KARNATAKA COMMON ENTRANCE EXAMINATION ## **CHEMISTRY SAMPLE PAPER** | 1. | IUPAC name of H ₃ C—(| CHCH ₂

 OH | -CHCH ₃

 COOH | is | | |------------------|--|---|-------------------------------------|--|---| | Ans | (1) 4-hydroxy 1 methy
(3) 2-hydroxy 4 methy
: (2) | | | | | | | Alkali metals have neg
(1) Oxidising agents
: (3) | | | | | | | Which of the following
(1) CH ₄
: (1) | gases has t
(2) CO | he highest v | value of RMS – velocity
(3) Cl ₂ | at 298 K?
(4) CO ₂ | | | Cycloalkane formed wl
(1) Methyl cyclobutane
(3) Cyclobutane
: (2) | | | ne is heated with Sodiu
(2) Cyclopentane
(4) Methyl cyclopentau | | | 5.
Ans | In the reaction, 2FeS
(1) FeSO ₄
(3) H ₂ O ₂
:: (3) | O ₄ + H ₂ SO ₄ | + H ₂ O ₂ → I | Fe ₂ (SO ₄) ₃ + 2H ₂ O, th
(2) H ₂ SO ₄
(4) Both H ₂ SO ₄ and | | | 6.
Ans | decomposition of wat | | | $O_{2 (g)} \rightarrow 2H_2O_{(\ell)}$;
(3) -1143.2 kJ | Δ H = -571.6 kJ. Heat o (4) +285.8 kJ | | | (1) 1-Butene :: (4) The electronic configu | (2) n-Bute | ene
u ²⁺ ion is | (3) 2-Butene (3) [Ar] 3d ⁷ 4s ² | (4) Butadiene
(4) [Ar] 3d ⁸ 4s° | | Ans | : (2) | | | | | | 9.
Ans | (1) High temperature and high pressure | | | (g) + 2B(g) ≠ C(g) + Q. kJ would be higher at
(2) High temperature and low pressure
(4) Low temperature and low pressure | | | Mesomeric effect involves (1) delocalisation of π - electro (3) partial displacement of electrons: (1) | | (2) delocalisation of
(4) delocalisation of | | | | | |--|------------------|--|-------------------------|--|--|--| | Which one of the following sets
(1) K ⁺ , Cl ⁻ , Mg ²⁺ , Sc ³⁺
(3) K ⁺ , Ca ²⁺ , Sc ³⁺ , Cl ⁻
:: (3) | s of ions repres | ents the collection of isoelectronic species?
(2) Na ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻
(4) Na ⁺ , Mg ²⁺ , Al ³⁺ , Cl ⁻ | | | | | | Adsorption theory is applicable (1) Homogeneous catalysis (3) Autocatalysis (2) | e for | (2) Heterogeneous catalysis
(4) Induced catalysis | | | | | | 13. Methane can be converted into Ethane by the reactions (1) Chlorination followed by the reaction with alcoholic KOH (2) Chlorination followed by the reaction with aqueous KOH (3) Chlorination followed by Wurtz reaction (4) Chlorination followed by decarboxylation Ans: (3) | | | | | | | | | | (3) NH ₃ | (4) Benzophenone | | | | | If 50% of the reactant is conve
much of it would react in 100 m
(1) 93.75% (2) 87.5°
(1) | ninutes? | luct in a first reaction | (4) 100% | | | | | The number of optical isomers (1) 0 (2) 1 (4) | | d CH ₃ – CHBr – CHBr
(3) 3 | – COOH is
(4) 4 | | | | | When limestone is heated, CO ₂ (1) Smelting (2) Redu (3) | | e metallurgical opera
(3) Calcination | tion is
(4) Roasting | | | | | 18. The rate of reaction increases with rise in temperature because of increase in number of activated molecules increase in energy of activation decrease in energy of activation increase in the number of effective collisions Ans: (1, 3 & 4) | | | | | | | | 19. | Meso compounds do not show optical activity because (1) they do not contain chiral carbon atoms (2) they have non-super imposable mirror images (3) they contain plane of symmetry (4) they do not contain plane of symmetry | | | | | | | |-----|--|--------------------------------|--|----------------------|--|--|--| | Ans | : (3) | , , | | | | | | | | When formic acid is heat
(1) only CO ₂
(3) a mixture of 'CO' and
: (2) | | H ₂ SO ₄ , the gas evolved is
(2) only 'CO'
(4) a mixture of 'SO ₂ ' and 'C | O ₂ ' | | | | | | 90°C, the rate of reaction | n is increased by | When temperature is incre. (3) 150 times (4) 4 | ased from 30°C to | | | | | | Conversion of benzene to
(1) Wurtz reaction
(3) Friedel Crafts alkylat
: (4) | | e brought by
(2) Wurtz-Fittig's reaction
(4) Friedel Crafts acylation | | | | | | | 23. Excess of PCl ₅ reacts with concentrated H ₂ SO ₄ giving (1) Chlorosulphuric acid (3) Sulphury chloride (4) Thionyl chloride Ans: (3) | | | | | | | | | 24. An example for a neutral buffer is (1) Ammonium hydroxide and Ammonium chloride (2) Acetic acid and Sodium acetate (3) Acetic acid and Ammonium hydroxide (4) Citric acid and Sodium citrate Ans: (3) | | | | | | | | | Least energetic confor
(1) Chain conformatio
(3) Cis conformation
s: (1) | | ne is
(2) Boat conformation
(4) E-z form | | | | | | | Which of the following (1) Ar s: (4) | is employed in flasl
(2) Ne | n tubes in photograph?
(3) Kr | (4) Xe | | | | | | Conjugate base of H ₂ F
(1) HPO -
s: (2) | PO 4 is
(2) HPO 4 | (3) H ₃ PO ₄ | (4) PO ³⁻ | | | | | 28. | An alkyl bromide (X) reacts with Sodium in ether to form 4, 5-diethyl octane, the compound 'X' is | | | | | | |--------------------|--|----------------------------------|----------------|--|--|--| | Δns | (1) CH ₃ (CH ₂) ₃ Br | | | (2) CH₃(CH₂)₅Br
(4) CH₃ - (CH₂)₂ - CH(Br) - CH₂ - CH₃ | | | | Alla | . (1) | | | | | | | 29. | Which one of the following shows highest ma
(1) Fe²⁺ (2) CO²⁺ | | | etic moment?
3) Cr ³⁺ | (4) Ni ²⁺ | | | Ans | : (1) | | | | | | | 30. | The emf of a galvanic Fe ²⁺ Fe(-0.41V) is | cell constitut | ted with the e | electrodes Zn ²⁺ Zn (-0.76 V) and | | | | | (1) -0.35 V | (2) +1.17 V | (| 3) +0.35 V | (4) -1.17 V | | | Ans | : (3) | | | | | | | 31. | Which of the following | ng pairs are | correctly mat | ched? | | | | | Desetants | | Nadusts | 1 | | | | | I. RX + AgOH | | Products
H | | | | | | II. $RX + AgCN_0$ | 947 | NC | | | | | | III. $RX + KCN_{(a)}$ | , | NC | | | | | | IV. RX + Na _{(ethe} | er) R | k-R | | | | | Ans | 1) I alone
: (4) | 2) I and II | | 3) II and III | 4) II and IV | | | | 32. In a transition series, with increase in atomic-number, the paramagnetism 1) increases gradually 2) decreases gradually 3) first increases to a maximum and then decreases 4) first decreases to a minimum and then increases Ans: (3) | | | | | | | 33. | Identify a species v | which is 'NOT | Γ' a Bronsted | acid but a Lewis acid | d. | | | Δn | 1) BF ₃ | 2) H ₃ ⁺ O | | 3) NH ₃ | 4) HCl | | | AII | s: (1) | | | | | | | 34. | | | | and calcium format | te is dray distilled.
4) Acetophenone | | | An | s: (2) | | | | 4) Acetophenone | | | 35. | 5. d ² sp ³ hybridisation of the atomic orbitals gives | | | | | | | | Square planar structure Tetrahedral structure | | | Triangular structure Octahedral structure | | | | An | s: (4) | | | • | | | | 36. | The pH of 10 ⁻⁸ M H | Cl solution is | S | | | | | An | 1) 8
s: (2) | 2) 6.9586 | | 3) More than 8 | 4) Slightly more than 7 | | | 37.
A n: | Which of the follow
1) Phenol
s: (3) | ing is strong
2) o-creso | | 3) p-nitrophenol | 4) p-cresol | | | | | | | | | | | 38.
Ans: | A group of atoms can function as a ligand of 1) it is a small molecule 3) it is a negatively charged ion (2) | 2) it has an unshare | y when 2) it has an unshared electron pair 4) it is a positively charge ion | | | | |-----------------------|---|--|---|--|--|--| | 39.
Ans: | Which of the following is 'NOT' a colligative 1) Elevation in boiling point 3) Osmotic pressure (4) | 2) Depression in fre | operty? 2) Depression in freezing point 4) Lowering of vapour pressure | | | | | 40.
Ans: | Acetone and Propanal are 1) Functional isomers 3) Geometrical isomers (1) | | Position isomers Optical isomers | | | | | 41.
Ans: | Which of the following is diamagnetic? 1) H ₂ ⁺ 2) He ₂ ⁺ (4) | 3) O ₂ | 4) N ₂ | | | | | 42.
Ans: | 3 gms of urea is dissolved in 45 gms of H ₂ (1) 0.05 2) 0.04 (3) | O. The relative lowering
3) 0.02 | in vapour pressure is
4) 0.01 | | | | | 43.
Ans: | The reagent used to distinguish between ac
1) Tollen's reagent
3) 2-4-dinitrohenyl hydrazine
(2) | cetaldehyde and benzal
2) Fehling's solution
4) Semicarbazide | | | | | | 44.
A ns: (| Metallic luster is due to 1) high density of metals 3) reflection of light by mobile electrons (3) | | 2) high polish on the surface of metals4) chemical inertness of metals | | | | | 45.
Ans: (| Which of the following aqueous solutions will exhibit highest boiling point? 1) 0.01 M urea 2) 0.01 M KNO ₃ 3) 0.01 M Na ₂ SO ₄ 4) 0.015M C ₆ H ₁₂ O ₆ : (3) | | | | | | | 46.
Ans: (| Which one of the following gives amine on
1) Br ₂ in aqueous KOH
3) Cl ₂ in Sodium
(1) | heating with amide?
2) Br ₂ on alcoholic
4) Sodium in Ether | | | | | | 47.
A ns: (| The number of antibonding electrons present 1) 8 2) 6 (3) | ent in O ₂ - molecular ion
3) 5 | 1 is
4) 4 | | | | | 48.
Ans: (| The process is spontaneous at the given temperature, if 1) ΔH is +ve and ΔS is -ve 2) ΔH is -ve and ΔS is +ve 3) ΔH is +ve and ΔS is +ve 4) ΔH is +ve and ΔS is equal to zero (2) | | | | | | | 49.
Ans: (| Glucose when reduced with HI and Red Ph
1) n-hexane 2) n-heptane
(1) | osphorus gives
3) n-pentane | 4) n-octane | | | | | Ans: | 1) Adsorption of covalent molecules on the colloid 2) The size of the particles 3) The charge on the particles 4) Tyndall effect : (1) | | | | | | |--------------------|--|--|---|---|--|--| | 51.
Ans: | Oils are liquids at ro
1) Oleates | oom temperature since the
2)Palmitates | | entage of
4) Myristates | | | | 52.
Ans: | 1) Na ⁺ | ng cations will have miniu
2) Mg ²⁺ | m flocculation value fo
3) Ca ²⁺ | or arsenic sulphide sol?
4) Al ³⁺ | | | | 53.
Ans: | The value of entrop
1) increasing
(1) | y of solar system is
2) decreasing | 3) constant | 4) zero | | | | 54.
Ans: | 1) 6 | ic lattice, a unit cell is shai
2) 4 | red equally by how ma
3) 2 | nny unit cells?
4) 8 | | | | 55.
Ans: | 1) 4 | lphide linkages present in
2) 3 | Insulin are
3) 2 | 4) 1 | | | | 56.
Ans: | 1) Al | e refining is used in the p
2) Ge | urification of
3) Cu | 4) Ag | | | | 57.
Ans: | 1) 6.022 x 10 ²⁶ | er molecules present in a
2) 6.022 x 10 ²³ | drop of water weight
3) 6.022 x 10 ¹⁹ | | | | | 58.
Ans: | formula of the com
1) C₃H ₆ O ₃ | of a compound is CH ₂ O and pound is 2) C ₂ H ₄ O ₂ | d its molecular mass 3) C ₆ H ₁₂ O ₆ | is 90, the molecular 4) CH_2O | | | | 59.
Ans: | 1) sp ³ , sp ³ | f carbon in Graphite and
2) sp ³ , sp ² | Diamond are respect
3) sp ² , sp ² | ively
4) sp ² , sp ³ | | | | 60.
Ans: | 1) 0.085 g | n ³ of NH ₃ gas at STP is
2) 0.850 g | 3) 8.500 g | 4) 80.500 g | | |