180^\circ$  - ∠OBC - ∠OCB  
⇒ ∠BOC =  $111.5^\circ$   
Since, ∠BOC > ∠OBC > ∠OCB, we have

BC > OC > OB

# 6. D is a point in side BC of triangle ABC. If AD>AC, show that AB>AC. Solution:





$$\Rightarrow \angle C > \angle ADC$$
 ....(1)

Now,
$$\angle ADC > \angle B + \angle BAC$$
 (Exterior Angle Property)

$$\Rightarrow \angle ADC > \angle B$$
 ....(2)

From (1) and (2), we have

$$\angle C > \angle ADC > \angle B$$

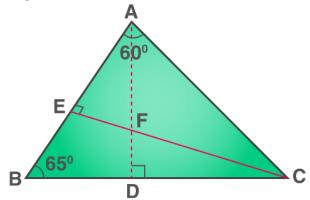
$$\Rightarrow \angle C > \angle B$$

$$\Rightarrow$$
 AB > AC

7. In the following figure,  $\angle$  BAC =  $60^{\circ}$  and  $\angle$  ABC =  $65^{\circ}$ .

**Prove that:** 

- (i) CF > AF
- (ii) DC > DF



## **Solution:**

In 
$$\triangle$$
 BEC,

$$\angle$$
B +  $\angle$ BEC +  $\angle$ BCE =  $180^{\circ}$ 

$$\angle$$
 B = 65<sup>0</sup> [Given]

$$\angle$$
 BEC = 90°[CE is perpendicular to AB]

$$\Rightarrow$$
65° + 90° +  $\angle$  BCE = 180°

$$\Rightarrow \angle$$
 BCE =  $180^{\circ}$  -  $155^{\circ}$ 

$$\Rightarrow \angle$$
 BCE = 25<sup>0</sup> =  $\angle$  DCF .....(i)

In  $\triangle$  CDF,

$$\angle$$
 DCF +  $\angle$  FDC +  $\angle$  CFD =  $180^{\circ}$ 

$$\angle$$
 DCF = 25<sup>0</sup> [From (i)]

# Concise Selina Solutions for Class 9 Maths Chapter 11-Inequalities

$$\angle$$
 FDC = 90<sup>0</sup>[AD is perpendicular to BC]

$$\Rightarrow$$
25<sup>0</sup> + 90<sup>0</sup> +  $\angle$  CFD = 180<sup>0</sup>

$$\Rightarrow \angle CFD = 180^{\circ} - 115^{\circ}$$

$$\Rightarrow \angle CFD = 65^0$$
 .....(ii)

Now, 
$$\angle$$
 AFC +  $\angle$  CFD =  $180^{\circ}$  [AFD is a straight line]

$$\Rightarrow \angle AFC + 65^0 = 180^0$$

$$\Rightarrow \angle AFC = 115^0 \dots (iii)$$

#### In $\triangle$ ACE,

$$\angle$$
 ACE +  $\angle$  CEA +  $\angle$  BAC =  $180^{\circ}$ 

$$\angle$$
 BAC =  $60^{\circ}$  [Given]

$$\angle$$
 CEA = 90°[CE is perpendicular to AB]

$$\Rightarrow \angle ACE + 90^{\circ} + 60^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ACE = 180^{\circ} - 150^{\circ}$$

$$\Rightarrow \angle ACE = 30^0 \dots (iv)$$

In 
$$\triangle$$
 AFC,

$$\angle AFC + \angle ACF + \angle FAC = 180^{\circ}$$

$$\angle$$
 AFC = 115 $^{\circ}$  [From (iii)]

$$\angle$$
 ACF =  $30^{0}$ [From (iv)]

$$\Rightarrow$$
115<sup>0</sup> + 30<sup>0</sup> +  $\angle$  FAC = 180<sup>0</sup>

$$\Rightarrow \angle FAC = 180^{\circ} - 145^{\circ}$$

$$\Rightarrow \angle FAC = 35^0 \dots (v)$$

## In $\triangle$ AFC,

$$\angle$$
 FAC =  $35^0$ [From (v)]

$$\angle$$
 ACF =  $30^{\circ}$  [From (iv)]

## In $\triangle$ CDF,

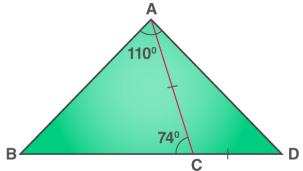
$$\angle$$
 DCF =  $25^{\circ}$ [From (i)]

$$\angle$$
 CFD = 65<sup>0</sup>[From (ii)]

# 8. In the following figure;

$$AC = CD$$
;  $\angle BAD = 1100$  and  $\angle ACB = 740$ .

**Prove that: BC > CD.** 





$$\angle$$
 ACB = 74 $^{0}$  .....(i)[Given]  
 $\angle$  ACB +  $\angle$  ACD = 180 $^{0}$ [BCD is a straight line]  
⇒ 74 $^{0}$  +  $\angle$  ACD = 180 $^{0}$   
⇒  $\angle$  ACD = 106 $^{0}$  .......(ii)  
In  $\triangle$  ACD,  
 $\angle$  ACD +  $\angle$  ADC+  $\angle$  CAD = 180 $^{0}$   
Given that AC = CD  
⇒  $\angle$  ADC=  $\angle$  CAD  
⇒ 106 $^{0}$  +  $\angle$  CAD +  $\angle$  CAD = 180 $^{0}$ [From (ii)]  
⇒ 2 $\angle$  CAD = 74 $^{0}$   
⇒  $\angle$  CAD = 37 $^{0}$  =  $\angle$  ADC......(iii)  
Now,  
 $\angle$  BAD = 110 $^{0}$ [Given]  
 $\angle$  BAC +  $\angle$  CAD = 110 $^{0}$   
 $\angle$  BAC + 37 $^{0}$  = 110 $^{0}$   
 $\angle$  BAC = 73 $^{0}$  .......(iv)  
In  $\triangle$  ABC,  
 $\angle$  B +  $\angle$  BAC+  $\angle$  ACB = 180 $^{0}$   
⇒  $\angle$  B + 73 $^{0}$  + 74 $^{0}$  = 180 $^{0}$ [From (i) and (iv)]  
⇒  $\angle$  B + 147 $^{0}$  = 180 $^{0}$   
⇒  $\angle$  B = 33 $^{0}$  .......(v)  
 $\triangle$  ∠BAC >  $\angle$ B [From (iv) and (v)]  
⇒ BC > AC  
But,  
AC = CD [Given]

# 9. From the following figure; prove that:

- (i) AB > BD
- (ii) AC > CD
- (iii) AB + AC > BC

## **Solution:**

(i) 
$$\angle ADC + \angle ADB = 180^{0}[BDC \text{ is a straight line}]$$
  
 $\angle ADC = 90^{0}[Given]$   
 $90^{0} + \angle ADB = 180^{0}$   
 $\angle ADB = 90^{0}$  ......(i)  
In  $\triangle ADB$ ,  
 $\angle ADB = 90^{0}[From (i)]$   
 $\therefore \angle B + \angle BAD = 90^{0}$   
Therefore,  $\angle B$  and  $\angle BAD$  are both acute, that is less than  $90^{0}$ .  
 $\therefore AB > BD$  ......(ii)[Side opposite  $90^{0}$  angle is greater than

# Concise Selina Solutions for Class 9 Maths Chapter 11-Inequalities

side opposite acute angle]

(ii) In 
$$\triangle$$
 ADC,

$$\angle$$
 ADB =  $90^{\circ}$ 

$$\therefore \angle C + \angle DAC = 90^{\circ}$$

Therefore,  $\angle C$  and  $\angle DAC$  are both acute, that is less than 90°.

 $\therefore$  AC > CD ......(iii)[Side opposite 90° angle is greater than

side opposite acute angle]

Adding (ii) and (iii)

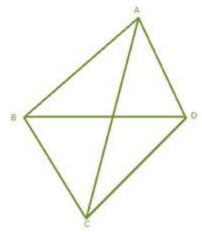
$$AB + AC > BD + CD$$

$$\Rightarrow$$
 AB + AC > BC

# 10. In a quadrilateral ABCD; prove that:

- (i) AB + BC + CD > DA
- (ii) AB + BC + CD + DA > 2AC
- (iii) AB + BC + CD + DA > 2BD

#### **Solution:**



#### **Construction:**

Join AC and BD.

(i) In 
$$\triangle$$
 ABC,

AB + BC > AC...(i)[Sum of two sides is greater than the

third side]

In  $\triangle$  ACD,

AC + CD > DA....(ii) Sum of two sides is greater than the

third side]

Adding (i) and (ii)

$$AB + BC + AC + CD > AC + DA$$

$$AB + BC + CD > AC + DA - AC$$

$$AB + BC + CD > DA \dots (iii)$$

(ii) In 
$$\triangle$$
 ACD,

CD + DA > AC....(iv)[Sum of two sides is greater than the

third side]

Adding (i) and (iv)

$$AB + BC + CD + DA > AC + AC$$

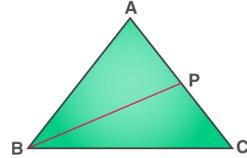
$$AB + BC + CD + DA > 2AC$$

# Concise Selina Solutions for Class 9 Maths Chapter 11-Inequalities

- (iii) In △ ABD,
- AB + DA > BD....(v) [Sum of two sides is greater than the
- third side]
- In  $\triangle$  BCD,
- BC + CD > BD....(vi)[Sum of two sides is greater than the
- third side]
- Adding (v) and (vi)
- AB + DA + BC + CD > BD + BD
- AB + DA + BC + CD > 2BD

# 11. In the following figure, ABC is an equilateral triangle and P is any point in AC; prove that:

- (i) BP > PA
- (ii) BP > PC



#### **Solution:**

(i) In  $\triangle$  ABC,

$$AB = BC = CA[ABC \text{ is an equilateral triangle}]$$

$$\therefore \angle A = \angle B = \angle C$$

$$\therefore \angle A = \angle B = \angle C = \frac{180^{\circ}}{3}$$

In  $\triangle$  ABP,

$$\angle A = 60^{\circ}$$

$$\angle$$
 ABP<  $60^{\circ}$ 

$$\therefore$$
 ZA > ZABP

$$\Rightarrow BP > PA$$

[Side opposite to greater side is greater]

(ii) In △BPC,

$$\angle C = 60^{\circ}$$

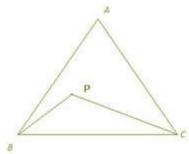
$$\angle$$
 CBP<  $60^{\circ}$ 

$$\pm$$
 ZC > ZCBP

$$\Rightarrow$$
 BP  $>$  PC

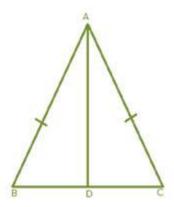
[Side opposite to greater side is greater]

# 12. P is any point inside the triangle ABC. Prove that: $\angle$ BPC > $\angle$ BAC.



Let 
$$\angle$$
 PBC = x and  $\angle$  PCB = y  
then,  
 $\angle$  BPC =  $180^{\circ}$  -  $(x + y)$  ......(i)  
Let  $\angle$  ABP = a and  $\angle$  ACP = b  
then,  
 $\angle$  BAC =  $180^{\circ}$  -  $(x + a)$  -  $(y + b)$   
 $\Rightarrow$   $\angle$  BAC =  $180^{\circ}$  -  $(x + y)$  -  $(a + b)$   
 $\Rightarrow$   $\angle$  BAC =  $\angle$  BPC -  $(a + b)$   
 $\Rightarrow$   $\angle$  BPC =  $\angle$  BAC +  $(a + b)$   
 $\Rightarrow$   $\angle$  BPC >  $\angle$  BAC

# 13. Prove that the straight line joining the vertex of an isosceles triangle to any point in the base is smaller than either of the equal sides of the triangle. Solution:



We know that exterior angle of a triangle is always greater than each of the interior opposite angles.

$$\angle ADC > \angle B \dots (i)$$

In  $\triangle$  ABC,

$$AB = AC$$

$$\therefore \angle B = \angle C \dots (ii)$$

From (i) and (ii)

$$\angle ADC > \angle C$$

(i) In 
$$\triangle$$
 ADC,

$$\angle ADC > \angle C$$

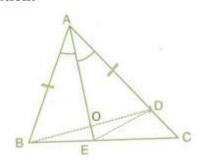


(ii) In 
$$\triangle$$
 ABC,  
AB = AC  
 $\Rightarrow$  AB > AD[ From (iii)]

# 14. In the following diagram; AD = AB and AE bisects angle A. Prove that:

- (i) BE = DE
- (ii)  $\angle ABD > \angle C$

#### **Solution:**



#### **Construction:**

Join ED.

In  $\triangle$  AOB and  $\triangle$  AOD,

AB = AD[Given]

AO = AO[Common]

 $\angle$  BAO =  $\angle$  DAO[AO is bisector of  $\angle$  A]

∴  $\triangle$ AOB  $\cong$   $\triangle$ AOD [SAS criterion]

Hence,

BO = OD....(i)[cpct]

 $\angle$  AOB =  $\angle$  AOD .....(ii)[cpct]

 $\angle ABO = \angle ADO \Rightarrow \angle ABD = \angle ADB \dots (iii)[cpct]$ 

Now,

 $\angle$  AOB =  $\angle$  DOE[Vertically opposite angles]

 $\angle$  AOD =  $\angle$  BOE[Vertically opposite angles]

 $\Rightarrow \angle$  BOE =  $\angle$  DOE .....(iv)[From (ii)]

(i) In  $\triangle$  BOE and  $\triangle$  DOE,

BO = CD[From(i)]

OE = OE[Common]

 $\angle$  BOE =  $\angle$  DOE[From (iv)]

∴ ABOE ≅ ADOE [SAS criterion]

Hence, BE = DE[cpct]

(ii) In  $\triangle$  BCD,

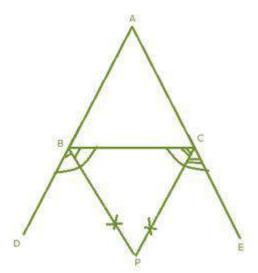
$$\angle$$
 ADB =  $\angle$  C +  $\angle$  CBD[Ext. angle = sum of opp. int. angles]

$$\Rightarrow \angle ADB > \angle C$$

$$\Rightarrow \angle ABD > \angle C[From (iii)]$$



15. The sides AB and AC of a triangle ABC are produced; and the bisectors of the external angles at B and C meet at P. Prove that if AB>AC, then PC > PB. **Solution:** 



$$AB > AC$$
,

$$\Rightarrow \angle ABC < \angle ACB$$

$$180^{\circ} - ABC > 180^{\circ} - ACB$$

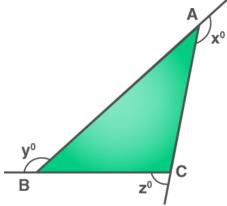
$$\Rightarrow \frac{180^{0} - \angle ABC}{2} > \frac{180^{0} - \angle ACB}{2}$$

$$\Rightarrow$$
 90° -  $\frac{1}{2}$   $\angle$ ABC > 90° -  $\frac{1}{2}$   $\angle$ ACB

and CP is bisector of ∠BCE]

[side opposite to greater angle is greater]

16. In the following figure; AB is the largest side and BC is the smallest side of triangle ABC.



Write the angles  $x^0$ ,  $y^0$  and  $z^0$  in ascending order of their values.

Since AB is the largest side and BC is the smallest side of the triangle ABC

$$\Rightarrow 180^{\circ} - z^{\circ} > 180^{\circ} - y^{\circ} > 180^{\circ} - x^{\circ}$$

$$\Rightarrow -z^* > -y^* > -x^*$$

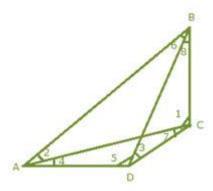
$$\Rightarrow z^* < y^* < x^*$$

17. In quadrilateral ABCD, side AB is the longest and side DC is the shortest. Prove that:

(i) 
$$\angle C > \angle A$$

(ii) 
$$\angle D > \angle B$$

**Solution:** 



In the quad. ABCD,

Since AB is the longest side and DC is the shortest side.

(i) 
$$\angle 1 > \angle 2[AB > BC]$$

$$\angle 7 > \angle 4[AD > DC]$$

$$\therefore \angle 1 + \angle 7 > \angle 2 + \angle 4$$

$$\Rightarrow \angle_{C} > \angle_{A}$$

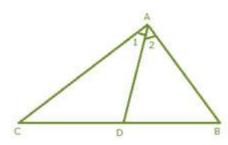
(ii) 
$$\leq 5 > \leq 6[AB > AD]$$

$$\angle 3 > \angle 8[BC > CD]$$

$$\therefore \angle 5 + \angle 3 > \angle 6 + \angle 8$$

$$\Rightarrow \angle D > \angle B$$

18. In triangle ABC, side AC is greater than side AB. If the internal bisector of angle A meets the opposite side at point D, prove that:  $\angle$  ADC is greater than  $\angle$  ADB. Solution:



$$\angle$$
 ADB =  $\angle$  1 +  $\angle$  C....(i)



In 
$$\triangle$$
 ADB,

$$\angle$$
 ADC =  $\angle$  2 +  $\angle$  B....(ii)

But AC > AB[Given]

$$\Rightarrow \angle B > \angle C$$

Also given, 
$$\angle 2 = \angle 1$$
[AD is bisector of  $\angle A$ ]

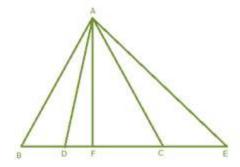
$$\Rightarrow \angle 2 + \angle B > \angle 1 + \angle C \dots (iii)$$

From (i), (ii) and (iii)

$$\Rightarrow \angle ADC > \angle ADB$$

- 19. In isosceles triangle ABC, sides AB and AC are equal. If point D lies in base BC and point E lies on BC produced (BC being produced through vertex C), prove that:
  - (i) AC > AD
  - (ii) AE > AC
  - (iii) AE > AD

**Solution:** 



We know that the bisector of the angle at the vertex of an isosceles triangle bisects the base at right angle.

Using Pythagoras theorem in  $\triangle$  AFB,

$$AB^2 = AF^2 + BF^2$$
....(i)

In  $\triangle$  AFD.

$$AD^2 = AF^2 + DF^2$$
....(ii)

We know ABC is isosceles triangle and AB = AC

$$AC^2 = AF^2 + BF^2$$
 ......(iii) [From (i)]

Subtracting (ii) from (iii)

$$AC^2 - AD^2 = AF^2 + BF^2 - AF^2 - DF^2$$

$$AC^2 - AD^2 = BF^2 - DF^2$$

Let 2DF = BF

$$AC^2 - AD^2 = (2DF)^2 - DF^2$$

$$AC^2 - AD^2 = 4DF^2 - DF^2$$

$$AC^2 = AD^2 + 3DF^2$$

$$\Rightarrow$$
AC<sup>2</sup> > AD<sup>2</sup>

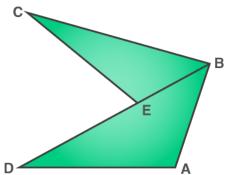
$$\Rightarrow_{AC > AD}$$

Similarly, AE > AC and AE > AD.

20. Given: ED = EC

Prove: AB + AD > BC





The sum of any two sides of the triangle is always greater than the third side of the triangle.

In ∆CEB,

CE + EB > BC

$$\Rightarrow$$
 DE + EB > BC [CE = DE]

$$\Rightarrow$$
 DB > BC.....(i)

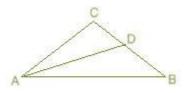
In ΔADB,

$$AD + AB > BD$$

$$\Rightarrow AD + AB > BD > BC$$
 [from(i)]

$$\Rightarrow AD + AB > BC$$

# 21. In triangle ABC, AB > AC and D is a point in side BC. Show that: AB>AD. Solution:



Given that, AB > AC

$$\Rightarrow \angle C > \angle B.....(i)$$

Also in AADC

$$\angle ADB = \angle DAC + \angle C$$
 [Exterior angle]

⇒ZADB>ZC

 $\Rightarrow \angle ADB > \angle C > \angle B$  [From(i)]

⇒ZADB >ZB

 $\Rightarrow$  AB > AD