KARNATAKA COMMON ENTRANCE EXAMINATION

CHEMISTRY SAMPLE PAPER

1.	IUPAC name of H ₃ C—(CHCH ₂ OH	-CHCH ₃ COOH	is	
Ans	(1) 4-hydroxy 1 methy (3) 2-hydroxy 4 methy : (2)				
	Alkali metals have neg (1) Oxidising agents : (3)				
	Which of the following (1) CH ₄ : (1)	gases has t (2) CO	he highest v	value of RMS – velocity (3) Cl ₂	at 298 K? (4) CO ₂
	Cycloalkane formed wl (1) Methyl cyclobutane (3) Cyclobutane : (2)			ne is heated with Sodiu (2) Cyclopentane (4) Methyl cyclopentau	
5. Ans	In the reaction, 2FeS (1) FeSO ₄ (3) H ₂ O ₂ :: (3)	O ₄ + H ₂ SO ₄	+ H ₂ O ₂ → I	Fe ₂ (SO ₄) ₃ + 2H ₂ O, th (2) H ₂ SO ₄ (4) Both H ₂ SO ₄ and	
6. Ans	decomposition of wat			$O_{2 (g)} \rightarrow 2H_2O_{(\ell)}$; (3) -1143.2 kJ	Δ H = -571.6 kJ. Heat o (4) +285.8 kJ
	(1) 1-Butene :: (4) The electronic configu	(2) n-Bute	ene u ²⁺ ion is	(3) 2-Butene (3) [Ar] 3d ⁷ 4s ²	(4) Butadiene (4) [Ar] 3d ⁸ 4s°
Ans	: (2)				
9. Ans	(1) High temperature and high pressure			(g) + 2B(g) ≠ C(g) + Q. kJ would be higher at (2) High temperature and low pressure (4) Low temperature and low pressure	

Mesomeric effect involves (1) delocalisation of π - electro (3) partial displacement of electrons: (1)		(2) delocalisation of (4) delocalisation of				
Which one of the following sets (1) K ⁺ , Cl ⁻ , Mg ²⁺ , Sc ³⁺ (3) K ⁺ , Ca ²⁺ , Sc ³⁺ , Cl ⁻ :: (3)	s of ions repres	ents the collection of isoelectronic species? (2) Na ⁺ , Ca ²⁺ , Sc ³⁺ , F ⁻ (4) Na ⁺ , Mg ²⁺ , Al ³⁺ , Cl ⁻				
Adsorption theory is applicable (1) Homogeneous catalysis (3) Autocatalysis (2)	e for	(2) Heterogeneous catalysis (4) Induced catalysis				
 13. Methane can be converted into Ethane by the reactions (1) Chlorination followed by the reaction with alcoholic KOH (2) Chlorination followed by the reaction with aqueous KOH (3) Chlorination followed by Wurtz reaction (4) Chlorination followed by decarboxylation Ans: (3) 						
		(3) NH ₃	(4) Benzophenone			
If 50% of the reactant is conve much of it would react in 100 m (1) 93.75% (2) 87.5° (1)	ninutes?	luct in a first reaction	(4) 100%			
The number of optical isomers (1) 0 (2) 1 (4)		d CH ₃ – CHBr – CHBr (3) 3	– COOH is (4) 4			
When limestone is heated, CO ₂ (1) Smelting (2) Redu (3)		e metallurgical opera (3) Calcination	tion is (4) Roasting			
 18. The rate of reaction increases with rise in temperature because of increase in number of activated molecules increase in energy of activation decrease in energy of activation increase in the number of effective collisions Ans: (1, 3 & 4) 						

19.	Meso compounds do not show optical activity because (1) they do not contain chiral carbon atoms (2) they have non-super imposable mirror images (3) they contain plane of symmetry (4) they do not contain plane of symmetry						
Ans	: (3)	, ,					
	When formic acid is heat (1) only CO ₂ (3) a mixture of 'CO' and : (2)		H ₂ SO ₄ , the gas evolved is (2) only 'CO' (4) a mixture of 'SO ₂ ' and 'C	O ₂ '			
	90°C, the rate of reaction	n is increased by	When temperature is incre. (3) 150 times (4) 4	ased from 30°C to			
	Conversion of benzene to (1) Wurtz reaction (3) Friedel Crafts alkylat : (4)		e brought by (2) Wurtz-Fittig's reaction (4) Friedel Crafts acylation				
	23. Excess of PCl ₅ reacts with concentrated H ₂ SO ₄ giving (1) Chlorosulphuric acid (3) Sulphury chloride (4) Thionyl chloride Ans: (3)						
	24. An example for a neutral buffer is (1) Ammonium hydroxide and Ammonium chloride (2) Acetic acid and Sodium acetate (3) Acetic acid and Ammonium hydroxide (4) Citric acid and Sodium citrate Ans: (3)						
	Least energetic confor (1) Chain conformatio (3) Cis conformation s: (1)		ne is (2) Boat conformation (4) E-z form				
	Which of the following (1) Ar s: (4)	is employed in flasl (2) Ne	n tubes in photograph? (3) Kr	(4) Xe			
	Conjugate base of H ₂ F (1) HPO - s: (2)	PO 4 is (2) HPO 4	(3) H ₃ PO ₄	(4) PO ³⁻			

28.	An alkyl bromide (X) reacts with Sodium in ether to form 4, 5-diethyl octane, the compound 'X' is					
Δns	(1) CH ₃ (CH ₂) ₃ Br			(2) CH₃(CH₂)₅Br (4) CH₃ - (CH₂)₂ - CH(Br) - CH₂ - CH₃		
Alla	. (1)					
29.	 Which one of the following shows highest ma (1) Fe²⁺ (2) CO²⁺ 			etic moment? 3) Cr ³⁺	(4) Ni ²⁺	
Ans	: (1)					
30.	The emf of a galvanic Fe ²⁺ Fe(-0.41V) is	cell constitut	ted with the e	electrodes Zn ²⁺ Zn (-0.76 V) and		
	(1) -0.35 V	(2) +1.17 V	(3) +0.35 V	(4) -1.17 V	
Ans	: (3)					
31.	Which of the following	ng pairs are	correctly mat	ched?		
	Desetants		Nadusts	1		
	I. RX + AgOH		Products H			
	II. $RX + AgCN_0$	947	NC			
	III. $RX + KCN_{(a)}$,	NC			
	IV. RX + Na _{(ethe}	er) R	k-R			
Ans	1) I alone : (4)	2) I and II		3) II and III	4) II and IV	
	 32. In a transition series, with increase in atomic-number, the paramagnetism 1) increases gradually 2) decreases gradually 3) first increases to a maximum and then decreases 4) first decreases to a minimum and then increases Ans: (3)					
33.	Identify a species v	which is 'NOT	Γ' a Bronsted	acid but a Lewis acid	d.	
Δn	1) BF ₃	2) H ₃ ⁺ O		3) NH ₃	4) HCl	
AII	s: (1)					
34.				and calcium format	te is dray distilled. 4) Acetophenone	
An	s: (2)				4) Acetophenone	
35.	5. d ² sp ³ hybridisation of the atomic orbitals gives					
	Square planar structure Tetrahedral structure			Triangular structure Octahedral structure		
An	s: (4)			•		
36.	The pH of 10 ⁻⁸ M H	Cl solution is	S			
An	1) 8 s: (2)	2) 6.9586		3) More than 8	4) Slightly more than 7	
37. A n:	Which of the follow 1) Phenol s: (3)	ing is strong 2) o-creso		3) p-nitrophenol	4) p-cresol	

38. Ans:	A group of atoms can function as a ligand of 1) it is a small molecule 3) it is a negatively charged ion (2)	2) it has an unshare	y when 2) it has an unshared electron pair 4) it is a positively charge ion			
39. Ans:	Which of the following is 'NOT' a colligative 1) Elevation in boiling point 3) Osmotic pressure (4)	2) Depression in fre	operty? 2) Depression in freezing point 4) Lowering of vapour pressure			
40. Ans:	Acetone and Propanal are 1) Functional isomers 3) Geometrical isomers (1)		Position isomers Optical isomers			
41. Ans:	Which of the following is diamagnetic? 1) H ₂ ⁺ 2) He ₂ ⁺ (4)	3) O ₂	4) N ₂			
42. Ans:	3 gms of urea is dissolved in 45 gms of H ₂ (1) 0.05 2) 0.04 (3)	O. The relative lowering 3) 0.02	in vapour pressure is 4) 0.01			
43. Ans:	The reagent used to distinguish between ac 1) Tollen's reagent 3) 2-4-dinitrohenyl hydrazine (2)	cetaldehyde and benzal 2) Fehling's solution 4) Semicarbazide				
44. A ns: (Metallic luster is due to 1) high density of metals 3) reflection of light by mobile electrons (3)		2) high polish on the surface of metals4) chemical inertness of metals			
45. Ans: (Which of the following aqueous solutions will exhibit highest boiling point? 1) 0.01 M urea 2) 0.01 M KNO ₃ 3) 0.01 M Na ₂ SO ₄ 4) 0.015M C ₆ H ₁₂ O ₆ : (3)					
46. Ans: (Which one of the following gives amine on 1) Br ₂ in aqueous KOH 3) Cl ₂ in Sodium (1)	heating with amide? 2) Br ₂ on alcoholic 4) Sodium in Ether				
47. A ns: (The number of antibonding electrons present 1) 8 2) 6 (3)	ent in O ₂ - molecular ion 3) 5	1 is 4) 4			
48. Ans: (The process is spontaneous at the given temperature, if 1) ΔH is +ve and ΔS is -ve 2) ΔH is -ve and ΔS is +ve 3) ΔH is +ve and ΔS is +ve 4) ΔH is +ve and ΔS is equal to zero (2)					
49. Ans: (Glucose when reduced with HI and Red Ph 1) n-hexane 2) n-heptane (1)	osphorus gives 3) n-pentane	4) n-octane			

Ans:	1) Adsorption of covalent molecules on the colloid 2) The size of the particles 3) The charge on the particles 4) Tyndall effect : (1)					
51. Ans:	Oils are liquids at ro 1) Oleates	oom temperature since the 2)Palmitates		entage of 4) Myristates		
52. Ans:	1) Na ⁺	ng cations will have miniu 2) Mg ²⁺	m flocculation value fo 3) Ca ²⁺	or arsenic sulphide sol? 4) Al ³⁺		
53. Ans:	The value of entrop 1) increasing (1)	y of solar system is 2) decreasing	3) constant	4) zero		
54. Ans:	1) 6	ic lattice, a unit cell is shai 2) 4	red equally by how ma 3) 2	nny unit cells? 4) 8		
55. Ans:	1) 4	lphide linkages present in 2) 3	Insulin are 3) 2	4) 1		
56. Ans:	1) Al	e refining is used in the p 2) Ge	urification of 3) Cu	4) Ag		
57. Ans:	1) 6.022 x 10 ²⁶	er molecules present in a 2) 6.022 x 10 ²³	drop of water weight 3) 6.022 x 10 ¹⁹			
58. Ans:	formula of the com 1) C₃H ₆ O ₃	of a compound is CH ₂ O and pound is 2) C ₂ H ₄ O ₂	d its molecular mass 3) C ₆ H ₁₂ O ₆	is 90, the molecular 4) CH_2O		
59. Ans:	1) sp ³ , sp ³	f carbon in Graphite and 2) sp ³ , sp ²	Diamond are respect 3) sp ² , sp ²	ively 4) sp ² , sp ³		
60. Ans:	1) 0.085 g	n ³ of NH ₃ gas at STP is 2) 0.850 g	3) 8.500 g	4) 80.500 g		