

EXERCISE 26(A)

PAGE:315

- 1. For each equation given below; name the dependent and independent variables.
 - (i) $y = \frac{4}{3}x 7$ (ii) x = 9y + 4(iii) $x = \frac{5y+3}{2}$ (iv) $y = \frac{1}{7}(6x + 5)$

Solution:

(i)
$$y = \frac{4}{3}x - 7$$

Dependent variable is y Independent variable is x

(ii) x = 9y + 4

Dependent variable is x Independent variable is y

(iii)
$$x = \frac{5y+3}{2}$$

Dependent variable is x
Independent variable is y

(iv)
$$y = \frac{1}{7}(6x+5)$$

Dependent variable is y Independent variable is x

2. Plot the following points on the same graph paper:

- (i) (8,7)
- (ii) (3, 6)
- (iii) (0, 4)
- (iv) (0, -4)
- (v) (3, -2)
- (vi) (-2, 5)
- (vii) (-3, 0)
- (viii) (5,0)
- (ix) (-4, -3)

Solution:

Let the points be,

(i) (8, 7)=A

(ii)	(3, 6)=B
(iii)	(0, 4)=C
(iv)	(0, -4)=D
(v)	(3, -2)=E
(vi)	(-2, 5)=F

- (vii) (-3, 0)=G
- (vii) (5, 0)=0(viii) (5, 0)=H
- (viii) (3, 0)=11(ix) (-4, -3)=I

- **3.** Find the values of x and y if:
- (i) (x 1, y + 3) = (4, 4,)
- (ii) (3x + 1, 2y 7) = (9, -9)
- (iii) (5x 3y, y 3x) = (4, -4)

Solution:

Two ordered pairs are equal.

```
(i)
```

BYJU'S

Concise Selina Solutions for Class 9 Maths Chapter 26-Co-ordinate Geometry

$$(x-1, y+3) = (4, 4)$$

$$x-1 = 4 \text{ and } y+3 = 4$$

$$x = 5 \text{ and } y = 1$$

(ii)

$$(3x+1, 2y-7) = (9, -9)$$

$$3x+1 = 9 \text{ and } 2y = -2$$

$$x = \frac{8}{3} \text{ and } 2y = -2$$

$$x = \frac{8}{3} \text{ and } y = -1$$

(iii)

$$(5x-3y, y-3x) = (4, -4)$$

$$5x-3y = 4..... (A) \text{ and } y-3x = -4..... (B)$$

Multiplying equation (B) by 3, we get

$$3y-9x = -12..... (C)$$

Adding both the equations (A) and (C), we get

$$(5x - 3y) + (3y - 9x) = (4 + (-12))$$

$$-4x = -8$$

$$x = 2$$

Putting the value of x in the equation (B), we get

$$y - 3x = -4$$

$$\Rightarrow y = 3x - 4$$

$$\Rightarrow y = 3(2) - 4$$

$$\Rightarrow y = 2$$

x = 2, y = 2

- 4. Use the graph given alongside, to find the coordinates of point (s) satisfying the given condition:
- (i) The abscissa is 2.
- (ii) The ordinate is 0.
- (iii) The ordinate is 3.
- (iv) The ordinate is -4.
- (v) The abscissa is 5.
- (vi) The abscissa is equal to the ordinate.
- (vii) The ordinate is half of the abscissa.

Solution:

(i)	The abscissa is 2
	According to the graph,
	The co-ordinate of the given point A is given by $(2, 2)$
(ii)	The ordinate is 0
	According to the graph,
	The co-ordinate of the given point B is given by $(5, 0)$
(iii)	The ordinate is 3
	According to the graph,
	The co-ordinate of the given point C and E is given by $(-4, 3) \& (6, 3)$
(iv)	The ordinate is -4
	According to the graph,
	The co-ordinate of the given point D is given by (2,-4)
(v)	The abscissa is 5
	According to the graph,
	The co-ordinate of the given point H, B and G is given by $(5, 5)$, $(5, 0)$ & $(5, -3)$
(vi)	The abscissa is equal to the ordinate.
	According to the graph,
	The co-ordinate of the given point I, A & H is given by $(4, 4)$, $(2, 2)$ & $(5, 5)$
(vii)	The ordinate is half of the abscissa
	According to the graph,
	The co-ordinate of the given point E is given by $(6, 3)$

5. State, true or false:

- (i) The ordinate of a point is its x-co-ordinate.
- (ii) The origin is in the first quadrant.
- (iii) The y-axis is the vertical number line.
- (iv) Every point is located in one of the four quadrants.
- (v) If the ordinate of a point is equal to its abscissa; the point lies either in the first quadrant or in the second quadrant.
- (vi) The origin (0, 0) lies on the x-axis.
- (vii) The point (a, b) lies on the y-axis if b = 0.

Solution:

- (i) False.
- (ii) False.
- (iii) True.
- (iv) True.
- (v) False.
- (vi) True.
- (vii) False
- 6. In each of the following, find the co-ordinates of the point whose abscissa is the solution of the first equation and ordinate is the solution of the second equation:

$$3 - 2x = 7; 2y + 1 = 10 - 2\frac{1}{2}y$$

(ii)

$$\frac{2a}{3} - 1 = \frac{a}{2}; \frac{15 - 4b}{7} = \frac{2b - 1}{3}.$$

(iii)

$$5x - (5 - x) = \frac{1}{2}(3 - x); \ 4 - 3y = \frac{4 + y}{3}$$

Solution:

(i)

$$3-2x = 7; \ 2y+1 = 10-2\frac{1}{2}y$$
$$3-2x = 7$$
$$3-7 = 2x$$
$$-4 = 2x$$
$$-2 = x$$

$$2y+1=10-2\frac{1}{2}y$$
$$2y+1=10-\frac{5}{2}y$$
$$4y+2=20-5y$$
$$4y+5y=20-2$$
$$9y=18$$
$$y=2$$

 \therefore The co-ordinates of the point (-2, 2)

(ii)

$$\frac{2a}{3} - 1 = \frac{a}{2}, \ \frac{15 - 4b}{7} = \frac{2b - 1}{3}$$
$$\frac{2a}{3} - 1 = \frac{a}{2}$$
$$\frac{2a}{3} - \frac{a}{2} = 1$$
$$\frac{4a - 3a}{6} = 1$$
$$a = 6$$

$$\frac{15-4b}{7} = \frac{2b-1}{3}$$

$$45-12b = 14b-7$$

$$45+7 = 14b+12b$$

$$52 = 26b$$

$$b=2$$

 \therefore The co-ordinates of the point (6,2)

(iii)

$$5x - (5 - x) = \frac{1}{2}(3 - x); \ 4 - 3y = \frac{4 + y}{3}$$

$$5x - (5 - x) = \frac{1}{2}(3 - x)$$

$$(5x + x) - 5 = \frac{1}{2}(3 - x)$$

$$12x - 10 = 3 - x$$

$$12x + x = 3 + 10$$

$$13x = 13$$

$$x = 1$$

$$4 - 3y = \frac{4 + y}{3}$$

$$12 - 9y = 4 + y$$

$$12 - 4 = y + 9y$$

$$8 = 10y$$

$$\frac{8}{10} = y$$

$$\frac{4}{5} = y$$

$$\therefore \text{ The co-ordinates of the point } \left(1, \frac{4}{5}\right)$$

- 7. In each of the following, the co-ordinates of the three vertices of a rectangle ABCD are given. By plotting the given points; find, in each case, the co-ordinates of the fourth vertex:
- (i) A (2, 0), B (8, 0) and C (8, 4).
- (ii) A (4, 2), B (-2, 2) and D (4, -2).
- (iii) A (-4, -6), C (6, 0) and D(-4, 0).
- (iv) B(10, 4), C(0, 4) and D(0, -2).

Solution:

(i) A (2, 0), B (8, 0) and C (8, 4).

(iii) A (-4, -6), C (6, 0) and D(-4, 0).

(iv) B (10, 4), C (0, 4) and D(0, -2).

8. A (-2, 2), B (8, 2) and C (4, -4) are the vertices of a parallelogram ABCD. By plotting the given points on a graph paper; find the co-ordinates of the fourth vertex D. Also, form the same graph, state the co-ordinates of the mid-points of the sides AB and CD. Solution:

Joining A, B, C and D we get the parallelogram ABCD. According to the graph, we get, D(-6,4) From the graph, The co-ordinates of the mid-point of AB is E(3,2)

The co-ordinates of the mid-point of AB is E(3,2)The co-ordinates of the mid-point of CD is F(-1,-4)

- 9. A (-2, 4), C(4, 10) and D(-2, 10) are the vertices of a square ABCD. Use the graphical method to find the co-ordinates of the fourth vertex B. Also, find:
- (i) The co-ordinates of the mid-point of BC;
- (ii) The co-ordinates of the mid-point of CD and

(iii) The co-ordinates of the point of intersection of the diagonals of the square ABCD. Solution:

Given , A (-2, 4), C(4, 10) and D(-2, 10) are the vertices of a square ABCD

According to the graph, we get, B(4,4) From the graph, The co-ordinates of the mid-point of BC is E(4,7) The co-ordinates of the mid-point of CD is F(1,10) the co-ordinates of the diagonals of the square is G(1,7)

10. By plotting the following points on the same graph paper. Check whether they are collinear or not:

(i) (3, 5), (1, 1) and (0, -1) (ii) (-2, -1), (-1, -4) and (-4, 1) Solution:

After plotting the given points, we have clearly seen from the graph that

- (i) A (3, 5), B (1, 1) and C (0, -1) are collinear
- (ii) P (-2, -1), Q (-1, -4) and R (-4, 1) are non-collinear

11. Plot the point A (5, -7). From point A, draw AM perpendicular to x-axis and AN perpendicular to y-axis. Write the co-ordinates of points M and N. Solution:

Given A (5, -7).

According to the graph, Co-ordinate of the point M is (5, 0) Co-ordinate of the point N is (0,-7)

12. In square ABCD; A = (3, 4), B = (-2, 4) and C = (-2, -1). By plotting these points on a graph paper, find the co-ordinates of vertex D. Also, find the area of the square. Solution:

Given that in square ABCD; A = (3, 4), B = (-2, 4) and C = (-2, -1)

According to the graph,

The vertical distance between the points B (-2, 4) and C (-2, -1) is 5 units.

The horizontal distance between the points B (-2, 4) and A (3, 4) is 5 units.

The vertical distance between the points A (3, 4) and D must be 5 units.

The horizontal distance between the points C (-2, -1) and D must be 5 units.

Now, complete the square ABCD

Hence, from the graph D(3,-1)

Thus, the area of the square ABCD is given by, Area of ABCD = $(side)^2 = (5)^2 = 25$ units

13. In rectangle OABC; point O is the origin, OA = 10 units along x-axis and AB = 8 units. Find the co-ordinates of vertices A, B and C.

Solution: According to the question, Since, O is the origin, OA = 10 units along x-axis, We get, O (0,0) and A(10,0) Similarly, As AB = 8 units

B (10, 8) and C (0, 8)

EXERCISE 26(B)

PAGE:320

- 1. Draw the graph for each linear equation given below:
 - (i) x = 3(ii) x + 3 = 0
 - (iii) x 5 = 0
 - (iv) 2x 7 = 0
 - $(\mathbf{v}) \qquad \mathbf{y} = \mathbf{4}$
 - (vi) y + 6 = 0
 - (vii) y 2 = 0
 - (viii) 3y + 5 = 0
 - (ix) 2y 5 = 0
 - $(\mathbf{x}) \qquad \mathbf{y} = \mathbf{0}$
 - $(\mathbf{x}\mathbf{i}) \qquad \mathbf{x} = \mathbf{0}$

Solution:

(i)

(ii)

X	-3	-3	-3
У	-1	0	1

(iii)

(iv)

We can also write the equation as:

$$x = \frac{7}{2}$$

(v)

Concise Selina Solutions for Class 9 Maths Chapter 26-Co-ordinate Geometry

(vi)

(vii)

(viii)

(ix)

Х	-1	0	1
Y	5 2	5 2	5 2

(x)

(xi)

2. Draw the graph for each linear equation given below:

(i) y = 3x(ii) **y** = -**x** (iii) y = -2x(iv) $\mathbf{y} = \mathbf{x}$ 5x + y = 0**(v)** (vi) x + 2y = 0 $4\mathbf{x} - \mathbf{y} = \mathbf{0}$ (vii) (viii) 3x+2y=0

(ix)
$$x = -2y$$

(i)

(iii)

(iv)

Х	-1	0	1
у	-1	0	1

(vi)

(v)

Х	-1	0	1
у	$\frac{1}{2}$	0	$-\frac{1}{2}$

(vii)

Concise Selina Solutions for Class 9 Maths Chapter 26-Co-ordinate Geometry

(viii)

(ix)

3. Draw the graph for the each linear equation given below:

3. Draw the graph fo (i) y = 2x + 3(ii) $y = \frac{2x}{3} - 1$ (iii) y = -x + 4(iv) $y = 4x - \frac{5}{2}$ (v) $y = \frac{3x}{2} + \frac{2}{3}$ (vi) 2x - 3y = 4(vii) $\frac{x-1}{3} - \frac{y+2}{2} = 0$ (viii) $x - 3 = \frac{2}{5}(y + 1)$ (ix) x + 5y + 2 = 0Solution:

Solution:

(i)

(ii)

Х	-1	0	1
У	$-\frac{5}{3}$	-1	$-\frac{1}{3}$

(v)

(vi)

Х	-1	0	1
у	-2	$-\frac{4}{3}$	$-\frac{2}{3}$

(vii)

The equation can be written as,

2x-3y=8

(viii)

(ix)

Concise Selina Solutions for Class 9 Maths Chapter 26-Co-ordinate Geometry

The equation can be written as,

4. Draw the graph for each equation given below:

- (i) 3x + 2y = 6 $2\mathbf{x} - 5\mathbf{y} = 10$ **(ii)**
- (iii)
- $\frac{2x 3y}{\frac{1}{2}x + \frac{2}{3}y = 5}$ $\frac{2x 1}{3} \frac{y 2}{5} = 0$ (iv)

In each case, find the co-ordinates of the points where the graph (line) drawn meets the coordinates axes.

Solution:

(i)

According to the graph, the line intersect x axis at (2,0) and y at (0,3).

(ii)

Х	-1	0	1
Y	$-\frac{12}{5}$	-2	S N

BYJU'S

Concise Selina Solutions for Class 9 Maths Chapter 26-Co-ordinate Geometry

According to the graph, the line intersect *x* axis at (5,0) and *y* at (0,-2). (iii)

According to the graph, the line intersect x axis at (10,0) and y at (0,7.5).

(iv)

According to the graph, the line intersect x axis at $\left(-\frac{1}{10}, 0\right)$ and y at (0, 4.5).

- 5. For each linear equation, given above, draw the graph and then use the graph drawn (in each case) to find the area of a triangle enclosed by the graph and the co-ordinates axes:
- (i) $3x \cdot (5 \cdot y) = 7$ (ii) $7 \cdot 3(1 \cdot y) = -5 + 2x$. Solution:

(i)

Area of the right triangle obtained will be:

$$= \frac{1}{2} \times base \times altitude$$
$$= \frac{1}{2} \times 4 \times 12$$
$$= 24 \text{ sq.units}$$

(ii)

Area of the right triangle obtained will be:

$$A = \frac{1}{2} \times base \times altitude$$
$$= \frac{1}{2} \times \frac{9}{2} \times 3$$
$$= \frac{27}{4} = 6.75 \text{ sq.units}$$

- 6. For each pair of linear equations given below, draw graphs and then state, whether the lines drawn are parallel or perpendicular to each other.
- (i) y = 3x 1y = 3x + 2
- (ii) y = x 3
- $\mathbf{y} = -\mathbf{x} + \mathbf{5}$
- (iii) 2x 3y = 6

$$\frac{x}{2} + \frac{y}{3} = 1$$

(iv)
$$3x + 4y = 24$$
$$\frac{\times}{4} + \frac{\vee}{3} = 1$$

Solution:

(ii) According to the graph, the lines are parallel. (ii) To draw the graph of y = x - 3 and y = -x + 5 follows the steps:

Х	-1	0	1
Y=x-3	-4	-3	-2
Y=-x+5	6	5	4

According to the graph, the lines are perpendicular.

	٠	٠	٠	<u>`</u>	
	1	1	1	۰	
۰.					
				/	

X	-1	0	1
$y = \frac{2}{3}x - 2$	8 3	-2	4 m
$y = -\frac{3}{2} \times +3$	912	3	3 2

According to the graph, the lines are perpendicular.

(iv)

Х	-1	0	1
$y = -\frac{3}{4}x + 6$	<u>27</u> 4	6	$\frac{21}{4}$
$y = -\frac{3}{4} \times +3$	$\frac{15}{4}$	3	9 4

According to the graph, the lines are parallel.

7. On the same graph paper, plot the graph of y = x - 2, y = 2x + 1 and y = 4 from x = -4 to 3. Solution:

X	-1	0	1
Y=x-2	-3	-2	-1
Y=2x+1	-1	1	3
Y=4	4	4	4

First prepare a table as follows:

Now the graph can be drawn as follows:

8. On the same graph paper, plot the graphs of y = 2x - 1, y = 2x and y = 2x + 1 from x = -2 to x = 4. Are the graphs (lines) drawn parallel to each other? Solution:

Х	-1	0	1
Y=2x-1	-3	-1	1
$\mathbf{Y} = 2\mathbf{x}$	-2	0	2
Y=2x+1	-1	1	3

According to the graph, the lines are parallel to each other.

9. The graph of 3x + 2y = 6 meets the x=axis at point P and the y-axis at point Q. Use the graphical method to find the co-ordinates of points P and Q. Solution:

Х	-2	0	2
Y	6	3	0

BYJU'S

Concise Selina Solutions for Class 9 Maths Chapter 26-Co-ordinate Geometry

According to the graph, the line intersect x axis at (2,0) and y at (0,3). The coordinates of P(x-axis) and Q(y-axis) are (2,0) and (0,3) respectively.

10. Draw the graph of equation x + 2y - 3 = 0. From the graph, find:

- (i) x_1 , the value of x, when y = 3
- (ii) x_2 , the value of x, when y = -2.

Solution:

Х	-1	0	1
Y	2	<u>3</u> 2	1

(i) When y = 3, we get x = -3(ii) When y = -2, we get x = 7

11. Draw the graph of the equation 3x - 4y = 12. Use the graph drawn to find:

- y_1 , the value of y, when x = 4. (i)
- y_2 , the value of y, when x = 0. **(ii)**

Solution:

Х	-1	0	1
У	$-\frac{15}{4}$	-3	$-\frac{9}{4}$

According to the graph,

When x = 4, y = 0When x = 0, y = -3.

12. Draw the graph of equation $\frac{x}{4} + \frac{y}{5} = 1$. Use the graph drawn to find: x_1 , the value of x, when y = 10(i)

- y_1 , the value of y, when x = 8. (ii)

Solution:

Х	-1	0	1
у	25 4	5	<u>15</u> 4

According to the graph, When y = 10, the value of x = -4. When x = 8 the value of y = -5.

13. Use the graphical method to show that the straight lines given by the equations x + y = 2, x - 2y = 5 and $\frac{x}{3} + y = 0$ pass through the same point.

Solution:

We can write the given equation as:

$$y = 2 - x$$

$$y = \frac{1}{2}(x - 5)$$

$$y = -\frac{x}{3}$$

Х	y = 2 - x	$y = \frac{1}{2}(x - 5)$	$y = -\frac{x}{3}$
-1	3	-3	$\frac{1}{3}$
0	2	$-\frac{5}{2}$	0
1	1	-2	$-\frac{1}{3}$

According to the graph, the equation of lines are passes through the same point.

EXERCISE 26(C)

PAGE:323

1. In each of the following, find the inclination of line AB:

Solution:

We know that, the angle which a straight line makes with the positive direction of x-axis (measured in anticlockwise direction) is called inclination of the line.

- (i) The inclination is $\theta = 45^{\circ}$
- (ii) The inclination is $\theta = 135^{\circ}$
- (iii) The inclination is $\theta = 30^{\circ}$

- 2. Write the inclination of a line which is:
- **(i)** Parallel to x-axis.
- (ii) Perpendicular to x-axis.
- Parallel to y-axis. (iii)
- (iv) Perpendicular to y-axis.

Solution:

- (i) $\theta = 0^{\circ}$ is the inclination of a line parallel to x-axis.
- (ii) $\theta = 90^{\circ}$ is the inclination of a line perpendicular to x-axis.
- $\theta = 90^{\circ}$ is the inclination of a line parallel to y-axis. (iii)
- (iv) $\theta = 0^{\circ}$ is the inclination of a line perpendicular to y-axis.

3. Write the slope of the line whose inclination is:

- 00 (i)
- 30° (ii)
- 45° (iii)
- 60° (iv)

Solution:

We know that, the slope of the line is $\tan \theta$ if θ is the inclination of a line. Slope is usually denoted by letter m.

- Here the inclination of a line is 0° , then $\theta = 0^\circ$ (i) Hence, the slope of the line is $m = \tan 0^\circ = 0$
- Here the inclination of a line is 30° , then $\theta = 30^\circ$ (ii) Hence, the slope of the line is $m = \tan \theta = 30^{\circ} = \frac{1}{\sqrt{3}}$
- Here the inclination of a line is 45° , then $\theta = 45^{\circ}$ (iii) Hence, the slope of the line is $m = \tan 45^\circ = 1$
- Here the inclination of a line is 60° , then $\theta = 60^\circ$ (iv) Hence, the slope of the line is $m = \tan 60^\circ = \sqrt{3}$

4. Find the inclination of the line whose slope is:

- (i) 0
- 1 **(ii)**
- $\sqrt{3}$ (iii)
- $\frac{1}{\sqrt{3}}$ (iv)

Solution:

We know that, if tan θ is the slope of a line; then inclination of the line is θ

When slope of line is 0; then $\tan \theta = 0$ (i)

> $\tan \theta = 0$ $\tan \theta = \tan 0^0$

$$\theta = 0^0$$

So, the inclination of the given line is $\theta = 0^{\circ}$

- (ii) When slope of line is 1; then tan θ = 1 tan θ = 1
 tan θ = tan 45⁰ θ = 45⁰ So, the inclination of the given line is θ = 45°
 (iii) When slope of line is √3; then tan θ = √3 tan θ = √3
- tan $\theta = \sqrt{3}$ tan $\theta = \tan 60^{\circ}$ $\theta = 60^{\circ}$ So, the inclination of the given line is $\theta = 60^{\circ}$ (iv) When slope of line is $\frac{1}{\sqrt{3}}$; then tan $\theta = \frac{1}{\sqrt{3}}$ tan $\theta = \frac{1}{\sqrt{3}}$

$$\tan \theta = \tan 30^{\circ}$$

 $\theta = 30^{\circ}$
So, the inclination of the given line is $\theta = 30^{\circ}$

- 5. Write the slope of the line which is:
- (i) **Parallel to x-axis.**
- (ii) **Perpendicular to x-axis.**
- (iii) Parallel to y-axis.
- (iv) Perpendicular to y-axis.

Solution:

- (i) The inclination of line parallel to x-axis is $\theta = 0^{\circ}$ Slope (m) = tan θ = tan $0^{\circ} = 0$
- (ii) The inclination of line perpendicular to x-axis, the inclination is $\theta = 90^{\circ}$ Slope (m) = tan θ = tan $90^{\circ} = \infty$ (not defined)
- (iii) The inclination of line parallel to y-axis, the inclination is $\theta = 90^{\circ}$ Slope(m) = tan θ = tan $90^{\circ} = \infty$ (not defined)
- (iv) The inclination of line perpendicular to y-axis, the inclination is $\theta = 0^{\circ}$ Slope(m) = tan θ = tan $0^{\circ} = 0$

6. For each of the equation given below, find the slope and the y-intercept:

- (i) x + 3y + 5 = 0
- (ii) 3x y 8 = 0
- (iii) 5x = 4y + 7
- (iv) x = 5y 4
- (v) y = 7x 2
- (vi) 3y = 7

(vii) 4y + 9 = 0

Solution:

Equation of any straight line in the form y = mx + c, where slope = m(co-efficient of x) and y-intercept = c(constant term)

(i)

$$x+3y+5=0$$

$$3y = -x-5$$

$$y = \frac{-x-5}{3}$$

$$y = \frac{-1}{3}x + \left(-\frac{5}{3}\right)$$

slope = co-efficient of $x = -\frac{1}{3}$
y-intercept = constant term = $-\frac{5}{3}$

(ii)

$$3x - y - 8 = 0$$
$$-y = -3x + 8$$
$$y = 3x + (-8)$$

slope = co-efficient of x = 3y-intercept = constant term = -8

(iii)

$$5x = 4y + 7$$

$$4y = 5x - 7$$

$$y = \frac{5x - 7}{4}$$

$$y = \frac{5}{4}x + \left(-\frac{7}{4}\right)$$

slope = co-efficient of $x = \frac{5}{4}$
y-intercept = constant term = $-\frac{7}{4}$

(iv)

$$x = 5y - 4$$

$$5y = x + 4$$

$$y = \frac{x + 4}{5}$$

$$y = \frac{1}{5}x + \frac{4}{5}$$

slope = co-efficient of $x = \frac{1}{5}$
y-intercept = constant term = $\frac{4}{5}$
(v)

$$y = 7x - 2$$

$$y = 7x + (-2)$$

slope = co-efficient of $x = 7$
y-intercept = constant term = -2
(vi)

$$3y = 7$$

$$3y = 0 \cdot x + 7$$

$$y = \frac{0}{7}x + \frac{7}{3}$$

$$y = 0 \cdot x + \frac{7}{3}$$

slope = co-efficient of $x = 0$
y-intercept = constant term = $\frac{7}{3}$
(vii)

$$4y + 9 = 0$$

$$4y = 0 \cdot x - 9$$

$$y = \frac{0}{4}x - \frac{9}{4}$$

$$y = 0 \cdot x + \left(-\frac{9}{4}\right)$$

slope = co-efficient of $x = 0$
y-intercept = constant term = $-\frac{9}{4}$

7. Find the equation of the line whose:


```
(i) slope = 2 and y-intercept = 3
```

- (ii) slope = 5 and y-intercept = -8
- (iii) slope = -4 and y-intercept = 2
- (iv) slope = -3 and y-intercept = -1
- (v) slope = 0 and y-intercept = -5

```
(vi) slope = 0 and y-intercept = 0
```

Solution:

(i) Slope is 2, so, m = 2 Y-intercept is 3, so, c = 3 y = mx + cy = 2x + 3

Hence, the equation of the required line is y = 2x + 3

```
(ii) Slope is 5, so m = 5
```

```
Y-intercept is -8, so c = -8
y = mx + c
```

```
y = 5x + -8
```

Hence, the equation of the required line is y = 5x + (-8)

```
(iii) Slope is -4, so, m = -4
Y-intercept is 2, so, c = 2
y = mx + c
```

```
y = -4x + 2
```

Hence, the equation of the required line is y = -4x + 2

```
(iv) Slope is -3, so, m = -3
Y-intercept is -1, so, c = -1
y = mx + c
```

```
y = -3x - 1
```

Hence, the equation of the required line is y = -3x - 1

```
(v) Slope is 0, so, m = 0
Y-intercept is -5, so, c = -5
y = mx + c
```

```
y = 0 \cdot x + (-5)
```

y = -5

Hence, the equation of the required line is y = -5

(vi) Given

```
Slope is 0, so, m = 0
Y-intercept is 0, so, c = 0
y = mx + c
```

 $y = 0 \cdot x + 0$

y = 0

Hence, the equation of the required line is y = 0

Draw the line 3x + 4y = 12 on a graph paper. From the graph paper. Read the y-intercept of the line.

Solution:

According to the graph, the required y-intercept is 3

9. Draw the line 2x - 3y - 18 = 0 on a graph paper. From the graph paper read the y-intercept of the line?
Solution:

According to the graph, the required y-intercept is -6

10. Draw the graph of line x + y = 5. Use the graph paper drawn to find the inclination and the y-intercept of the line.Solution:

$$x + y = 5$$

 $y = -x + 5$
 $y = (-1) \cdot x + 5 \dots (A)$

We know that equation of any straight line in the form y = mx + c, From equation (A), we have

```
m = -1
\tan \theta = -1
\tan \theta = \tan 135^{\circ}
     \theta = 135^{\circ}
And, c = 5
```

Hence, the required inclination is $\theta = 135^{\circ}$ and y-intercept is c = 5