
CHAPTER SEVEN

SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

7.1 INTRODUCTION

In the earlier chapters we primarily considered the motion
of a single particle. (A particle is represented as a point mass.
It has practically no size.)  We applied the results of our
study even to the motion of bodies of finite size, assuming
that motion of such bodies can be described in terms of the
motion of a particle.

Any real body which we encounter in daily life has a
finite size.  In dealing with the motion of extended bodies
(bodies of finite size) often the idealised model of a particle is
inadequate.  In this chapter we shall try to go beyond this
inadequacy.  We shall attempt to build an understanding of
the motion of extended bodies.  An extended body, in the
first place, is a system of particles.  We shall begin with the
consideration of motion of the system as a whole.  The centre
of mass of a system of particles will be a key concept here.
We shall discuss the motion of the centre of mass of a system
of particles and usefulness of this concept in understanding
the motion of extended bodies.

A large class of problems with extended bodies can be
solved by considering them to be rigid bodies.  Ideally a
rigid body is a body with a perfectly definite and
unchanging shape.  The distances between all pairs of
particles of such a body do not change. It is evident from
this definition of a rigid body that no real body is truly rigid,
since real bodies deform under the influence of forces. But in
many situations the deformations are negligible.  In a number
of situations involving bodies such as wheels, tops, steel
beams, molecules and planets on the other hand, we can ignore
that they warp, bend or vibrate and treat them as rigid.

7.1.1 What kind of motion can a rigid body have?

Let us try to explore this question by taking some examples
of the motion of rigid bodies.  Let us begin with a rectangular
block sliding down an inclined plane without any sidewise
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142 PHYSICS

movement.  The block is a rigid body.  Its motion
down the plane is such that all the particles of
the body are moving together, i.e. they have the
same velocity at any instant of time.  The rigid
body here is in pure translational motion
(Fig. 7.1).

In pure translational motion at any
instant of time all particles of the body have
the same velocity.

Consider now the rolling motion of a solid
metallic or wooden cylinder down the same
inclined plane (Fig. 7.2). The rigid body in this
problem, namely the cylinder, shifts from the
top to the bottom of the inclined plane, and thus,
has translational motion.  But as Fig. 7.2 shows,
all its particles are not moving with the same
velocity at any instant. The body therefore, is
not in pure translation.  Its motion is translation
plus ‘something else.’

In order to understand what this ‘something
else’ is, let us take a rigid body so constrained
that it cannot have translational motion.  The
most common way to constrain a rigid body so

that it does not have translational motion is to
fix it along a straight line. The only possible
motion of such a rigid body is rotation. The
line along which the body is fixed is termed as
its axis of rotation. If you look around, you
will come across many examples of rotation
about an axis, a ceiling fan, a potter’s wheel, a
giant wheel in a fair, a merry-go-round and so
on (Fig 7.3(a) and (b)).

(a)

(b)
Fig. 7.3 Rotation about a fixed axis

(a) A ceiling fan
(b) A potter’s wheel.

Let us try to understand what rotation is,
what characterises rotation.  You may notice
that in rotation of a rigid body about a fixed

Fig 7.1 Translational (sliding) motion of a block down
an inclined plane.
(Any point like P

1
 or P

2 
of the block moves

with the same velocity at any instant of time.)

Fig. 7.2 Rolling motion of a cylinder It is not pure
translational motion. Points P

1
, P

2
,
 
P

3
 and P

4

have different velocities (shown by arrows)
at any instant of time. In fact, the velocity of
the point of contact P

3 
is zero at any instant,

if the cylinder rolls without slipping.
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SYSTEMS OF PARTICLES AND ROTATIONAL MOTION 143

axis, every particle of the body moves in a
circle, which lies in a plane perpendicular to
the axis and has its centre on the axis.  Fig.

7.4 shows the rotational motion of a rigid body
about a fixed axis (the z-axis of the frame of

reference).  Let P
1
 be a particle of the rigid body,

arbitrarily chosen and at a distance r
1
 from fixed

axis.  The particle P
1
 describes a circle of radius

r
1 
with its centre C

1
 on the fixed axis.  The circle

lies in a plane perpendicular to the axis. The

figure also shows another particle P
2
 of the rigid

body, P
2 
is at a distance r

2 
from the fixed axis.

The particle P
2
 moves in a circle of radius r

2 
and

with centre C
2
 on the axis. This circle, too, lies

in a plane perpendicular to the axis.  Note that

the circles described by P
1
 and P

2
 may lie in

different planes; both these planes, however,
are perpendicular to the fixed axis.  For any

particle on the axis like P
3
, r = 0. Any such

particle remains stationary while the body

rotates.  This is expected since the axis is fixed.

Fig. 7.5 (a) A spinning top
(The point of contact of the top with the
ground, its tip O, is fixed.)

Fig. 7.5 (b) An oscillating table fan. The pivot of the

fan, point O, is fixed.

In some examples of rotation, however, the
axis may not be fixed.  A prominent example of
this kind of rotation is a top spinning in place
[Fig. 7.5(a)].  (We assume that the top does not
slip from place to place and so does not have
translational motion.)  We know from experience
that the axis of such a spinning top moves
around the vertical through its point of contact
with the ground, sweeping out a cone as shown
in Fig. 7.5(a).  (This movement of the axis of the
top around the vertical is termed precession.)
Note, the point of contact of the top with
ground is fixed. The axis of rotation of the top
at any instant passes through the point of
contact. Another simple example of this kind of
rotation is the oscillating table fan or a pedestal
fan.  You may have observed that the axis of

Fig. 7.4 A rigid body rotation about the z-axis
(Each point of the body such as P

1
 or

P
2
 describes a circle with its centre (C

1

or C
2
) on the axis.  The radius of the

circle ( r
1
or r

2
) is the perpendicular

distance of the point (P
1
 or P

2
) from the

axis. A point on the axis like P
3 
remains

stationary).
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rotation of such a fan has an oscillating
(sidewise) movement in a horizontal plane about
the vertical through the point at which the axis
is pivoted (point O in Fig. 7.5(b)).

While the fan rotates and its axis moves
sidewise, this point is fixed.  Thus, in more
general cases of rotation, such as the rotation
of a top or a pedestal fan, one point and not
one line, of the rigid body is fixed. In this case
the axis is not fixed, though it always passes
through the fixed point. In our study, however,
we mostly deal with the simpler and special case
of rotation in which one line (i.e. the axis) is

fixed.  Thus, for us rotation will be about a fixed
axis only unless stated otherwise.

The rolling motion of a cylinder down an
inclined plane is a combination of rotation about
a fixed axis and translation.  Thus, the
‘something else’ in the case of rolling motion
which we referred to earlier is rotational motion.
You will find Fig. 7.6(a) and (b) instructive from
this point of view. Both these figures show
motion of the same body along identical
translational trajectory. In one case, Fig. 7.6(a),
the motion is a pure translation; in the other
case [Fig. 7.6(b)] it is a combination of
translation and rotation. (You may try to
reproduce the two types of motion shown using
a rigid object like a heavy book.)

We now recapitulate the most important
observations of the present section: The motion
of a rigid body which is not pivoted or fixed
in some way is either a pure translation or a
combination of translation and rotation. The
motion of a rigid body which is pivoted or
fixed in some way is rotation.  The rotation
may be about an axis that is fixed (e.g. a ceiling
fan) or moving (e.g. an oscillating table fan).  We
shall, in the present chapter, consider rotational
motion about a fixed axis only.

7.2  CENTRE OF MASS

We shall first see what the centre of mass of a
system of particles is and then discuss its
significance. For simplicity we shall start with
a two particle system. We shall take the line
joining the two particles to be the x- axis.

Fig. 7.7

Let the distances of the two particles be x
1

and x
2
 respectively from some origin O. Let m

1

and m
2
 be respectively the masses of the two

Fig. 7.6(a) Motion of a rigid body which is pure

translation.

Fig. 7.6(b) Motion of a rigid body which is a
combination of translation and

rotation.

Fig 7.6 (a) and 7.6 (b) illustrate different motions of
the same body. Note P is an arbitrary point of the
body; O is the centre of mass of the body, which is
defined in the next section. Suffice to say here that
the trajectories of O are the translational trajectories
Tr

1
 and Tr

2 
of the body. The positions O and P at

three dif ferent instants of time are shown by O
1
, O

2
,

and O
3
, and P

1
, P

2
 and P

3
, respectively, in both

Figs. 7.6 (a) and (b) . As seen from Fig. 7.6(a), at any
instant the velocities of any particles like O and P of
the body are the same in pure translation. Notice, in
this case the orientation of OP, i.e. the angle OP makes
with a fixed direction, say the horizontal, remains
the same, i.e. α

1 
= α

2
 = α

3
. Fig. 7.6 (b) illustrates a

case of combination of translation and rotation. In
this case, at any instants the velocities of O and P
differ. Also, α

1
, α

2
 and α

3
 may all be different.
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SYSTEMS OF PARTICLES AND ROTATIONAL MOTION 145

particles. The centre of mass of the system is
that   point C which is at a distance X from O,
where X is given by

1 1 2 2

1 2

m x m x
X

m m

+
=

+ (7.1)

In Eq. (7.1), X can be regarded as the mass-
weighted mean of  x

1 
and x

2
. If the two particles

have the same mass m
1
 = m

2
 = m

, 
then

1 2 1 2

2 2

mx mx x x
X

m

+ +
= =

Thus, for two particles of equal mass the
centre of mass lies exactly midway between
them.

If we have n particles of masses m
1
, m

2
,

...m
n
 respectively, along a straight line taken as

the x- axis, then by definition the position of
the centre of the mass of the system of particles
is given by

1 1 2 2

1 2

....

....

i in n

n i

m xm x m x m x
X

m m m m

+ + +
= =

+ + +
∑
∑

    (7.2)
where  x

1
, x

2
,...x

n
 are the distances of the

particles from the origin; X is also measured

from the same origin. The symbol ∑ (the Greek

letter sigma) denotes summation, in this case
over n particles. The sum

im M=∑
is the total mass of the system.

Suppose that we have three particles, not
lying in a straight line. We may define x and y-
axes in the plane in which the particles lie and
represent the positions of the three particles by
coordinates (x

1
,y

1
), (x

2
,y

2
) and (x

3
,y

3
) respectively.

Let the masses of the three particles be m
1
, m

2

and m
3 
respectively. The centre of mass C of

the system of the three particles is defined and
located by the coordinates (X, Y) given by

1 1 2 2 3 3

1 2 3

m x m x m x
X

m m m

+ +
=

+ + (7.3a)

1 1 2 2 3 3

1 2 3

m y m y m y
Y

m m m

+ +
=

+ + (7.3b)

For the particles of equal mass m = m
1
 = m

2

= m
3
,

1 2 3 1 2 3( )

3 3

m x x x x x x
X

m

+ + + +
= =

1 2 3 1 2 3( )

3 3

m y y y y y y
Y

m

+ + + +
= =

Thus, for three particles of equal mass, the
centre of mass coincides with the centroid of
the triangle formed by the particles.

Results of Eqs. (7.3a) and (7.3b) are
generalised easily to a system of n particles, not
necessarily lying in a plane, but distributed in
space. The centre of mass of such a system is
at (X, Y, Z ), where

i im x
X

M
= ∑

(7.4a)

i im y
Y

M
= ∑

(7.4b)

and  
i im z

Z
M

=
∑

(7.4c)

Here M = im∑ is the total mass of the

system. The index i runs from 1 to n; m
i
 is the

mass of the ith  particle and the position of the
ith particle is given by (x

i
, y

i
, z

i
).

Eqs. (7.4a), (7.4b) and (7.4c) can be
combined into one equation using the notation

of position vectors. Let  ir  be the position vector

of the ith particle and R be the position vector of
the centre of mass:

 �
i i i ix y z= + +r i j kɵ ɵ

and �X Y Z= + +R i j kɵ ɵ

Then  
i im

M
= ∑ r

R (7.4d)

The sum on the right hand side is a vector
sum.

Note the economy of expressions we achieve
by use of vectors. If the origin of the frame of
reference (the coordinate system) is chosen to

be the centre of mass then  0i im =∑ r for the

given system of particles.
A rigid body, such as a metre stick or a

flywheel, is a system of closely packed particles;
Eqs. (7.4a), (7.4b), (7.4c) and (7.4d) are
therefore, applicable to a rigid body. The number
of particles (atoms or molecules) in such a body
is so large that it is impossible to carry out the
summations over individual particles in these
equations. Since the spacing of the particles is
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small, we can treat the body as a continuous
distribution of mass. We subdivide the body into
n small elements of mass;  ∆m

1
, ∆m

2
... ∆m

n
; the

ith element  ∆m
i 
is taken to be located about the

point  (x
i
, y

i
, z

i
). The coordinates of the centre of

mass are then approximately given by

( ) ( ) ( )
, ,

i i i i i i

i i i

m x m y m z
X Y Z

m m m

∆ ∆ ∆
= = =

∆ ∆ ∆
∑ ∑ ∑
∑ ∑ ∑

As we make n bigger and bigger and each
∆m

i
 smaller and smaller, these expressions

become exact. In that case, we denote the sums
over i by integrals. Thus,

d ,im m M∆ → =∑ ∫

( ) d ,i im x x m∆ →∑ ∫
( ) d ,i im y y m∆ →∑ ∫

 and ( ) di im z z m∆ →∑ ∫
Here M is the total mass of the body. The

coordinates of the centre of mass now are

and
1 1 1

d , d dX x m Y y m Z z m
M M M

= = =∫ ∫ ∫   (7.5a)

The vector expression equivalent to these
three scalar expressions is

1
dm

M
= ∫R r (7.5b)

If we choose, the centre of mass as the origin
of our coordinate system,

=R 0

i.e., dm =∫ r 0

or d d d 0x m y m z m= = =∫ ∫ ∫ (7.6)

Often we have to calculate the centre of mass
of homogeneous bodies of regular shapes like
rings, discs, spheres, rods etc. (By a
homogeneous body we mean a body with
uniformly distributed mass.) By using symmetry
consideration, we can easily show that the
centres of mass of these bodies lie at their
geometric centres.

Let us consider a thin rod, whose width and
breath (in case the cross section of the rod is
rectangular) or radius (in case the cross section
of the rod is cylindrical) is much smaller than
its length. Taking the origin to be at the
geometric centre of the rod and x-axis to be
along the length of the rod, we can say that on
account of reflection symmetry, for every
element dm of the rod at x, there is an element
of the same mass dm located at –x (Fig. 7.8).

The net contribution of every such pair to

the integral and hence the integral dx m∫  itself

is zero.  From Eq. (7.6), the point for which the
integral  itself is zero, is the centre of mass.
Thus, the centre of mass of a homogenous thin
rod coincides with its geometric centre. This can
be understood on the basis of reflection symmetry.

The same symmetry argument will apply to
homogeneous rings, discs, spheres, or even
thick rods of circular or rectangular cross
section. For all such bodies you will realise that
for every element dm at a point (x, y, z ) one can
always take an element of the same mass at
the point (–x, –y, –z ). (In other words, the origin
is a point of reflection symmetry for these
bodies.) As a result, the integrals in Eq. (7.5 a)
all are zero. This means that for all the above
bodies, their centre of mass coincides with their
geometric centre.

Example 7.1 Find the centre of mass of
three particles at the vertices of an
equilateral triangle. The masses of the
particles are 100g, 150g, and 200g
respectively. Each side of the equilateral
triangle is 0.5m long.

Answer

Fig. 7.9Fig. 7.8 Determining the CM of a thin rod.

u
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u

u

With the x–and y–axes chosen as shown in Fig.
7.9, the coordinates of points O, A and B forming
the equilateral triangle are respectively (0,0),

(0.5,0), (0.25,0.25 3 ). Let the masses 100 g,

150g and 200g be located at O, A and B be
respectively. Then,

1 1 2 2 3 3

1 2 3

m x m x m x
X

m m m

+ +
=

+ +

( )100 0 150(0.5) 200(0.25) gm

(100 150 200) g

+ +  =
+ +

75 50 125 5
m m m

450 450 18

+
= = =

100(0) 150(0) 200(0.25 3) gm

450 g
Y

 + + =

50 3 3 1
m m m

450 9 3 3
= = =

The centre of mass C is shown in the figure.
Note that it is not the geometric centre of the
triangle OAB. Why? ⊳

Example 7.2  Find the centre of mass of a
triangular lamina.

Answer  The lamina (∆LMN ) may be subdivided
into narrow strips each parallel to the base (MN)
as shown in Fig. 7.10

Fig. 7.10

By symmetry each strip has its centre of
mass at its midpoint. If we join the midpoint of
all the strips we get the median LP. The centre
of mass of the triangle as a whole therefore,
has to lie on the median LP. Similarly, we can
argue that it lies on the median MQ and NR.
This means the centre of mass lies on the point

of concurrence of the medians, i.e. on the
centroid G of the triangle.       ⊳

Example 7.3 Find the centre of mass of a
uniform L-shaped lamina (a thin flat plate)
with dimensions as shown. The mass of
the lamina is 3 kg.

Answer  Choosing the X and Y axes as shown
in Fig. 7.11 we have the coordinates of the
vertices of the L-shaped lamina as given in the
figure. We can think of the
L-shape to consist of 3 squares each of length
1m. The mass of each square is 1kg, since the
lamina is uniform. The centres of mass C

1
, C

2

and C
3
 of the squares are, by symmetry, their

geometric centres and have coordinates (1/2,1/2),
(3/2,1/2), (1/2,3/2) respectively. We take the
masses of the squares to be concentrated at
these points. The centre of mass of the whole
L shape (X, Y) is the centre of mass of these
mass points.

Fig. 7.11

Hence

[ ]
( )

1(1/2) 1(3/2) 1(1/2) kg m

1 1 1 kg
X

+ +
=

+ +  
5

m
6

=

[ ]
( )

1(1/ 2) 1(1/2) 1(3/ 2) kg m 5
m

1 1 1 kg 6
Y

 + + = =
+ +

The centre of mass of the L-shape lies on
the line OD. We could have guessed this without
calculations. Can you tell why? Suppose, the
three squares that make up the L shaped lamina
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of Fig. 7.11 had different masses. How will you
then determine the centre of mass of the
lamina? ⊳

7.3  MOTION OF CENTRE OF MASS

Equipped with the definition of the centre of
mass, we are now in a position to discuss its

physical importance for a system of particles.
We may rewrite Eq.(7.4d) as

1 1 2 2 ...i i n nM m m m m= = + + +∑R r r r r (7.7)

Differentiating the two sides of the equation
with respect to time we get

1 2
1 2

dd dd
...

d d d
n

n
M m m m

t t t dt
= + + +

rr rR

or

1 1 2 2
...

n n
M m m m= + + +V v v v (7.8)

where  ( )1 1d /dt=v r  is the velocity of the first

particle ( )2 2d dt=v r is the velocity of the

second particle etc. and d /dt=V R  is the

velocity of the centre of mass. Note that we

assumed the masses m
1
, m

2
, ... etc. do not

change in time. We have therefore, treated them

as constants in differentiating the equations
with respect to time.

Differentiating Eq.(7.8) with respect to time,
we obtain

1 2
1 2

dd dd
...

d d d d
n

nM m m m
t t t t

= + + +
vv vV

or

1 1 2 2
...

n n
M m m m= + + +A a a a (7.9)

where ( )1 1d /dt=a v  is the acceleration of the

first particle,  ( )2 2d /dt=a v  is the acceleration

of the second particle etc. and  ( )d /dt=A V  is

the acceleration of the centre of mass of the
system of particles.

Now, from Newton’s second law, the force

acting on the first particle is given by 1 1 1m=F a .

The force acting on the second particle is given

by 2 2 2m=F a and so on. Eq. (7.9) may be written

as

1 2 ... nM = + + +A F F F (7.10)

Thus, the total mass of a system of particles
times the acceleration of its centre of mass is
the vector sum of all the forces acting on the
system of particles.

Note when we talk of the force 1F on the first

particle, it is not a single force, but the vector
sum of all the forces on the first particle; likewise
for the second particle etc. Among these forces
on each particle there will be external  forces
exerted by bodies outside the system and also
internal forces exerted by the particles on one
another. We know from Newton’s third law that
these internal forces occur in equal and opposite
pairs and in the sum of forces of Eq. (7.10),
their contribution is zero. Only the external
forces contribute to the equation. We can then
rewrite Eq. (7.10) as

extM =A F (7.11)

where extF  represents the sum of all external

forces acting on the particles of the system.
Eq. (7.11) states that the centre of mass

of a system of particles moves as if all the
mass of the system was concentrated at the
centre of mass and all the external forces
were applied at that point.

Notice, to determine the motion of the centre
of mass no knowledge of internal forces of the
system of particles is required; for this purpose
we need to know only the external forces.

To obtain Eq. (7.11) we did not need to
specify the nature of the system of particles.
The system may be a collection of particles in
which there may be all kinds of internal
motions, or it may be a rigid body which has
either pure translational motion or a
combination of translational and rotational
motion. Whatever is the system and the motion
of its individual particles, the centre of mass
moves according to Eq. (7.11).

Instead of treating extended bodies as single
particles as we have done in earlier chapters,
we can now treat them as systems of particles.
We can obtain the translational component of
their motion, i.e. the motion centre of mass of
the system, by taking the mass of the whole
system to be concentrated at the centre of mass
and all the external forces on the system to be
acting at the centre of mass.

This is the procedure that we followed earlier
in analysing forces on bodies and solving
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problems without explicitly outlining and
justifying the procedure. We now realise that in
earlier studies we assumed, without saying so,
that rotational motion and/or internal motion
of the particles were either absent or negligible.
We no longer need to do this. We have not only
found the justification of the procedure we
followed earlier; but we also have found how to
describe and separate the translational motion
of (1) a rigid body which may be rotating as
well,  or (2) a system of particles with all kinds
of internal motion.

Fig. 7.12 The centre of mass of the fragments
of the projectile continues along the
same parabolic path which it would
have followed if there were no

explosion.

Figure 7.12 is a good illustration of Eq.
(7.11). A projectile, following the usual parabolic
trajectory, explodes into fragments midway in
air. The forces leading to the explosion are
internal forces. They contribute nothing to the
motion of the centre of mass. The total external
force, namely, the force of gravity acting on the
body, is the same before and after the explosion.
The centre of mass under the influence of the
external force continues, therefore, along the
same parabolic trajectory as it would have
followed if there were no explosion.

7.4 LINEAR MOMENTUM OF A SYSTEM OF
PARTICLES

Let us recall that the linear momentum of a
particle is defined as

m=p v (7.12)

Let us also recall that Newton’s second law
written in symbolic form for a single particle is

d

dt
=

p
F (7.13)

where F is the force on the particle. Let us
consider a system of n particles with masses
m

1
, m

2
,... m

n 
respectively and velocities

1 2, ,....... nv v v  respectively. The particles may be

interacting and have external forces acting on
them. The linear momentum of the first particle

is 1 1m v , of the second particle is 2 2m v  and so

on.
For the system of n particles, the linear

momentum of the system is defined to be the
vector sum of all individual particles of the
system,

1 2
...

n
= + + +P p p p

1 1 2 2
...

n n
m m m= + + +v v v (7.14)

Comparing this with Eq. (7.8)

M=P V (7.15)

Thus, the total momentum of a system
of particles is equal to the product of the
total mass of the system and the velocity of
its centre of mass. Differentiating Eq. (7.15)
with respect to time,

d d

d d
M M

t t
= =

P V
A (7.16)

Comparing Eq.(7.16) and Eq. (7.11),

d

d
ext

t
=

P
F (7.17)

This is the statement of Newton’s second
law extended to a system of particles.

Suppose now, that the sum of external
forces acting on a system of particles is zero.
Then from Eq.(7.17)

or
d

0
dt

=
P

P  = Constant (7.18a)

Thus, when the total external force acting
on a system of particles is zero, the total linear
momentum of the system is constant. This is
the law of conservation of the total linear
momentum of a system of particles. Because of
Eq. (7.15), this also means that when the
total external force on the system is zero
the velocity of the centre of mass remains
constant. (We assume throughout the
discussion on systems of particles in this
chapter that the total mass of the system
remains constant.)

Note that on account of the internal forces,
i.e. the forces exerted by the particles on one
another, the individual particles may have
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complicated trajectories. Yet, if the total external
force acting on the system is zero, the centre of
mass moves with a constant velocity, i.e., moves
uniformly in a straight line like a free particle.

The vector Eq. (7.18a) is equivalent to three
scalar equations,

P
x
 = c

1
, P

y
 = c

2
 and P

z
 = c

3
(7.18 b)

Here P
x
, P

y
 and P

z
 are the components of

the total linear momentum vector P along the
x, y and z axes respectively; c

1
, c

2
 and c

3
 are

constants.

(a) (b)

Fig. 7.13 (a) A heavy nucleus (Ra) splits into a
lighter nucleus (Rn) and an alpha
particle (He). The CM of the system is

in uniform motion.
(b) The same spliting of the heavy nucleus

(Ra) with the centre of mass at rest.
The two product particles fly back to
back.

As an example, let us consider the
radioactive decay of a moving unstable particle,
like the nucleus of radium. A radium nucleus
disintegrates into a nucleus of radon and an
alpha particle. The forces leading to the decay
are internal to the system and the external
forces on the system are negligible. So the total
linear momentum of the system is the same
before and after decay. The two particles
produced in the decay, the radon nucleus and
the alpha particle, move in different directions
in such a way that their centre of mass moves
along the same path along which the original
decaying radium nucleus was moving
[Fig. 7.13(a)].

If we observe the decay from the frame of
reference in which the centre of mass is at rest,
the motion of the particles involved in the decay
looks particularly simple; the product particles

move back to back with their centre of mass
remaining at rest as shown in Fig.7.13 (b).

In many problems on the system of
particles as in the above radioactive decay
problem, it is convenient to work in the centre
of mass frame rather than in the laboratory
frame of reference.

In astronomy, binary (double) stars is a
common occurrence. If there are no external
forces, the centre of mass of a double star
moves like a free particle, as shown in Fig.7.14
(a). The trajectories of the two stars of equal
mass are also shown in the figure; they look
complicated. If we go to the centre of mass
frame, then we find that there the two stars
are moving in a circle, about the centre of
mass, which is at rest. Note that the position
of the stars have to be diametrically opposite
to each other [Fig. 7.14(b)]. Thus in our frame
of reference, the trajectories of the stars are a
combination of (i) uniform motion in a straight
line of the centre of mass and (ii) circular
orbits of the stars about the centre of mass.

As can be seen from the two examples,
separating the motion of different parts of a
system into motion of the centre of mass and
motion about the centre of mass is a very
useful technique that helps in understanding
the motion of the system.

7.5  VECTOR PRODUCT OF TWO VECTORS

We are already familiar with vectors and their
use in physics. In chapter 6 (Work, Energy,
Power) we defined the scalar product of two
vectors. An important physical quantity, work,
is defined as a scalar product of two vector
quantities, force and displacement.

(a) (b)

Fig. 7.14 (a) Trajectories of two stars, S
1
 (dotted

line) and S
2
 (solid line) forming a

binary system with their centre of
mass C in uniform motion.

(b) The same binary system, with the
centre of mass C at rest.
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We shall now define another product of two
vectors. This product is a vector. Two important
quantities in the study of rotational motion,
namely, moment of a force and angular
momentum, are defined as vector products.

Definition of Vector Product

A vector product of two vectors a and b is a
vector c such that

(i) magnitude of c = c sinab θ=  where a and b

are magnitudes of  a and b and θ is the
angle between the two vectors.

(ii) c is perpendicular to the plane containing
a and b.

(iii) if we take a right handed screw with its head
lying in the plane of  a and b and the screw
perpendicular to this plane, and if we turn
the head in the direction from  a to b, then
the tip of the screw advances in the direction
of c . This right handed screw rule is
illustrated in Fig. 7.15a.
Alternately, if one curls up the fingers of

right hand around a line perpendicular to the
plane of the vectors  a and b and if the fingers
are curled up in the direction from a to b, then
the stretched thumb points in the direction of
c, as shown in Fig. 7.15b.

(a) (b)

Fig. 7.15 (a) Rule of the right handed screw for
defining the direction of the vector
product of two vectors.

                (b) Rule of the right hand for defining the
direction of the vector product.

A simpler version of the right hand rule is
the following : Open up your right hand palm
and curl the fingers pointing from  a to b. Your
stretched thumb points in the direction of c.

It should be remembered that there are two
angles between any two vectors  a and b . In
Fig. 7.15 (a) or (b) they correspond to θ (as

shown) and (3600– θ). While applying either of

the above rules, the rotation should be taken
through the smaller angle (<1800) between  a
and b. It is θ here.

Because of the cross used to denote the
vector product, it is also referred to as cross
product.

• Note that scalar product of two vectors is
commutative as said earlier, a.b = b.a
The vector product, however, is not

commutative, i.e. a × b ≠ b × a
The magnitude of both a × b and b × a is the

same ( sinab θ ); also, both of them are
perpendicular to the plane of  a and b. But the
rotation of the right-handed screw in case of
a × b  is from  a to b, whereas in case of  b × a it
is from b to a. This means the two vectors are
in opposite directions. We have

× = − ×a b b a

• Another interesting property of a vector
product is its behaviour under reflection.
Under reflection (i.e. on taking the mirror

image) we have and ,x x y y z z→ − → − → − .

As a result all the components of a vector

change sign and thus ,a a→ − b b→ − .

What happens to  a × b under reflection?

a × b ( ) ( )→ − × − = ×a b a b
Thus,  a × b does not change sign under

reflection.

• Both scalar and vector products are
distributive with respect to vector addition.
Thus,

.( ) . .+ = +a b c a b a c

( )× + = × + ×a b c a b a c

• We may write c = a × b in the component

form. For this we first need to obtain some
elementary cross products:

(i) a × a = 0 (0 is a null vector, i.e. a vector
with zero magnitude)

This follows since magnitude of a × a  is

2 sin 0 0a ° = .

2015-16(20/01/2015)



152 PHYSICS

u

From this follow the results

˜ ˜ ˜ ˜ ˜ ˜, ,× = × = × =i i 0 j j 0 k k 0

(ii) ˜ ˜ ˜× =i j k

Note that the magnitude of ˜ ˜×i j  is sin900

or 1, since ĩ  and j̃  both have unit

magnitude and the angle between them is 900.

Thus, ˜ ˜×i j  is a unit vector. A unit vector

perpendicular to the plane of ĩ  and j̃  and

related to them by the right hand screw rule is

k̃ . Hence, the above result. You may verify

similarly,

˜ ˜ ˜ ˜ ˜ ˜and× = × =j k i k i j

From the rule for commutation of the cross
product, it follows:

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜, ,× = − × = − × = −j i k k j i i k j

Note if ˜ ˜ ˜, ,i j koccur cyclically in the above

vector product relation, the vector product is

positive. If ˜ ˜ ˜, ,i j k  do not occur in cyclic order,

the vector product is negative.
Now,

˜ ˜ ˜ ˜ ˜ ˜( ) ( )x y z x y za a a b b b× = + + × + +a b i j k i j k

˜ ˜ ˜ ˜ ˜ ˜
x y x z y x y z z x z ya b a b a b a b a b a b= − − + + −k j k i j i

˜ ˜ ˜( ) ( ) ( )
y z z x z x x z x y y x

a b a b a b a b a b a b= − + − + −i j k

We have used the elementary cross products
in obtaining the above relation. The expression
for a × b  can be put in a determinant form
which is easy to remember.

˜ ˜ ˜

x y z

x y z

a a a

b b b

× =

i j k

a b

Example 7.4  Find the scalar and vector
products of two vectors. a = (3î – 4ĵ + 5k̂ )
and b = (– 2î + ĵ – 3k̂ )

Answer

˜ ˜ ˜ ˜ ˜ ˜(3 4 5 ) ( 2 3 )

6 4 15

25

= − + − + −

= − − −

= −

a b i j k i j ki i

˜ ˜ ˜

˜ ˜ ˜3 4 5 7 5

2 1 3

× = − = − −

− −

i j k

a b i j k

Note  ˜ ˜ ˜7 5× = − + +b a i j k   ⊳

7.6 ANGULAR VELOCITY AND ITS
RELATION WITH LINEAR VELOCITY

In this section we shall study what is angular
velocity and its role in rotational motion. We
have seen that every particle of a rotating body
moves in a circle. The linear velocity of the
particle is related to the angular velocity. The
relation between these two quantities involves
a vector product which we learnt about in the
last section.

Let us go back to Fig. 7.4. As said above, in
rotational motion of a rigid body about a fixed
axis, every particle of the body moves in a circle,

Fig. 7.16 Rotation about a fixed axis. (A particle (P)
of the rigid body rotating about the fixed
(z-) axis moves in a circle with centre (C)
on the axis.)

which lies in a plane perpendicular to the axis
and has its centre on the axis. In Fig. 7.16 we
redraw Fig. 7.4, showing a typical particle (at a
point P) of the rigid body rotating about a fixed
axis (taken as the z-axis). The particle describes
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a circle with a centre C on the axis. The radius
of the circle is r, the perpendicular distance of
the point P from the axis. We also show the
linear velocity vector v of the particle at P. It is
along the tangent at P to the circle.

Let P′ be the position of the particle after an
interval of time ∆t (Fig. 7.16). The angle PCP′
describes the angular displacement ∆θ of the
particle in time ∆t. The average angular velocity
of the particle over the interval  ∆t is ∆θ/∆t. As
∆t tends to zero (i.e. takes smaller and smaller
values), the ratio ∆θ/∆t approaches a limit which
is the instantaneous angular velocity dθ/dt of
the particle at the position P. We denote the
instantaneous angular velocity by  ω (the
Greek letter omega). We know from our study
of circular motion that the magnitude of linear
velocity  v of a particle moving in a circle is
related to the angular velocity of the particle ω
by the simple relation rυ ω= , where r is the
radius of the circle.

We observe that at any given instant the
relation  v rω=  applies to  all particles of the
rigid body. Thus for a particle at a perpendicular
distance r

i
  from the fixed axis, the linear velocity

at a given instant v
i
 is given by

i i
v rω= (7.19)

The index i  runs from 1 to n, where n is the
total number of particles of the body.

For particles on the axis, 0=r , and hence

v = ω r = 0. Thus, particles on the axis are
stationary. This verifies that the axis is fixed.

Note that we use the same angular velocity
ω for all the particles. We therefore, refer to  ωωωωω
as the angular velocity of the whole body.

We have characterised pure translation of

a body by all parts of the body having the same
velocity at any instant of time. Similarly, we
may characterise pure rotation by all parts of

the body having the same angular velocity at
any instant of time . Note that this

characterisation of the rotation of a rigid body
about a fixed axis is just another way of saying
as in Sec. 7.1 that each particle of the body moves

in a circle, which lies in a plane perpendicular
to the axis and has the centre on the axis.

In our discussion so far the angular velocity
appears to be a scalar. In fact, it is a vector. We
shall not justify this fact, but we shall accept
it. For rotation about a fixed axis, the angular
velocity vector lies along the axis of rotation,

and points out in the direction in which a right
handed screw would advance, if the head of the
screw is rotated with the body. (See Fig. 7.17a).

The magnitude of this vector is 

d dtω θ=

referred as above.

Fig. 7.17 (a) If the head of a right handed screw
rotates with the body, the screw
advances in the direction of the angular
velocity ωωωωω. If the sense (clockwise or
anticlockwise) of rotation of the body

changes, so does the direction of ωωωωω.

Fig. 7.17 (b) The angular velocity vector ωωωωω is
directed along the fixed axis as shown.
The linear velocity of the particle at P
is v = ω ω ω ω ω × r. It is  perpendicular to both

ω ω ω ω ω and r and is  directed along the
tangent to the circle described by the
particle.

We shall now look at what the vector product
ω ω ω ω ω × r corresponds to. Refer to Fig. 7.17(b) which
is a part of Fig. 7.16 reproduced to show the
path of the particle P. The figure shows the
vector ωωωωω directed along the fixed (z–) axis and

also the position vector  r = OP  of the particle

at P of the rigid body with respect to the origin
O. Note that the origin is chosen to be on the
axis of rotation.
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