

Government of Karnataka

Karnataka Text Book Society (R.)
100 Feet Ring Road,
Banashankari 3rd Stage, Bengaluru - 85

PART II

CONTENTS

Chapter-1

MULTIPLICATION

After studying this Chapter you can,

- find the product of two 3-digit numbers,
- multiply a 4 -digit number by a $1 \& 2$ digit number,
- multiply a 5 -digit number with a 1 - digit number,
- solve verbal problems based on multiplication.

We already know that 'multiplication' is one of the basic mathematical operations. 'Multiplication' is repeated addition. You can multiply two numbers at a time.

The number to be multiplied is called the 'multiplicand'. The number which multiplies the given number is called the 'multiplier', the result of multiplication is called the 'product'.

multiplicand \times multiplier $=$ product

Properties of Multiplication

1. The product of any number and zero is always zero.

Example : $12 \times 0=0,8 \times 0=0$
2. The product of any number and 1 is always the number itself.

Example $; 9 \times 1=9,6 \times 1=6$
3. The product remains the same when we interchange multiplicand and multiplier.
Example : $4 \times 7=28,7 \times 4=28$.

Revision Exercise

1. Find the product of the following.
1) 35×0
2) 164×1
3) 100×0
4) 1×235
5) $0 \times 1,001$
6) 1×55
II. Find the product of the following.
7) 45×16
8) 63×31
9) 162×17
10) 18×42
11) 83×17
12) 234×22

III. Solve the following problems.

1) Cost of one note book is ₹ 16 , What is the cost of 12 note books?
2) The school fee of a student is ₹ 38 . What is the total fee of 128 students?
3) 63 students went on one day excursion with their class teacher. The class teachereollected ₹ 150 from each student towards travel and lunchexpenses. What is the total amount collected?
4) The cost of a bag containing 10 kg . rice is ₹ 285 . Find the cost of 25 bags of rice.
5) The head master decides to give first and second prize for various eompetitions. 16 students got first prize and 16 students got second prize. If the cost of first and second prize is ₹ 11 and ₹ 9 , respectively, find the total amount required by head master to buy the prizes.
Multiplication of a 3-digit number by another 3-digit number : Example 1)
Find the product of 156 and 267.

$\begin{array}{lllll} & \begin{array}{lllll} & 2 & 6 & 7 \\ \times & 1 & 5 & 6 \\ \hline \end{array} \underbrace{\text { st row }} \begin{array}{llllll} & 1 & 6 & 0 & 2 \\ 2^{\text {nd }} \text { row } & 1 & 3 & 3 & 5 & \\ 3^{\text {rd }} \text { row } & 2 & 6 & 7 & & \\ \hline 4 & 1 & 6 & 5 & 2 \\ \hline \end{array} \end{array}$						

Steps involved in multiplication

1. Multiply : $267 \times 6=1,602$. Write the product in first row to left side from the units place.
2. Multiply: $267 \times 5=1,335$. Write the product in second row starting from the tens place to the left side.
3. Multiply : $267 \times 1=267$. Write the product in third row starting from the hundreds place to the left side.
4. Add the digits in these three rows.

Therefore $267 \times 156=41,652$

Example 2

A note book contains 192 pages. How many pages do such 250 note books contain

Number of note books $=250$.
Number of pages in each note book $=192$.
\therefore Total number of pages in 250 note books

$$
\begin{array}{r}
\times 192 \\
\hline 500
\end{array}
$$

$$
\begin{aligned}
& =250 \times 192 \quad \begin{array}{lll}
2 & 5 & 0 \\
& =48,000 & 48000 \\
\end{array} \\
& \hline
\end{aligned}
$$

\therefore There are 48,000 pages in 250 note books.
Multiplication of a 4-digit number by 1 or $\mathbf{2}$-digit number :

Example 1

Multiply 2,468 by 7

Step 1

Multiplicand 246	8	Multiply : $8 \times 7=56$	
Multiplier \times		7	Write 6 in units place and carry 5
Product	6	to tens place.	

Step 2

Multiply: $\quad 6 \times 7=42$
Add 5 to product, i.e., $5+42=47$
Write 7 in tens place and 4 to hundreds place.
Step 3

Multiply : $4 \times 7=28$
Add 4 to product, i.e. $4-28=32$
Write 2 in hundreds place and carry 3 to thousands place.
Step 4
246 Multiple: $2 \rtimes 7=14$
7 Add 3 to product, i.e., $3+14=17$
276 Write 17 as last two digits.
So, product of 2,468 and 7is 17,276

Example 2

Find the product of 1,376 and 34 .

Steps involved in multiplication

1. Multiply : $1,376 \times 4=5,504$. Write the product in first row to left side from the units place.
2. Multiply : $1,376 \times 3=4,128$. Write the product in second row starting from the tens place to the left side.
3. Add the digits in these two rows.

$$
\therefore 1,376 \times 34=46,784
$$

3) A garment factory manufactures 2,718 dresses in a day. Find the number of dresses manufactured in 23 working days.

Number of dresses manufactured in one day $=2,718$
Number of working days $=23$
Total Number of dresses manufactured in 23 working days

$$
\begin{aligned}
& =2,718 \times 23 \\
& =62,514
\end{aligned}
$$

$\therefore 62,514$ dresses were manufactured in 23 working days.
Multiplication of a 5 -digit number by 1-digit number.
Example 1
Multiply 10,843 by

Multiplicand $10 \begin{array}{llll} & 8 & 4 & 3\end{array}$

Multiplier	\times	8
Product	$8 \quad 6,74$	4

Multiply : $10,843 \times 8=86,744$.
Write the product in first row to left side from the units place.
$\therefore 10,843 \times 8=86,744$.

Example 2
Multiply 21,807 by 4
1807 Multiply: $21,807 \times 4=87,228$. Write the product 4 in first row to left side from the units place.
$87,228 \quad \therefore 21,807 \times 4=87,228$.

Exercise 1.1

I. Multiply

1) 146×173
2) 178×142
3) 163×134
4) 183×208
5) 150×107
6) 248×212
7) 316×100
II. Multiply
8) $2,861 \times 9$
9) $7,254 \times 6$

10) $8,028 \times 8$
III. Find the product.
11) $9,025 \times 10$
12) $3,746 \times 23$
13) $2,439 \times 31$
14) $1,258 \times 13$
15) $1,028 \times 37$
16) $2,375 \times 16$

IV. Multiply

1) $21,497 \times 3$
2) $15,746 \times 5$
3) $11,048 \times 7$
4) $10,039 \times 9$
V. Solve the following problems.
5) Mr. Siddappa is a fruit selling agent who exports oranges. One box contains 144 oranges. If he export 259 boxes of oranges, find the total number of oranges exported.
6) In a protected forest area, 160 trees are planted in each row and 108 trees in each column. Find the total number of trees planted in the forest area.
7) A dealer buys 27 bicycles for his show room. Cost of each bicycle is $₹ 2,067$. Find the total amount paid by the dealer.
8) A farmer grew 23 quintals of wheat. He sold them for $₹ 1,935$ per quintal. How much amount did the farmer get by selling wheat?

Chapter-2
 DIVISION

After studying this Chapter you can,

- divide the numbers by standard division algorithm method, - divide a 5-digit number by another 1 or 2 -digit number by using standard division algorithm method,
- solve verbal problems based on division of numbers.

In the previous class we have learnt how to do division by the method of grouping in equal numbers and repeated subtraction.

Observe the following examples.

1. Division by grouping

When 32 balls are grouped in 4 each, it makes 8 groups.
$\therefore 32 \div 4=8$
2. Division by repeated subtraction.
$\left\{\begin{array}{l}32-4=28 \\ 28-4=24 \\ 24-4=20\end{array}\right.$

$$
\begin{aligned}
20-4 & =16 \\
16-4 & =12
\end{aligned}
$$

$$
8-4=4
$$

$$
4-4=0
$$

Subtraction is done 8 times.
$\therefore 32 \div 4=8$

Revision Exercise

I. Encirle the objects as shown in the example and write the answer in given box
Example:

$$
6 \div 3=2
$$

a.

b.

c.

d.

II. Divide the following using repeated subtraction method.
a. $12 \div 4$
b. $25 \div 5$
c. $42 \div 7$
d. $30 \div 10$
e. $75 \div 15$

Now lethis learn the process of division by other ways. Division is reverse process of multiplication
$8 \times 4=32$

$$
\begin{aligned}
& 32 \div 8=4 \\
& 32 \div 4=8
\end{aligned}
$$

It ins easy to follow these methods when the numbers are small.
Suppose we have to divide 84 by 4 . It is time consuming and difficult to follow the above methods. A standard method is followed in any division process. Now let us learn this method of division.

Example 1

Divide 84 by 4 .

$$
21 \leftarrow \text { Quotient }
$$

Divisor $\rightarrow 4 \longdiv { 8 4 } \leftarrow$ Dividend

$$
\begin{aligned}
& \begin{array}{l}
8 \quad \downarrow \\
04 \\
\quad 4 \\
\\
\\
\\
0
\end{array} \leftarrow \text { Remainder }
\end{aligned}
$$

Steps involved in division,

1. Start division from the digit in highest place of the dividend. Here, 8 is in tens place.
2. $4 \times 2=8$. Write 2 as the first digit of the quotient and 8 below the first digitof dividend from left.
3. Subtract: $8-8=0$. Write the fremainder 0 .
4. Bring down 4 of units place Divide this 4 by the divisor 4 . $4 \times 1=4$. Write 1 as the next digit of the quotient and 4 below 4 .
5. Subtract: 4-4=0. Write the last remainder 0 .

This method of division is called Standard Division Algorithm.
Example 2
Divide 49 by 2 using standard division algorithm.
Pivisor \rightarrow

2) | 2 | 4 |
| ---: | :--- |
| 4 | 9 |
| $\frac{4}{} \quad \downarrow$ | \leftarrow Quotient |
| 0 | 9 |

$\begin{array}{r}0 \quad 8 \\ \hline 1 \\ \\ \hline \text { Remainder }\end{array}$

Steps involved in division algorithm

1. Start division from the digit in highest place of the dividend. Here it is started from 4 of tens place.
2. $2 \times 2=4$. Write 2 as the first digit of the quotient and 4 below first digit of dividend from left.
3. Subtract: 4-4 $=0$. Write the remainder 0 .
4. Bring down 9 . Divide this 9 by divisor $2.2 \times 4=8$. Write 4 as the next digit of the quotient and 8 below 9 .
5. Subtract: 9-8=1. Write the last remainder 1 .

Why tens place is divided first?
Consider the division of 42 by 3
$42 \div 3$
$=(40+2) \div 3$
$=(30+12))^{3}$
$=(30 \div 3)+(12 \div 3)$
$=10+4$
$=14$

Example 3

Srinivasa has a ghocolate box having 32 pieces. He wanted to share it equally among his 8 friends. How many pieces does each friend get?

Number of pieces in the chocolate box $=32$ (Dividend)
Number of friends $=8$ (Divisor)
Now, divide 32 by 8 to find the number of chocolate pieces each friend gets.
The quotient gives us the answer.

$$
\begin{array}{cll}
\text { Divisor } \rightarrow 8) \frac{4}{32} \leftarrow \text { Quotient } & \text { Steps involved in division } \\
\frac{32}{\underline{00}} \leftarrow \text { Remaividend } & \text { 1) } 3 \text { is less than 8. Therfore } \\
\text { take two digits from left side. } & \text { It is } 32 .
\end{array}
$$

2) $8 \times 4=32$. Write 4 as the first digit of the quotient and 32 below the dividend.
3) Subtract: $32-32=0$. Write 0 as remainder.
\therefore each friend gets 4 pieces of-chocolate.
Observe the following table.

S $\mathbf{N} \mathbf{0}$	Dividend	Divisor	Quotient	Remainder N	Divisor \times Quotient + Remainder
1	16	3	5	$\mathbf{1}$	$\mathbf{3} \times 5+1=15+1=16$
2	26	4	6	2	$4 \times 6+2=24+2=26$
3	40	5	8	0	$5 \times 8+0=40+0=40$
4	75	7	10	5	$7 \times 10+5=70+5=75$

The value obtained in the last column is equal to dividend given in the second column.
From the above table it follows that
(Divisor \times Quotient) + Remainder $=$ Dividend

$$
\therefore \text { Dividend }=(\text { Divisor } \times \text { Quotient })+\text { Remainder }
$$

This is standard division formula.
You can verify division of two numbers using this formula.

Example 4

Divide 125 by 5 using standard division algorithm.

	2	5
1	2	5
1	0	\downarrow
0	2	5
	2	5
	0	0

Steps involved in division

1. 1 less than 5 . Therefore take two digits from left side i,e., 12.
2. $5 \times 2=10$. Write 2 as the first digit of the quotient and 10 below the dividend.
3. Subtract: 12-10 $=2$. Write remainder 2 .
4. Bring down 5. The number becomes $25.5 \times 5=25$. Write 5 as the next digit of the quotient and 25 below 25.
5. Subtract: $25,-25=0$. Write 0 as the last remainder.

Verification
Dividend $=$ (Divisor 2 Quotient $\quad+\quad$ Remainder $125=15 \times 25)+0$ $125=125+0$ $125=125$
Example 5)
Divide 218 by 2

Steps involved in division

1. $2 \times 1=2$. Write 1 as the first digit of the quotient and 2 below the dividend.
2. Subtract: $2-2=0$. Write 0 .
3. Bring down 1 . The number becomes $1.2 \times 1=2.2$ is greater than $1.2 \times 0=0.0$ is less than 1 . Write 0 as the next digit of the quotient and 0 below 1 .
4. Subtract: $1-0=1$. Write the remainder 1 .
5. Bring down 8 . The number becomes 18. $2 \times 9=18$. Write 9 in quotient place and 18 below 18.
6. Subtract: $18-18=0$. Write 0 as remainder.

Verification

Dividend (Divisor \times Quotient) + Remainder
218
$218=218+0$
$218=218$

Example 6

Divide 185 by 12 using standard division algorithm.

1	2	
0	6	
5		

$$
\begin{array}{ll}
6 & 0 \\
\hline 0 & 5
\end{array}
$$

Dividend $=($ Divisor \times Quotient $)+$ Remainder $185=(12 \times 15)+5$
$185=180+5$
$185=185$

Example 7

Divide 648 by 15
$4 \quad 3$
$1 5 \longdiv { 6 4 8 }$

$$
\begin{array}{ccc}
6 & 0 & \downarrow \\
\hline 0 & 4 & 8 \\
& 4 & 5 \\
\hline & 0 & 3
\end{array}
$$

Verification

Dividend $=($ Divisor \times Quotient $)+$ Remainder $648=(15 \times 43)+3$
$648=645+3$
$648=648$

Example 8

Total expenditure of one day excursion for 17 students is ₹ 7,225 .
Find how much ambunt each student has to pay?
Number of students whe went for one day

Total expenditure for one day excursion $=₹ 7,225$
\therefore Amount to be paid by each student $=7225 \div 17$

$$
=₹ 425 .
$$

\therefore Amount to be paid by each student is ₹ 425 .

$$
\text { 17 } \begin{array}{llll}
47 & 2 & 5 \\
7 & 2 & 2 & 5 \\
6 & 8 & \downarrow & 1 \\
\hline 0 & 4 & 2 & \\
& 3 & 4 & \downarrow \\
\hline & 0 & 8 & 5 \\
& & 8 & 5 \\
& & 0 & 0 \\
\hline
\end{array}
$$

Verification

Tivdend $=($ Divisior \times Quotient $)+$ Remainder
$7,225=(17 \times 425)+0$
$7,225=7,225+0$
$7,225=7,225$

Example 9

Anita has brought 1,123 pieces of sweets to distribute among 25 friends. How many pieces of sweets does each friend get? How many pieces of sweets are left with Anita after distribution?
Number of pieces of sweets brought by Anita $=1,123$
Number of friends $=25$

Number of pieces of sweets each one gets $=1123 \div 25$
\therefore Each one gets 44 pieces of sweets.
$\therefore 23$ pieces of sweets are left with Anita.
Steps involved in division

1. 11 is less than 25 . Therefore take thrge digits from left side i.e., 112 .
2. $25 \times 4=100$. Write 4 as the first digit of the quotient place and 100 below the dividend.
3. Subtract : Write the remainder 12. $112-100=12$.
4. Bring down β. The number now becomes 123. $25 \times 4=100$. Write 4 as the next digit in the quotient and 100 below 123.
5. Subtract : 123-100 $=23$. Write the last remainder 23 .

Vexiffcation

```
Dividend = (Divisor }\times\mathrm{ Quotient) + Remainder
    1,123 = (25 }\times44) + 23
```

 \(1,123=1,100+23\)
 \(1,123=1,123\)

Example 10

Divide 56,083 by 11 .
$\begin{array}{rllll} & 5 & 0 & 9 & 8 \\ 11 \\ 5 & 6 & 0 & 8 & 3\end{array}$

5	5	\downarrow	
0	1	0	
	0	0	\downarrow
	1	0	8

Verification
Dividend $=($ Divisor \times Quotient $)+$ Remainder

$9 \quad 9$
$0 \quad 9$

\downarrow $56,083=56,078$ $+15$

$8 / 8$
$1 / 5$

Example
Divide 10,005 by 2

Exercise 2.1

I. Find the quotient and the remainder.

1) $48 \div 6$
2) $36 \div 3$
3) $55 \div 4$
4) $72 \div 7$
II. Find the quotient and the remainder.
5) $232 \div 4$
6) $474 \div 6$
7) $255 \div 11$
8) $527 \div 12$
III. Find thequotient and the remainder.
9) $1,653 \div 8$
10) $1,325 \div 2$
11) $1,435 \div 15$
12) $2,647 \div 13$
IV. Find the quotient and the remainder.
13) $24,658 \div 2$
14) $14,005 \div 7$
3. $32,745 \div 10$
4) $12,056 \div 12$
V. Solve the following problems.
5) A tailor has 18 metres of cloth. He can stitch 9 shirts from this cloth. Find the length of cloth required to stitch one shirt.
6) A bike can cover 240 km with 5 litres of petrol. Find how many kilometres does it cover with 1 litre of petrol.
7) 25,004 bags of cement are loaded equally into 14 railway wagons. Find the number of bags in each wagon.
8) Mr. Sridhar purchased 11 toys of same price for $₹ 946$ from a toy shop. Find the cost of each toy.
9) The annual income of a person is ₹ 90,912 . Find his monthly income.
10) A car manufacturing company manufactures 14,820 cars in 13 months. Find the number of cars manufactured in one month.

Problems involving both multiplication and division operations.

 Example

A charitable trust collected ₹ 125 each from 175 donors. If the trust decides to distribute this amount to 7 schools equally, how much amount does each school get?
Number of donors $=175$.
Amount collected from each donor $=₹ 125$.
\therefore Total amount collected $=175 \times 125$

$$
=₹ 21,875
$$

Number of schools to which the amount is distributed $=7$
Amount that each school gets $=21,875 \div 7$
\therefore Each school gets $=₹ 3,125$
\therefore If ₹ 21,875 is distributed to 7 schools, each school gets $=₹ 3,125$

Example 2

The Forest department plants trees in 96 rows and 80 columns in government land near a village. If 12 villagers are willing to take care of these trees, find the number of trees that each of them has to take care.

The number of trees planted in government land

$$
\begin{aligned}
& =96 \times 80 \\
& =7,680 \text { trees }
\end{aligned}
$$

The number of trees that each villager has to take care

$$
\begin{aligned}
& =7,680 \div 12 \\
& =640 \text { trees. }
\end{aligned}
$$

\therefore The number of trees that each villager has to, take care $=640$ trees
I. Solve :
 Exercise 2.2

1) An orange garden has 82 orange plants. A farmer plucks 60 oranges from each plant and packs 12 oranges in each box. Calculate the number of boxes required to pack all oranges.
2) 15 school children hire a cab for a day's excursion at ₹ 9 per km . If they travel a distance of 325 km , find the amount to be shared by each one of them.
3) Anita has a cow which yields 8 litres of milk in a day. The selling price of one litre of milk is ₹ 18 . She wants to divide the amount earned in one month (30 days) among her 4 sons. What amount does each one get ?

Chapter-3

MENTAL ARITHMETIC

After studying this Chapter you can,

- explain the process of estimation,
- explain the process of approximation,
- estimate the sum of two 5 digit numbers to nearest ten thousands place,
- estimate the difference of two 5 digit numbers tonearest ten thousands place,
- estimate the product of two numbers to the nearest ten thousands place,
- estimate the quotient oftwo numbers.

ESTIMATION AND APPROXIMATION

Two newspaper clippings are given below. Read them.

1. 4,700 students visited the science exhibition held in a higher primary school.
2. 3,500 people were killed, more than 20,000 people were missing and more than 80,000 people have become homeless as floods hit Karnataka.

Can we say that there were exactly as many people as the numbers quoted in these news items? In example 1, did exactly 4,700 children visit the exhibition?
In example 2, were exactly 80,000 people homeless ?
It may not be exactly that number. The exact number of children may be 4,687 or 4,742 . The number of people who became homeless may be 76,839 or 84,372 .

In these examples, $4,700,20,000$ and 80,000 are almost the same as the exact numbers, but not exact numbers. These are approximated numbers. The approximate number is roughly calculated. This approximate calculaton is known as estimation.

Activity

Think about the situations where we need to have the exact numbers and situations where only an approximately estimated number is sufficient. List them.

While performing fundamental operations on numbers, we estimate the sums, differences, products and quotients. For example the sum of 458 and 540 is approximately estimated as 1,000 .

Now let us learn how to do estimation and verify the answer. Estimating the given number to the nearest tens place.

Mukund and Gowri found the sum of 43 and 48 as follows.
Mukund calculated the digits of unit place as $3+8$ nearly equal to 1 tens.

Then he added digits in ten place as,
1 ten +4 ten +4 ten $\neq 9$ ten i.e., 90 .
Gowri answered as 4 ten +5 ten

$$
=40 \uplus 50
$$

Both the answers are right. Gowri calculated the answer in one step. Let us know how Gowri calculated.

Between which multiples of 10 does 43 and 48 lie?
43 lies between 40 and 50. 48 also lies between 40 and 50 .

Observe the following number line.

Compare the position of 43 with 40 and 50
43 is nearer to 40 by 3 units and to 50 by 7 units. Therefore 43 is considered to be approximately same as 40 . So 43 when rounded off to nearest tens place gives 40 .
Compare the position of 48 with 40 and 50 ?
48 is nearer to 50 by 2 units and to 40 by 8 units. Therefore 48 is considered to be approximately equal to 50 . 5048 when rounded off to nearest tens place gives 50 .

So, Gowri added 40 and 50 to get the approximated sum.
Mukund approximated 11 ones to one ten and then added the tens. He too got the sum as 90 ,

How to round off a number to nearest tens place?
If the digit at ones place is $1,2,3$ or 4 , replace unit digit by 0 . If the digit at ones place is $5,6,7,8$ or 9 , replace unit digit by 0 and add 1 to the tens place.
Example 1
Round off 583 to the nearest tens place.
Réplace by zero

$\therefore 583$ rounded off to nearest tens place it is 580 .

Example 2

Round off 2,837 to the nearest tens place.
Replace by zero

\therefore when 2,837 is rounded off to nearest tens place it is 2,840 .
Estimating the given number to the nearest hundreds place.
Pradeep wants to round off 368 to nearest hundreds place.
Between which multiples of 100 does 368 lie ?
368 lies between 300 and 400 .
Observe the follo wing number line,

Compare theposition of 368 with 300 and 400 ?
368 is nearer to 400 by 32 units and to 300 by 68 units. Therefore 368 is considered to be approximately same as $\mathbf{4 0 0}$. So, when
368 is rounded off to nearest hundreds place, gives 400 .
How to round off a number to nearest $\mathbf{1 0 0}$?
If the digit at tens place is $1,2,3$ or 4 , replace tens and units place digit by 0 . If the digit at tens place is $5,6,7,8$, or 9 , replace tens, unit digit by 0 and add 1 to the hundreds place.

Example 3

Round off 3,548 to the nearest hundreds place.
Replace by zero

Rounded off to nearest hundreds place

Leave hundreds place unchanged
\therefore when 3,548 is rounded off to nearest hundreds place, it is 3,500 .

Example 4

Round off 5,764 to the nearest hundreds plâce.
Replace by zero

Add 1 to hundreds place
\therefore when 5,764 is rounded off to nearest hundreds place, it is 5,800 .
Estimating the giyen number to the nearest thousands place.
Nafeesa wants to round off 1,897 to nearest thousands place.
Between which multiples of 1,000 does 1,897 lie ?
1,897 lie between 1,000 and 2,000.
Observe the following number line.

Compare the position of 1,897 with 1,000 and 2,000 ?
1,897 is nearer to 2,000 by 103 units and to 1,000 by 897 units. Therefore 1,897 is considered to be approximately same as $\mathbf{2 , 0 0 0}$. Therefore when 1,897 is rounded off to nearest thousands place, it is 2,000 .

How to round off a number to nearest thousands place?
If the digit at hundreds place is $1,2,3$ or 4 , replace hundreds. tens and units place digit by 0 . If the digit at hundreds place is $5,6,7$, 8 or 9 , replace hundreds,tens, unlits place digit by 0 and add 1 to the thousands place.

Example 5

Round off 25,346 to the nearest thousands place.
Replace by zero

Leave thousands place unchanged
\therefore when 25,346 is roanded off to nearest thousands place, it is 25,000.

Example 6
Round off 35,756 to the nearest thousands place.
Replace by zero

Rounded off to nearest thousands place

Add 1 to thousands place
\therefore when 35,756 is rounded off to nearest thousands place, it is 36,000 .

Estimating the given number to the nearest ten thousands place.
Reena wants to round off 16,382 to nearest ten thousands place.
Between which multiples of 10,000 does 16,382 lie?
16,382 lies between 10,000 and 20,000.
Observe the following number line.

Compare the position of 16,382 with 10,000 and 20,000 ?
16,382 is nearer to 20,000 by 3,618 units and to 10,000 by 6,382 units. Therefore 16,382 is considered to be approximately same as $\mathbf{2 0 , 0 0 0}$. So, when 16,382 is, ounded off to nearest ten thousands place, it is 20,000
How to round off a number to nearest ten thousands place? If the digtt at thousands place is $1,2,3$ or 4 , replace digits of thousands, hundreds, tens and units place by 0 .
If the digit at thousands place is $5,6,7,8$ or 9 , replace digits of thousands, hundređs,tens, units place by 0 and add 1 to the digit of ten thousands place.
Example 7
Round off 12,654 to the nearest ten thousands place.
Replace by zero

Rounded off to nearest ten thousands place

Leave ten thousands place unchanged.
\therefore when 12,654 rounded off to nearest thousands place, it is 10,000 .

Example 8

Round off 25,748 to the nearest ten thousands place.
Replace by zero

Rounded off to nearest ten thousands place

Add 1 to ten thousands place
\therefore when 25,748 rounded off to nearest thousands place, it is 30,000 .

Remember :

While rounding off a number to the requiredplace, observe the digit to the right of jt and then,

- if it is less than 5, retain the same digit in the required place to be rounded off and write 0 in the following places.
- if it is equal to 5 or more than 5 , increase the digit in the required place to the next higher digit and write 0 in the following places.

Estimating the sum and the difference.

Example 1

Estimate thesum of 2,462 and 3,487 to nearest tens place.
2,462 is rounded off to nearest tens place as 2,460
$\begin{array}{r}3,487 \text { is rounded off to nearest tens place as } \\ \text { Estimated sum is }\end{array}+\underline{3,490}$
Verification by actual addition

$$
+\quad \frac{3,487}{5,949}
$$

\therefore estimated sum is nearly equal to actual sum.

Example 2

Estimate the sum of 8,743 and 7,275 to nearest hundreds place.
8,743 is rounded off to nearest hundreds as 8,700
7,275 is rounded off to nearest hundreds as $+7,300$ Estimated sum is $\quad 16,000$

Verification by actual addition
\therefore estimated sum is nearly equal to actual sum.

Example 3

Estimate the sum of 24,316 and 34,861 to nearest thousands place.

34,861 is rounded off to nearest thousands as
Estimated sum is $\quad \frac{35,000}{59,000}$
24,316

$$
+\quad 34,861
$$

$$
59,177
$$

\therefore estimated sum is nearly equal to actual sum.

Examplé 4

Estimate the sum of 38,527 and 32,596 to nearest ten thousands.
38,527 is rounded off to nearest ten thousands as
40,000
32,596 is rounded off to nearest ten thousands as
$+\frac{30,000}{70,000}$

Verification by actual addition

$$
+\frac{32,596}{71,123}
$$

\therefore estimated sum is nearly equal to actual sum.

Estimating products

Example 1

Estimate the product of 1,249 and 48 to its highest place.

1,249 is rounded off to nearest thousands as

\therefore estimated product is lesser than the actual product.

Example 2

Estimate the product of 19,426 and 4 to its highest place.
19,426 is rounded off to nearest ten thousands as 20,000

Estimated product is
Verification by actual multiplication
$\frac{80,000}{19,426}$
77,704

\therefore estimated product is greater than the actual product.

Example 3

The owner of a theatre decided to sell tickets for a theatre performance. The theatre has 198 rows of 88 seats in each row. Estimate the tickets that can be sold for each show?

198 is rounded off to nearest hundreds as
88 is rounded off to nearest tens as Estimated tickets needed for each show is Verification by actualmultiplication

\therefore estimated product is greater than the actual product.

Estimating quotients

Example
Estimate the duotient of $44,2 \beta 8-95$
$\begin{array}{rr}44,238 \text { is rounded off to nearest ten thousands as } & 40,000 \\ 95 \text { is rounded off to nearest tens as } & 100 \\ \text { Estimated quotient }=40,000 \div 100= & 400\end{array}$

Examplé 2

4 Chocolate packets contain 768 chocolates. Estimate the number of chocolates in each packet.
768 chocolates are rounded off to nearest hundreds as $=800$ Number of chocolate packets $=8$ Estimated number of chocolates in each packet $=800 \div 8$

$$
=100
$$

\therefore estimated chocolates in each packet $=100$.
Verification by actual division
96
$8 \longdiv { 7 6 8 }$

7	2	
0	4	8
4	8	
0	0	

\therefore actual number of chocolates in each packet $\Rightarrow 96$, estimated quotions is near to actualequotient

Note : While estimating thequotients, round off the divisor and dividend to the given place and then do the division.

Exercise 3.1

I. Round off) each of the following numbers to nearest thousands place.

1) 7,547
(2) 3,469
2) 15,238
3) 32,658
II. Round off each of the following numbers to nearest ten thousands place.
4) 26,674
5) 32,464
6) 46,379
7) 53,668

NI. Estimate sum of the following by rounding off to nearest thousands place.

1) $42,125+35,637$
2) $54,837+41,354$
3) $33,231+20,097$
4) $47,463+41,541$
IV. Estimate the sum of the following by rounding off to nearest ten thousands place.
5) $56,256+24,872$
6) $47,671+28,745$
7) $32,184+45,138$
8) $15,025+40,165$
V. Estimate the difference of the following by rounding off to nearest thousands place.
9) $65,487-46,502$
10) $45,630-32,148$
11) $57,146-25,472$
12) $60,046-15,247$
VI. Estimate the difference of the following by rounding off to nearest ten thousands place.
13) $51,689-34,685$
14) $86,853-47,829$
15) $80,808-55,055$
16) $77,777-44,444$
VII. Estimate the product of each of the following by rounding off to its highest place.
17) 428×54
18) 878×46
19) $5,476 \times 11$
20) $2,645 \times 18$
VIII. Estimate the quotient of each of the following by rounding off to its highest place.
21) $398 \div 82$
22) $786 \div 22$
23) $3,265 \div 58$
24) $7,687 \div 43$
IX. Solve the following problems.
25) A garment company stitehed 16,783 shirts and 12,438 pants in a month. Estimate the total number of dresses stitched to the nearest ten thousands place.
26) A news paper agent sells 36,721 papers in first month and 24,172 papers in second month. Estimate the decrease in sale of the newspaper in second month to the nearest ten thousands place.
27) Atrain can cover 225 km in one hour. Estimate the distance covered in a day to the hightest place.
28) A carpenter earned ₹ 18,634 during the month of November and ₹ 32,645 in December. Estimate how much more heearned in December to the nearest ten thousands place.

Chapter-4

DECIMAL FRACTIONS

After studying this Chapter you can,

- express the length of an object in decimal fraction form,
- use decimal fraction to express the length in centimetre
- use decimal fraction to express the length in metre,
- use decimal fraction to express the cost in rupees,
- express a given fraction in decimal notation,
- express a decimal notation in fraction form

In the previous standard you have studied about decimal fractions like $0.1,0.2 \ldots \ldots$. etc. Now let us study how to use these decimal fractions to express the length and cost of objects.

Observe the figure given below.
The length of the pencil is measured using a scale.

What is the length of the pencil?
It is more than 3 centimetre but less than 4 centimetre.
Read the measurement \qquad

Let us learn how to read such measurements, which are not whole numbers.

Observe your scale.

- In that 1 centimetre has $\mathbf{1 0}$ equal parts So each part is one tenth of a centimetre.
- We also write one-tenth of a centimetre as 0.1 centimetre.
- We read it as "point one centimetre" or "zero point one centimetre".

Now tell the correct length \varnothing f the pencil.
It is 3 centimetre and eight-tenth of a centimetre.
It is 3.8 centimetre or 3.8 cm .
Centimetres $=\mathrm{cm}$
We read it as'Threé point eight centimetre'.
Example 2
Measure the length of the eraser.

What is the length of the eraser?
It is 2 centimetre and three-tenths of a centimetre.
We can also write it as 2.3 cm
2.3 is a decimal fraction or a decimal number.

Example 3

Krishna has planted saplings in two of his fields as shown above. We can say he has planted one whole field and three-tenths of another.

Using fractions we write this as $1 \frac{3}{10}$
Using decimals we write this as 1.3
Let us obserye how tenths are written as a decimal.
One-tenth $=\frac{1}{10}=0.1$ read as zero point one.
Two- tenth $=\frac{2}{10}=0.2$ read as zero point two.
Two and six-tenths $=2 \frac{6}{10}=2.6$ Two point six.
From the above examples we conclude that,

- The digits to the left of the point are the integral part or whole part.
The digits to the right of the point are the decimal part or fraction part.
- The decimal part is less than one whole.

In $8.6 ; 8$ is the integral part, 6 is the decimal part.
In $13.7 ; 13$ is the integral part, 7 is the decimal part.

Example 4

The shaded part is represented as 2.4
Integral part $\leftarrow 2$.

Decimal Point

Each part in the above figure is one-tenth, 10 or 0.1
Now let us see what happens if one-tenth is further divided into ten equal parts

There are 100 equal parts. One part out of these 100 equal parts is shaded.

Here, each part is called one-hundredth or $\frac{1}{100}$ or 0.01
The decimal form of one-hundredth is 0.01

Example 5

Observe the one metre measuring tape which is given below.
Into how many equal parts is it divided ?
100 equal parts.

So each part is one-hundredth of a metre.
$\frac{1}{100} \mathrm{~m}$, We write it as 0.01 m .
Will you now tell the length of the pen in metres?
It is 0.08 m i.e, eight hundredth of ametre.
Observe the following examples and read.

Fraction	Decimal fraction	Read as
$\frac{5}{100}$	0.05	Zero point zero five.
$\frac{13}{100}$	0.13	Zero point one three.
$35 \frac{46}{100}$	35.46	Thirty five point four six.

In the decimal number system, the place value of a digit increases 10 times, as it moves from right to the left by one place. Its place value increases 100 times as it moves from the right to the left by two places and so on.

Observe in the table how the value of 4 changes.

Let us obsenve the following place value chart and see what happens when a digit moves from left to the right.

Thus, we see that the place value of a digit decreases by 10 times as the digit moves from the left to the right by one place.
What happens to the place value of the digit 4 when it moves further from left to the right of units place?

It becomes $4 \div 10=\frac{4}{10}$ read as four-tenths.
Thus the place value of the digit 4 becomes one-tenth.
\therefore When the digit moves to its right by one place, the value of the digit becomes one-tenth of its previous value.
In the same way the place value of a digit becomes one-hundredth when the digit moves two places to its right.
So the place yalue of a digit becomes one-tenth, one hundredth,
These can be writtenas
or $0.1,0.01$,
Observe the following place value table.

Integral Part \leftarrow Decimal \rightarrow Decimal fractions point

A point placed between units place and one-tenths place is called the decimal point. It separates the integral part from the fractional part of a decimal number.

- A number written with a decimal point is known as decimal fraction or decimal number.
- Decimal number is the other way of writing fraction.
- A decimal fraction is a fraction whose denominator is 10 , 100, 1000,

Use of decimals in measures of length

1. We know $10 \mathrm{~mm}=1 \mathrm{~cm}$.

So, $1 \mathrm{~mm}=$ one-tenth $\left(\frac{1}{10}\right)$ of a cm. Millimetre $=\mathrm{mm}$
$1 \mathrm{~mm}=\frac{1}{10} \mathrm{~cm}=0.1 \mathrm{~cm}$
$7 \mathrm{~mm}=\frac{7}{10} \mathrm{~cm}=0.7 \mathrm{~cm}$
$17 \mathrm{~mm}=1 \frac{7}{10} \mathrm{~cm}=1.7 \mathrm{~cm}$
2. We know $100 \mathrm{~cm}=1 \mathrm{~m}$

So, 1 cm is one-hundredth of a metre.

$$
1 \mathrm{~cm} \overline{\bar{\gamma}} \frac{\Gamma}{100} \mathrm{~m}=0.01 \mathrm{~m} .
$$

Similarly, $5 \mathrm{~cm}=\frac{5}{100} \mathrm{~m}=0.05 \mathrm{~m}$
$89 \mathrm{~cm}=\frac{89}{100} \mathrm{~m}=0.89 \mathrm{~m}$
Thus we write, 7 m 3 cm as $7 \mathrm{~m} \frac{3}{100} \mathrm{~m}=7 \frac{3}{100} \mathrm{~m}=7.03 \mathrm{~m}$ and 18 m 27 cm as 18.27 m

Use of Decimals in Money

We know that 100 paise $=1$ rupee .
So one paisa is one-hundredth of a rupee.

$$
1 \text { paisa }=₹ \frac{1}{100}=₹ 0.01
$$

Similarly, 25 parse $=₹ \frac{25}{100}=₹ 0.25$.
Thus we write,
2 rupees 15 paine as ₹ 2.15 .
18 rupees 60 pase as ₹ 18.60 .

9 rupees 5 parse as $₹$ 8.05.
640 paine as ₹ 640 .
850 rupees 50 paine as ₹ 850.50 .

I. Read the following decimals and write them in words.

1) 0.5
2) 0.13
(3) 1.7
3) 5.21
II. Write the numeral representing each of the following.
4) Zero pointone-two.
5) Four point zero two.
6) Six point eight.
7) Six point eight four.
8) Ten point five.
9) One hundred eight point zero six.

III. Fill in the blanks.

1) $8 \mathrm{~mm}=$ \qquad cm
2) $75 \mathrm{~mm}=$ cm
3) $8 \mathrm{~cm} 5 \mathrm{~mm}=$ \qquad cm
4) $525 \mathrm{~mm}=$ \qquad cm

IV. Fill in the blanks.

1) $8 \mathrm{~cm}=$ \qquad m
2) $72 \mathrm{~cm}=$ \qquad m
3) $375 \mathrm{~cm}=$ \qquad
4) $4 \mathrm{~m} 80 \mathrm{~cm}=$ \qquad m
5) $15 \mathrm{~m} 6 \mathrm{~cm}=$ \qquad m

V. Write in decimal fractions.

1) 75 paise $=₹$
2) 10 rupees and 25 paise $=₹$
3) 870 pase $=₹$
4) 782 rupees and ten paise $=$ ₹
5) 2050 paise $=₹ \ldots$...

Conversion of fractions to decimal notation

You are familiar with fractional numbers and decimal numbers.
Raju has scored 41 marks out of 50 marks.
This an be written in fractional form as $\frac{41}{50}$
Suppose this fractional number has to be expressed in decimal form, how to convert it?
Now let us learn how to convert the fractional number into decimal number.

Example 1

Observe this figure

Write the fraction for the shaded collection of balls.
It is $\frac{3}{10}$
Write the shaded collection in decimal fraction
It is three-tenths or 0.3.
So we understand that $\frac{3}{10}=0.3$

Example 2

Observe the figure given below.

Write the fraction for the shaded portion.

It is $\frac{7}{10}$.

Write the shaded portion indecimal fraction.
It is seven-tenths or 0.7 .

$$
\text { So } \frac{7}{10}=0.7
$$

Observe the following table.

Fraction	Denominator	No. of zeroes in the denominator	Decimal form
a) $\frac{4}{10}$	10	1	0.4
b) $\frac{17}{10}$	10	1	1.7
c) $\frac{523}{10}$	10	1	52.3

We can conclude if the denominator of a fraction is 10 , put a decimal point in the number of the numerator after one digit from the right.

Observe the fractions given below.

$$
\frac{2}{5}, \frac{3}{5}, \frac{1}{2}
$$

Here the denominator is not 10 but it can be easily converted 010 .
Convert $\frac{2}{5}$ to the fraction having 10 as denominator.

$$
\frac{2}{5}=\frac{2 \times 2}{5 \times 2}=\frac{4}{10}=0.4 \bigcirc \frac{2}{5}+0.4
$$

Similarly

$$
\begin{aligned}
& \frac{3}{5}=\frac{3 \times 2}{5 \times 2}=\frac{6}{10}=0.6 \quad \therefore \frac{3}{5}=0.6 \\
& \frac{1}{\frac{1}{2}}=\frac{1 \times 5}{2 \times 5}=\frac{5}{10}=0.58 \therefore \frac{1}{2}=0.5
\end{aligned}
$$

Observe the figure given below.

Example 3

Write the fraction for the shaded portion. It is $\frac{13}{100}$.

Write the shaded portion in decimal fraction.

It is thirteen-hundredths or 0.13
So $\frac{13}{100}=0.13$

Now, observe the following table :

Fraction	Denominator	No. of zeroes in the denominator	Decimal form
a) $\frac{24}{100}$	100	2	0.24
b) $\frac{8}{100}$	100	2	0.08
c) $\frac{153}{100}$	100	2	1.53

We can conclude that, if the denominator of the fractionis 100 , put a decimal point in the number in the numerator after two digits from the right.

Observe these fractions.

$$
\frac{3}{4}, \frac{7}{20}, \frac{6}{25}, \frac{41}{50}
$$

Here the denominators are not equal to 100 .
But, the denominators can easily be converted to 100 by multiplying the numerator and denominator by a common number.

$$
\begin{array}{ll}
\frac{3}{4}=\frac{3 \times 25}{4 \times 25}=\frac{75}{100}=0.75 & \therefore \frac{3}{4}=0.75 \\
\frac{7}{20}=\frac{7 \times 5}{20 \times 5}=\frac{35}{100}=0.35 & \therefore \frac{7}{20}=0.35 \\
\frac{6}{25}=\frac{6 \times 4}{25 \times 4}=\frac{24}{100}=0.24 & \therefore \frac{6}{25}=0.24 \\
\frac{41}{50}=\frac{41 \times 2}{50 \times 2}=\frac{82}{100}=0.82 & \therefore \frac{41}{50}=0.82
\end{array}
$$

Converting Decimal fractions to fractions

Example 1

Observe the figure.
Write the decimal fraction for the shaded portion.
It is 0.7 (seven-tenths)
Write it in fraction.
It is $\frac{7}{10}$
$\therefore 0.7=\frac{7}{10}$
Example 2
Write the decimal fraction for forty three-hundredths. It is 0.43 In fraction form it is $\frac{43}{100}$
$\therefore 0.43=\frac{43}{100}$
Study the examples given in the following table.

Decimal Fraction	The number without decimal Point	The number of decimal places	Denominator	Fraction
0.4	$04=4$	1	10	$\frac{4}{10}$
0.9	$09=9$	1	10	$\frac{9}{10}$
1.8	$18=18$	1	10	$\frac{18}{10}$
0.04	$004=4$	2	100	$\frac{4}{100}$
0.78	$078=78$	2	100	$\frac{78}{100}$
1.67	$167=167$	2	100	$\frac{167}{100}$

From the table, we can conclude the steps to be followed for converting a given decimal number into fractional form are :

1. Write the digits of the given decimal without the decimal point that forms the numerator.
2. Count the decimal places in the given decimal number.
3. Write 1 followed by as many zeroes as the number of decimal places that forms the denominator.

Example 3

To write the decimal fraction 1.42 in the form of fraction.

1) Write the number without decimal point that forms the numerator $\rightarrow \mathbb{A} 4$
2) Count the decimal places in the decimal fraction i.e, 2
3) Write 1 followed by two zeroes in denominator $\rightarrow 100$

So $1.42=\frac{142}{100}$

Exercise 4.2

I. Write the following fractions as decimal fractions.

1) $\frac{8}{10}$
2) $\frac{7}{10}$
3) $\frac{6}{10}$
4) $\frac{16}{10}$
5) $\frac{42}{10}$
6) $\frac{83}{10}$
7) $\frac{7}{100}$
8) $\frac{72}{100}$
9) $\frac{861}{100}$
10) $\frac{162}{10}$
11) $\frac{141}{100}$
12) $\frac{1461}{100}$
13) $\frac{1}{2}$
14) $\frac{3}{4}$
15) $\frac{2}{5}$
16) $\frac{7}{20}$
17) $\frac{38}{50}$
18) $\frac{17}{25}$
19) $\frac{13}{20}$
20) $\frac{8}{25}$
II. Write the following decimalfractions as fractions
21) 0.7

Chapter-5

MONEY

After studying this Chapter you can,

- write rupees and paise in decimal form,
- solve problems on money involving all the mathematical fundamental operations,
- understand the importance of earning, saving and spending money and its wise usage,
- check the list of the jtems purchased while shopping,
- know the prices prevalent in the market and thus do the shopping accordingly,
- know the need for a bill,
- prepare a bill.
- Reading the bill and understand the information given in the bill.

Problems on Money

In your ptevious class you have learnt how to add and subtract amount in rupeeds and paise. You have also learnt to use operations to find totals, multiple costs, unit cost and also to describe rate charts and bills.

Let us study a few examples.
Example 1
Ragini buys a book for $₹ 12.50$, a pen for $₹ 28.75$ and a pencil for ₹ 3.25 , what is the total cost of all the articles?

Cost of the articles are as follows:

₹ 12.50
₹ 28.75
$+₹ 3.25$
\therefore Total cost of all the articles
₹ $\overline{44.50}$
Note: We see rupees and paise arranged in an order with dots coming one below the other.
Example 2
Mohan went to buy a ball which costs ₹ 38.75 . But he had only $₹ 25$ with him. How much more money does he need to buy the ball?

Cost of the ball $=₹ 38.75$
Amount Mohan had $=-₹ 25.00$
\therefore Amount he still needed $=₹ 13.75$
\therefore Mohan still needs an amount of ₹ 13.75 to buy the ball.

Note : Here also, we find rupees arranged in an order with dots coming one below the other.

Now let us study the examples on use of fundamental operations in money system.

Example 3

What is the cost of 6 books, if the cost of one book is ₹ 24.25 ?

What do you think will be the cost of six books?
Will the cost be more orless as compared to that of one book?
What operation should we use to find the total cost?
The cost of 6 books will be more. You have to multiply the cost of 1 book by the number of books to get the total cost of 6 books.

Cost of 1 book
$=₹ 24.75$
\therefore Cost of 6 books $\quad=₹ 24.75 \times 6$
$=₹ 148.50$

Example 4

Cost of 8 dolls is $₹ 128$. What is the cost of each doll?

Will the cost of one doll be more on less as compared to that of eight dolls? What operation should we use to find it out?

The cost of 1 doll will be less. Therefore, you have to divide the total cost of the dolls by the number of dolls.

That is,

8)1 28 (16 - $8 \downarrow$

48

- 48

$$
\overline{00}
$$

\therefore Cost of each doll $=₹ 16$

Exercise 5.1

I. Find the following :

1) Sum of ₹ 13.25 , ₹ 6.30 , ₹ $10.40=\square$
2) Difference of ₹ 78.45 and $₹ 69.70=\square$
3) Product of ₹ 147.25 and $₹ 17=\square$
4) Quotient of ₹ $4960 \div ₹=\square$

II. Solve the following:

1) Subtract ₹ 95.80 from the sum of $₹ 279.05$ and ₹ 103.25
2) Express 32 in paise.
3) Express ₹ 9.75 in paise.
4) Express 4,705 paise in rupees.

Problems involving addition in Money system.

III. Solve :

1) I had ₹ 625 with me. My father gave $₹ 450.75$ as pocket money. What is the total amount with me now?
2). Mahesh buys a pen for $₹ 18.5$, a book for $₹ 10.75$ and a bag for ₹ 125 . What is the total cost of all the things bought?
2) Girija buys 2 kg of beans for ₹ $36.50,1 \mathrm{~kg}$ of tomatoes for $₹ 12.25$ and 1 kg of potatoes for ₹ 14.75 . Find the total amount that Girija should pay to the shopkeeper.

Problems involving subtraction in Money system.

IV. Solve :

1) Subtract ₹ 348.25 from ₹ 500 .
2) Varun bought sweets for $₹ 475.5$. He paid $₹ 500$ to the shop keeper. What change should he get back from the shopkeeper?
3) Razia had ₹ 345 with her. She bought a dress for ₹ 245.75 . What is the amount left with her?
4) Poornima had $₹ 3,425$ with her. She gave $₹ 2,745.75$ to her friend to buy a saree. What is the amount left with her ?
5) Joseph had ₹ 2,500 in his account in a bank. He withdrew $₹ 1,800.75$ for his expenses. What is the amount left in his account in the bank ?

Problems involving Muldaplication in Money system

V. Solve :

1) The cost of anegg is $₹ 4$. What is the cost of a dozen eggs?
2) Swathi biys 8 metres of cloth at $₹ 75$ per metre. What is the amount to be paid to the shopkeeper ?
3) The cost of an umbrella is ₹ 225 What is the cost of 15 umbrellas?
4) A labourer earns ₹ 525 a day. How much will he earn in a week?
5) The cost of a table is $₹ 4,320$. What is the cost of 16 tables?

Problems involving division in Money System

IV. Solve :

1) The Government higher primary school sanctioned a scholarship amount of ₹ 4,000 for 10 students, How much amount did each one get?
2) Mohan paid ₹ 1,422 for 9 shirts. What is the cost of each shirt?
3) Distribute ₹ 4,425 among Amar, Akbar and Anthony equally. What is the amount of share that each one gets?
4) If the cost of a dozen apples is ₹ 96 , what is the cost of one apple?
5) Vinod, a carpenterearns $₹ 9,666$ in 6 days. What is the amount that he earns in a day?

Rate charts and bills

In your previous elass you have learnt how to describe rate charts and bills.

Let us study a few examples.

Example 1

Ayesha goes to Ambika textiles to purchase a few dresses. She buys a pant and a shirt, skirt and a blouse and salwar suit. The person at the packing centre packs the dresses and asks her to collect the packet after paying cash.

At the cash counter, Ayesha is given a slip giving the details of her purchase. The slip looked in this form.

Ambika Textiles

No. 909
Date : 14-4-2011
Customer's Name : Ayesha

Sl. No.	Particulars	Quantity	Rate (₹)	Amount (₹)
1.	Pant		375.00	375.00
2.	Shirt		143.00	143.00
3.	Skirt	1	195.00	195.00
4.	Blouse	1	100.00	100.00
5.	Salwar Suit	1	280.00	280.00
		Total		$1,093.00$

In words: ₹ One thousand ninety three only.
Signature

Example 2

John buys 4 books at ₹ 12 each, 6 pens at ₹ 15 each, 6 pencils at ₹ 3 each and an geometrical instrument box at ₹ 45 from "Vision Stationaries".

The slip given to John to pay the amount is given below.

Observe the details of the purchase written by the shopkeeper.

Compare the calculations in the two examples.
In the first examplewe find different items but quantity is one.
In the second example, the rate of each item is multiplied by the quantity purchased as it is more than one quantity.

The slip given to the customers by the shopkeeper with all the details is called a "Bill".

From the above two examples we notice the following points present in a bill.

Name of the shop and address.

- Date of purchase.
- Customer's name.
- Items purchased
- Quantity of each item purchased
- Cost of each item
- Total amount to be paid by the customer
- Signature of the shopkeeper.

Note: The bill serves as an evidence of purchase. The customer can exchange the product or claim for refund by showing the bill. Hence, the customer should demand for the bill and take it from the shopkeeper.

Let us study few more bills. In each example answer the questions given below the bill.

Example 3

1. Chandregowda purchased the following items from Venkat Provision stores, on 24/11/2011.
Sugar 3 kg at ₹ 37 per kg)
Rice 5 kg at $₹ 25$ per kg
Wheat 4 kg at ₹ 18 per kg
Toordal 2 kg at ₹ 72 per kg
Groundnut Oil 2 kg at $₹ 92$ per kg
A bill is prepared for the above items.

Example 4

Gayathri purchases fruits from Ayub fruit stall on 25/11/2011.
Apples $2 \frac{1}{2} \mathrm{~kg}$ at ₹ 35 per kg
Oranges $1 \frac{1}{2} \mathrm{~kg}$ at ₹ 28 per kg
Mangoes 3 kg at ₹ 40 per kg
Bananas $1 \frac{1}{4} \mathrm{~kg}$ at ₹ 17 per kg

No. 24 Name : Gayathri		Date : 25/11/11		
Sl No	Particulars	$\begin{aligned} & \text { Quantity } \\ & (\mathrm{kg}) \end{aligned}$	$\sim^{\text {Rate }(₹)}$	Amount (₹)
1.	Apples)	$2 \frac{1}{2} \rho$	- 35.00	87.50
2.	Oranges	$1 \frac{1}{2}$	28.00	42.00
3.	Mangoes	B	40.00	120.00
4.	Bananas	. $1 \frac{1}{4}$	17.00	21.25
	\checkmark		Total	270.75

In words : ₹ Two hundred seventy seventy five paise only.
Signature
Answer the following.

- Name of the fruit stall \qquad
- Name of the customer \qquad
- Date of purchase of fruits \qquad
- Number of items purchased \qquad
- Cost of 3 kg of mangoes \qquad
- Cost of $1 \frac{1}{4} \mathrm{~kg}$ of bananas \qquad
- Cost of $2 \frac{1}{2} \mathrm{~kg}$ of apples \qquad
- Cost of $1 \frac{1}{2} \mathrm{~kg}$ of oranges
- Total cost of fruits purchased

Example 5
Let us check the bill and correct if required.

Bill No 246 Name: Mrs Ushay Date:26/11/11				
Sl No	Particulars	Quantity	Rate (₹)	Amount (₹)
1.	Baniyans	-10	53.00	153.00
2.	Napkins	08	12.50	100.00
3.	Socks	12 pairs	25.00	300.00
4.	Sweater	02	285.00	285.00
	V		Total	838.00

In words: ₹ Eight hundred thirty eight only.

Signature

Verification :

Cost of 1 baniyan
= ₹ 53
\therefore Cost of 10 baniyans
$=53 \times 10=$ ₹ 530.00
Cost of 1 napkin
$=₹ 12.50$
\therefore Cost of 8 napkins
$=12.50 \times 8=$ ₹ 100.00
Cost of 1 pair of socks
= ₹ 25
\therefore Cost of 12 pair of socks $=25 \times 12=₹ 300.00$
Cost of 1 sweater
$=₹ 285$
\therefore Cost of 2 sweaters
$=\begin{array}{cc}285 \times 2 & =\frac{₹ 570.00}{₹} 0 \\ \text { Total } 1500.00\end{array}$
The following mistakes are to be corrected.

- Cost of baniyans should be ₹ 530
- Cost of 2 sweaters should, be ₹ 570
- The total bill amount should be ₹ 1500
I. Check and dorrect the bills given below :

Bill No. 350			Palace dha	ate:26/11/11
Sl No	Particulars	Quantity	Rate (₹)	Amount (₹)
1	Jambottle	8	65.00	520.00
2.	Cake	15	8.00	115.00
3.	Chocolate	12	15.00	156.00
	Buns	10	5.00	52.00
			Total	853.00
In words : ₹ Eight hundred fifty three only.				
			Signature	

II. Prepare bitts for the particulars given the below. Find the total cost ingach case andototal cost of all items.

1) Miss Rita bought the following items for the school Annual Day from Meghan Stationaries.
25 sheets of olour caper at ₹ 9 each.
18 sheets of gold colour paper at ₹ 19 each.
12 sheets of silver colour paper at ₹ 18 each.
2 tubeds of g)ue stick at ₹ 30 each.
2) Ranbir singh bought the following articles from Hanuman

Hardware shop.
2 hammers at ₹ 85 each.
6 boxes of nails at ₹ 25 each.
8 boxes of screws at ₹ 30 each box.
2 spanners at ₹ 175 each.

Chapter-6
 WEIGHT AND VOLUME

Weight :

After studying this Chapter you can,

- know the units to weight heavy and light objects used in daily life,
- compare the units of heavy and light weight andstate their relationship,
- analyse and solve problems involving weight using mathematical operations.

Mamata, Roopa, (Julie and Razia go to à wholesale dealer and buy 1 bag of rice, They paid equal amount of money.
This is to be divided équally among 4 of them as they have contributed equal amount of money)

To divide the bag of rice equally among themselves, first they should know the weight of the rice bag.

The standard unit of measurement of weight is 'gram'.
To measure heavier objects the standard units are decagram, hectogram, kipogram, quintal and ton.

To medsure objects of light weight the units used are decigram, centigram add milligram.

Let us learn more about the standard units.
The words deca, hecto, kilo, deci, centi and milli are prefixed before the word 'gram'.

Let us see what part of a gram they are and try to know the meaning of these words.

Higher standard units	Lower standard units
1 gram	1 gram
\downarrow	\downarrow
deca $=10$ times	deci $=\frac{1}{10}$ part
hecto $=100$ times	centi $=\frac{1}{100}$ part
kilo $=1,000$ times	milli $=\frac{1}{1,000}$ part.

Comparison of greater standard units of weight with one gram.

Comparison of smaller standard units of weight with one gram

$$
\begin{aligned}
& \frac{1}{10} \text { of } 1 \text { gram }=\frac{1}{10} \text { gram }=1 \text { decigram } \\
& \frac{1}{100} \text { of } 1 \text { gram }=\frac{1}{100} \text { gram }=1 \text { centigram } \\
& \frac{1}{1,000} \text { of } 1 \text { gram }=\frac{1}{1,000} \text { gram }=1 \text { milligram }
\end{aligned}
$$

The common standard units of weight used in daily life.

1 ton	$=1,000 \mathrm{~kg}$	1 quintal	$=100 \mathrm{~kg}$
1 kg	$=1,000$ gram	$\frac{3}{4} \mathrm{~kg}$	$=750$ gram
$\frac{1}{2} \mathrm{~kg}$	$=500$ gram	$\frac{1}{4} \mathrm{~kg}$	$=250$ gram

Conversion of units of weight

To convert greater units of weight to smaller units

Rule :
To convert kg into gram multiply by 1,000
To convert hectogram into gram multiply by 100
To convert decagram into gram multiply by 10
Note : To convert greater units of weight to smaller units, we should multiply.
Now, let us learn how to convert the units of weight.
Example 1 :How many gram make 3 kg ?
$1 \mathrm{~kg}=1,000 \mathrm{gram}$
$\therefore 3 \mathrm{~kg} \neq 1,000 \times 3=3,000$ gram
Example 2 : How many gram make 4 hectogram?
$\begin{aligned} \text { thectogram } & =100 \text { gram } \\ \therefore 4 \text { hectogram } & =100 \times 4)=400 \text { gram }\end{aligned}$
Example 3 :How many gram make 15 decagram?
1 decagram $=10$ gram
$\therefore 15$ decagram $=10 \times 15=150$ gram
Example 4 : How manykg make 5 quintals?
1quintal $=100 \mathrm{~kg}$
5quintals $=100 \times 5=500 \mathrm{~kg}$
To convert smaller units of weight into greater units Ryle:

- To convert gram into kg divide by 1,000 .
.To convert milligram into gram divide by 1,000 .
- To convert kg into quintal divide by 100 .

Note : To convert smaller units of weight into greater units, we should divide.

Let us study the given examples.

Example 5 : How many gram make 500 milligram?
$1,000 \mathrm{mg}=1 \mathrm{gram}$
$\therefore 500 \mathrm{mg}=500 \div 1,000=1 / 2$ gram
Example 6 : How many gram make 1,600 centigram? 100 centigram $=1$ gram $\therefore 1,600$ centigram $* 1,600 \div 100=16$ gram

Example 7 : How many gram make 280 decigram? 10 decigram $=1 \mathrm{gram}$
$\therefore 280$ decigram $=280 \div 10=28$ gram
Example 8 : How many kg make 750 gram ?
1, ggo gram $=1 \mathrm{~kg}$
$\therefore 750$ gram $=750 \div 1,000=\frac{3}{4} \mathrm{~kg}$
Example 9: How many quintal make 850 kg ? $100 \mathrm{~kg}=1$ quintal

$$
\therefore 850 \mathrm{~kg}=850 \div 100=8 \frac{1}{2} \text { Quintal. }
$$

Activity 1 :

Find your body weight using a weighing machine in your school.

Activity 2 :

Go to a nearby shop and observe the weights used to measure $50 \mathrm{~g}, 100 \mathrm{~g}, 200 \mathrm{~g}, 500 \mathrm{~g}, 1 \mathrm{~kg}, 2 \mathrm{~kg}, 5 \mathrm{~kg}$ and 10 kg and get familarised.

Activity 3 :

Visit a jewellery shop and observe the weights used to weigh 50 milligram, 100 milligram, 200 milligram, 500 milligram, 1 gram, 2 gram, 5 gram and 10 gram.

Problems involving measurement of Weight

Add the following.

Example 1

$15 \mathrm{~kg}, 750 \mathrm{~g}, 13 \mathrm{~kg}$ and 227 g

28 kg 977 g
Example 2
A shopkeeper has 100 kg of rice flour in his shop. If he sells 45 kg of it , find the quantity of rice flour left in his shop.

Quantity of rice flour the shopkeeper has $=100 \mathrm{~kg}$
Quantity of rice flour he sold

$$
=45 \mathrm{~kg}
$$

Quantity of rice flour left
$=55 \mathrm{~kg}$
\therefore Total quantity of rice flour left in the shop $=55 \mathrm{~kg}$

Example 3

There are 4 members in Ramaiah's family. The ration shop gives 12 kg of rice to each member. What is the total quantity of rice the family gets?

Quantity of rice given to each member $\quad=12 \mathrm{~kg}$
\therefore Total quantity of rice given to 4 members $=12 \mathrm{~kg} \times 4$ $=48 \mathrm{~kg}$

Example 4

Four farmers Chenna, Kaala, Thimma and Bomma together purchased 50 kg of Sunflower seeds by contributing equal amount of money. They divide the seeds equally among themselves. What is the weight of seeds that each one gets?

Weight of bag of sunflower seeds, $=50 \mathrm{~kg}$
Number of persons to whom it is divided equally $=4$
\therefore Weight of seeds each person gets $=50 \div 4=12.5 \mathrm{~kg}$
$=12 \mathrm{~kg} 500 \mathrm{~g}$

Exercise 6.1

I. Answer orally

1) Albert buys 16 kg of jaggery and 15 kg of rice from a shop. He puts both the packets into one bag. What is the total weight of the bag?
2) 62 kg of rice was supplied to a school under 'Aksharadasoha Scheme'. If 15 kg of rice was used, find the quantity of rice remaining.
3) A bag can hold 20 kg of soji. If 140 kg of soji is to be filled equally, how many such bags are required ?
4) A merchant has 5 packets of sugar, each packet weighing 15 kg of sugar. What is the total weight of 5 packets of sugar?
II. Convert the following.
5) $7 \mathrm{~kg}=$

6) 16 gram $=$
 milligram.
7) 6,000 gram $=$ \qquad kg
8) 750 milligram $=$

9) 12 quintals $=$ \qquad
10) $1,500 \mathrm{~kg}=\ldots \ldots$ quintals.

III. Add the following.

1) $4 \mathrm{~kg}, 250 \mathrm{~g}, 12 \mathrm{~kg}$ and 355 g .
(2) $23 \mathrm{~kg}, 432 \mathrm{~g}, 37 \mathrm{~kg}$ and 350 g .
2) $12 \mathrm{~kg}, 450 \mathrm{~g}, 15 \mathrm{~kg}$ and 550 g .
3) $17 \mathrm{~kg}, 370 \mathrm{~g}, 18 \mathrm{~kg}$ and 630 g .
4) $6 \mathrm{~kg} 250 \mathrm{~g}, 8 \mathrm{~kg} 430 \mathrm{~g}, 7 \mathrm{~kg} 220 \mathrm{~g}$ and 430 g .

IV. Subtract the following.

1) 13 kg 250 g from 28 kg 550 g
2) 35 kg 550 g from 70 kg 675 g
3) 55 kg 335 g from 85 kg 730 g
4) 28 kg 650 g from 63 kg 350 g
5) 34 kg 585 g from 75 kg 475 g

V. Solve the following.

1) Radha buys 2 kg 500 g of carrot, 2 kg 500 g of brinjal and 3 kg 250 g of tomatoes from a vegetable shop. Find the total weight of vegetables bought by her.
2) A merchatht has 68 kg 250 g of wheat with him. He sells 15 kg 250 g of wheat to one customer and 13 kg 500 g to another customer What is the weight of wheat remaining with him?
3) The yield of paddy per acre is 29 quintals and 50 kg . Racháppa has 30 acres of field. What is the total yield of paddy ${ }^{0}$
4) 8 kg 400 g of sugar is to be packed in 4 bags equally. What is the weight of each bag?
5) A farmer gets 60 kg 400 g of onion from one field and 56 kg 800 g from another field. If he sells 98 kg 200 g of onion, find the weight of onions left with him.

VOLUME

After studying this unit you can,

- know the units of measning objects having greater and lesser volume,
- compare the units of greater volume with units of lesser volume and find their relationship,
- analyse and solve problems involving volume.

Fig. (1)
Fig. (2)
Figure (1) and figure (2) are the two containers filled with milk.
Can you tell which container contains more quantity of milk?
Can you tell the approximate quantity of milk contained in each container?

It is not possible. Isn't it?
To know the quantity of milk contained in each vessel, we should measure the volume of milk.

The total quantity of liquid contained in a vessel is called its 'Volume'.
The measurement of volume is expressed in cubic units.
The standard unit of volume is 'litre'.
Decalitre, hectolitre and kilolitre are the standard units to measure liquids with greater volume.

Decilitre, centilitre and millilitre are the standard units to measure liquids with lesser volume.

Let us try to know more about these standard units.
The words deca, hecto, kilo, deci, centi, and milli are prefixed before the word 'litre'.

These units show the number of times it is contained in alitre. Hence, let us first learn the meaning of these words.

Units of greater volume	Units of lesser yolume
1 litre	
\downarrow	
deca $=10$ times	
hecto $=100$ times	
kilo $=1,000$ times	
deci $=\frac{1}{10}$ part	
centíli $=\frac{1}{100}$ part $=\frac{1}{1,000}$ part	

Comparison of greater standard units of volume with one litre.

Comparisoh of smaller standard units of volume with one litre.
$\frac{1}{10}$ of 1 litre $=\frac{1}{10}$ litre $=1$ decilitre.
$\frac{1}{100}$ of 1 litre $=\frac{1}{100}$ litre $=1$ centilitre.
$\frac{1}{1,000}$ of 1 litre $=\frac{1}{1,000}$ litre $=1$ millilitre.

The standard units of volume used in daily life are :

1 litre	$=1000 \mathrm{ml}$.
$\frac{1}{2}$ litre	$=500 \mathrm{ml}$.
$\frac{1}{4}$ litre	$=250 \mathrm{ml}$.
1 kilolitre	$=1,000$ litre.

The word 'litre' is written as ' l ', millilitre as ' $\mathrm{m} l$ ' and kilolitre as 'kl'.

Conversion of units of rolume.

To convert greater units of yolume into smaller units.
Rule :
To convert kilolitre into litre multiply by 1,000
To conve hectolitre into litre multiply by 100
To convert decilitre into litre multiply by 10
Note: To convert greater units of volume into smaller units, we should maltiply.
Example 1: How many litres make 4 kilolitre?
<1 Kilolitre $=1,000 l$
$\therefore 4$ Kilolitre $=1,000 \times 4=4,000 l$.
Example 2: How many litres make 5 hecto litre?
1 hectolitre $=100 l$
$\therefore 5$ hectolitre $=100 \times 5=500 l$.
Example 3 : How many litres make 17 decalitre?
1 decalitre $=10$ litres
$\therefore 17$ decalitre $=10 \times 17=170 \mathrm{l}$.

To convert smaller units of volume into greater units.

Rule :

To convert litre into kilolitre divide by 1,000 .
To convert litre into hectolitre divide by 100 .
To convert litre into decalitre divide by 10 .
To convert millilitre into litre divide by 1,000 .
Note : To convert smaller units of volume into greater units, we should divide.

Observe the following examples.

Example 4 : How many kilolitre make 7,000 hitres?
1,000/itre $=1$ Kúlolitre
$\therefore 7,000$ litre $=7,000 \div 1,000=7 \mathrm{kl}$.
Example 5 Hgy many hectolitres make 1,200 litres?
100 litre $=1$ hectolitre
$\therefore 1,200$ litye $=1,200 \div 100=12$ hectolitre.
Example 6 : How many decalitres make 900 litre?
10 -itre $=1$ decalitre
$\therefore 900$ litre $=900 \div 10=90$ decalitre.
Example 7 : How many litres make $15,000 \mathrm{~m} l$?
$1,000 \mathrm{~m} l=1$ litre $\therefore 15,000 \mathrm{~m} l=15,000 \div 1,000=15$ litre.

Activity 1

Visit a milk booth or an oil depot and observe the containers of the measure $50 \mathrm{ml}, 100 \mathrm{ml}, 200 \mathrm{ml}, 500 \mathrm{ml}, 1 l, 2 l, 5 l$ and $10 l$.

Activity 2

Take a vessel which can hold 5 litres of water. Pour water into the vessel 2 times from a vessel having the capacity of 2 litre. Then again pour 1 litre of water, see whether the vessel is fully filled?

Activity 3

We should drink 2 to 3 litres of water on an average per day
To know whether you are drinking sufficient quantity of water, keep a bottle of known capacity.
For example :
If you have a bottle of 500 mll , fill water in it completely each time and drink.

Count how many times you have enptied the bottle.
If you have consumed 6 bottles of vater, then you have consumed the requiredquantity of water.

To solve problems involving volume

Example 1

Add the following :
$12 l 500 \mathrm{ml}$, $8 l 300 \mathrm{ml}, 9 l 600 \mathrm{ml}$.

$\boldsymbol{l} \boldsymbol{l} \boldsymbol{m}$	
12	500
8	300
9	600
$30 l$	400 ml

Example 2

Subtract 6 litre $750 \mathrm{~m} l$ from 18 litre 500 ml .

l	$\mathrm{~m} l$
18	500
$-\quad 6$	750
$11 l$	$750 \mathrm{~m} l$

Example 3

A person drinks $2 l 300 \mathrm{~m} /$ of water per day. What is the quantity of water he drinks in 10 days?

1 litre $=1000$ mililitres
$2 l 300 \mathrm{~m} l \times 10=23$ litre

$300 \mathrm{~m} l \times 10=3,000 \mathrm{~m} l=3 l$
$\therefore 20 l+3 l=23 l$
\therefore the person drinks 23 litre of water in 10 days.

Example 4

8 glasses of equal volume are used to fill a vessel with water. If the vessel can hold $5 l 600 \mathrm{ml}$ of water, find the capacity of each glass.

1 litre $\quad=1,000 \mathrm{ml}$
$5 \sqrt{600} \mathrm{~m} l=5 \times 1,000+600$

$$
=5,600 \mathrm{ml}
$$

Capacity of 8 glasses $=5,600 \mathrm{ml}$
\therefore Capacity of 1 glass $=5,600 \div 8=700 \mathrm{ml}$

Exercise 6.2

I. Answer orally

1) A glass contains 300 ml of water and another glass contains 250 ml of water. If water from both the glasses are poured into a jug, what is the quantity of water in the jug?
2) A milkman has $5 l 700 \mathrm{ml}$ of milk. Out of this he sells $1 / 350$ $\mathrm{m} l$ of milk to one person and $2 l 250 \mathrm{ml}$ to another person. Find the quantity of milk left with the milkman.
3) A bottle contains $200 \mathrm{~m} l$ of milk. What is the total quantity of milk contained in 5 such bottles?
4) 100 ml of sugarcane juice is distributed among 4 friends equally. What quantity of sugarcane juice does each one get?

II. Convert the following.

1) $5 l=\ldots \ldots . . \ldots \mathrm{m} l$
2) 6 kilolitre $=$
3) $500 \mathrm{~m} l=$
 ๑. l
4) $8,000 l=\ldots \ldots \ldots . .$. kilolitre

III. Add

1) $3 l 250 \mathrm{ml}, 750 \mathrm{ml}$ and $6 l 500 \mathrm{ml}$
2) $15 l 450 \mathrm{ml}$, $5 l 350 \mathrm{ml}$ and $21 l 750 \mathrm{~m} l$
3) $12 l 550 \mathrm{ml}, 14 l 450 \mathrm{ml}$ and $12 l 650 \mathrm{ml}$
4) $8 \mathrm{kl} 250 l, 3 \mathrm{kl} 350 \mathrm{l}$ and 4 kl 550 l

IV. Subtract

1) $15 l 750 \mathrm{ml}$ from $25 l 350 \mathrm{ml}$
2) $24 l 550 \mathrm{~m} l$ from $64 l 450 \mathrm{ml}$
3) $45 l 800 \mathrm{~m} l$ from $75 l 750 \mathrm{ml}$
4) 34 kilolitre $750 l$ from 55 kilolitre

V. Solve the following.

1) Veena buys $3 / 250 \mathrm{~m} /$ of groundnut oil while returning from her office. Her mother alsobought $1 / 500 \mathrm{~m} /$ of groundnut oil on the same day. What is the total quantity of groundnut oil bought by them?
2) A milkman has 25 litres of milk. He sells $16 l 750 \mathrm{ml}$ of it. Find the quantity of milk left with him.
3) A bottle contains $1 l 500 \mathrm{~m} l$ of sandal oil. It has to be filled into bottles of 250 ml each. How many bottles are required?
4) An oil can contains $15 l$ of Sunpure oil. Out of this Rani uses $3 l 600 \mathrm{ml}$ in the first month and $5 l 300 \mathrm{ml}$ in the second month. Find the quantity of oil left in the oil can.
5) A vessel contains 1 litre 800 ml of tea. It is poured into 12 glasses of the same size equally. What is the quantity of tea contained in each glass?

Chapter-7

TIME

After studying this Chapter you can,

- convert 24 hour clock time into 12 hour clock time,
- solve the problems related to time with respect to daily problems involving addition and subtraction,
- calculate the time required to conplete a work or ad event.

To convert 24 hour clock time into 12 hoar clock time.
Sarojini came to the railway station with her brother. In the railway time table the departure time was mentioned as $22: 05$. She sat in the train. When the train started moving, Sarojini observed the time in her brother's watch It was showing $10: 05$. How is it? In the railway time table the departure time was $22: 05$. In her brother's watch it is $10: 05$. In the clock there are only 1 to 12 hour. So how to calculate 22:05 hour? Such questions raised in her mind.

One day has 24 hour. So, the time table of the train and the aeroplane has been framed from 00 to 24 hour. We can show this 00 to 24 hour in a clock.

Observe the 24 - hour clock.

In this clock, 24 hours of the day is showh. Here 24 hours of the day has been equally divided. From 00 hour to 12 hour in the afternoon, it is the firsty part. From 12 hour in the afternoon to 00 (24) hour in the miduight, it is the second part. The time interval between 00 hour in the midnight to 12 hour in the afternoon is called 'ante meridian'. This is represented as a.m.

The time interval from afternoon 12 hour to midnight 00 (24) hour is called 'post meridian. This is represented as p.m.
How to convert 24 hour clock time to 12 hour clock time?
Example 1 : Th the railway time table, the departure time of the train is denoted as 22 : 05 hour. What will be the departure time of this train in 12 hour clock ?

Departure time of the train $=22: 05-12: 00$

$$
=10: 05 \mathrm{p} . \mathrm{m} . \text { (night 10:05) }
$$

Note:

- When the time is above 12 hours, 12 should be subtracted from it and the remaining time is written as p.m.
- When the time is below 12 hours, it is written as a.m.

Example 2: The arrival time of an aeroplane is 13:50 hour. Convert this into 12 hour clock time.

$$
\begin{aligned}
\text { Arrival time of an aeroplane } & =13: 50-12: 00 \\
& =1: 50 \text { p.m. (afternoon } 1: 50)
\end{aligned}
$$

Example 3 :

Denote the following timings in a.m. and p.m.
(i) $20: 20$
(ii) $10: 45$
i) $20: 20$. This is more than 12 hour. 20:20-12:00=8:20p.m.
ii) $10: 45$. This is less than 12 hour $\therefore 10: 45=10: 45 \mathrm{a} . \mathrm{m}$.

Activity 1 : Using your pencil, compass and protractor, draw the figure of 24 hour clock.

Activity 2 : Using your pencil, scale, compass and protractor, draw the figure of 12 hour clock. Draw hour, minute and second needles.
Activity 3 : $02: 36: 15$
This is the time in a digital clock. This clock shows hour, minute and second. In this way prepare different timings and make different strips. These different strips are exhibited through a window. In this way prepare a model for a digital clock.

Study the following table. You can clearly learn about anti meridian (a.m) and post meridian (p.m)

$\mathbf{2 4}$ hour clock time	$\mathbf{1 2}$ hour clock time
$00: 00$ hour to 24 hour	$00: 00$ hour to 12 hour
$01: 00$ hour	1 a.m.
$02: 00$ hour	2 a.m.
$11: 00$ hour	11 a.m.
$12: 00$ hour	12 hour (afternoonn)
$13: 00$ hour	1 p.m.
$14: 00$ hour	
$23: 00$ hour	2 p.m.
$00: 00$ hour or 24 horir	12 p.m.

Exercise 7.1

I. Answer orally

1) At what time do you get up in the morning ?
2) At what time do you go to school ?
3) At what time do you go out to play?
4) Ftom what time to what time do you study during night?
5) At what time will you have your dinner?
6) At what time do you go to bed at night ?

II. Denote the following timings in a.m and p.m.

1) $10: 15$ morning
2) $8: 10$ night
3) 1:45 afternoon
4) $4: 30$ morning
5) $9: 45$ night
6) 5:35 evening
III. Convert the following timings to $\mathbf{1 2}$ hour clock tining. Also write in a.m. and p.m,
7) $23: 25$ hour
8) $14: 45$ hour
9) 18:40 hour
10) $08: 30$ hour
11) $11: 55$ hour
12) $02: 15$ hour
13) $15: 37$ hour
14) $21: 40$ hour
15) $16: 45$ hour

We know that second, minute and hour are the three fundamental units of time. Let us now learn the relationship between them.

$$
\begin{array}{ll}
60 \text { seconds } & =1 \text { minute }(1 \mathrm{~min}) \\
60 \text { minutes } & =1 \text { hour }(1 \mathrm{hr}) \\
24 \text { hours } & =1 \text { day } \\
7 \text { days } & =1 \text { week } \\
30 \text { or } 31 \text { days } & =1 \text { month (excluding February month) } \\
12 \text { months } & =1 \text { year } \\
365 \text { days } & =1 \text { year }
\end{array}
$$

In the month of February there are 28 days. After every 4 years, in February there are 29 days. The year in which there are 29 days is called "leap year".

Problems on time involving addition

Example 1: Add 2 hour 20 minutes to 3 hour 30 minutes.
2 hr 20 min
$+3 \mathrm{hr} 30 \mathrm{~min}$
5 hr 50 min

Example 2 : Add 3 hour 50 minutes 30 seconds to 2 hour 15 minutes 50 seconds.

[Note: $30 \mathrm{~s}+50 \mathrm{~s}=80 \mathrm{~s}-60 \mathrm{~s}=20 \mathrm{~s} .20$ seconds is written in seconds place. $60 \mathrm{~s}=1 \mathrm{~min}$. This 1 minute is added to minutes. So $1 \mathrm{~min}+50 \mathrm{~min}+15 \mathrm{~min}=66 \mathrm{~min}$. 66 min $-60 \mathrm{~min}=06 \mathrm{~min}$. This 6 minutes is written in minutes place.
$60 \mathrm{~min}=1 \mathrm{hr}$. This 1 hour is added to hours.
So, $1 \mathrm{hr}+3 \mathrm{hr}+2 \mathrm{hr}=6$ hours]
Example 3 : Add 3 years 8 months to 2 years 7 months

$$
\begin{aligned}
& 3 \mathrm{yr} 8 \mathrm{mth} \\
& 2 \mathrm{yr} 7 \mathrm{mth} \\
& \hline 6 \mathrm{yr} \mathrm{3mth} \\
& \hline
\end{aligned}
$$

[Note : $8 \mathrm{mth}+7 \mathrm{mth}=15 \mathrm{mth}-12 \mathrm{mth}=3 \mathrm{mth}$

$$
12 \text { mth = } 1 \text { year }
$$

This one year is added to years.

$$
\therefore 1 \text { year }+3 \text { years }+2 \text { years }=6 \text { years }]
$$

Activity 1 : From Monday to Saturday everyday you have a period of 40 minutes of mathematics subject. For how many periods is mathematics taught in a week? Express this in hours.

Activity 2 : As in activity 1 , find out the number of periods and hours of teaching for different subjects.

I. Answer orally

1) How many seconds make 1 minute?
2) How many minutes make 1 hour?
3) How many hours are there in a day?
4) How many days are there in a week ?
5) How thany months are there in a year?
6) How many days are there in a year?
7) How many days are there in a month?

How many days are there in February?
9) What do you mean by leap year?
10) What is the sum of 3 hr 20 min and 4 hr 30 min ?

II. Add the following.

1) 4 hr 40 min and 6 hr 10 min
2) 3 hr 30 min and 2 hr 20 min
3) 2 hr 50 min and 3 hr 40 min
4) 5 hr 30 min and 2 hr 50 min
5) 3 hr 15 min 18 s and 1 hr 19 min 17 s
6) 2 hr 30 min 40 s and 4 hr 50 min 30 s
7) 5 hr 45 min 30 s and 3 hr 25 min 40 s
8) 3 yr 8 mth and 2 yr 7 mth
9) 5 yr omth and 4 yr 9 mth

Problems on time involving subtraction

Example 1: Subtract 2hr 20min from 5 hr 30min.

Example 2: Subtract 3 hr 45 min from 6 hr 15 min
6 hr 15 min

- 3 hr 45 min

2hr 30min
[Note : It is not possible to subtract 45 min from 15 min . So we barrow 1 hr from 6hr.

Now 1 hour $=60$ minutes
$\therefore 60+15=75 \mathrm{~min}$

$$
75-45=30 \mathrm{~min}
$$

In the place of hours, $5 \mathrm{hr}-3 \mathrm{hr}=2 \mathrm{hr}]$
Example 3 : Subtract 4years 9 months from 7 years 7 months

(Note : It is not possible tosubtract 9 m th from 7 m th. So we borrow lyear from 7 years.

1 year $=12 \mathrm{months}$
$12 \mathrm{mth}+7 \mathrm{~m}$ h $=19 \mathrm{mth}$
$19 \mathrm{mth}-9 \mathrm{mth}=10 \mathrm{mth}$
In the place of years, $6 \mathrm{yr}-4 \mathrm{yr}=2$ years)
Activity 1
Note the starting and closing time of your school. Find out the time intelfal. From this subtract the time for lunch break and find how many hours your school works.

Activity 2

Watch on your television how the needles of hour, minute and seconds change at the time of telecasting the news.

List the timings of the news telecasted in 'Doordarshan - 1' in one day.

Exercise 7.3

I. Answer orally :

1) How many seconds make 5 minutes?
2) How many minutes are there in 10 hours?
3) How many seconds make 1 hour?
4) What is the time interval between 9:30 a.m. and 12:00 noon?
5) Find out the railway clock time for $5: 30 \mathrm{p} . \mathrm{m}$.
II. Subtract the following
6) 5 hr 10 min from 7 hr 30 min
7) $3 \mathrm{hr} 20 \mathrm{~min}-25 \mathrm{~s}$ from 4 hr 40 min 50 s
8) 2 hr 50 min from 5 hr 30 min
9) 5 hr 40 min from 6 hr
10) $3 y r 8 m$ from $6 y$ 4mth
11) 2 yr 9 mth from 5 yr 6 mth
12) 4 yr 11 mth from 7 yr 5 mth

R Hoy to calculate the time taken to complete a work or an incident?

Example 1 : Shalini leaves her home at 7:30 a.m. and reaches her school at 9:00 a.m. How much time does Shalini take to reach her school?

Starting time of Shalini $\quad=7: 30$ a.m.
The time she reaches her school $=9: 00$ a.m.
Now we have to subtract 7:30 a.m. from 9:00 a.m.

$\mathrm{hr}: \mathrm{min}$	[Note: we have to borrow 1 hr from 9hrs,
$9: 00$	$60 \mathrm{hr}=60 \mathrm{~min}$
$-7: 30$	$8 \mathrm{mr}-7 \mathrm{hr}=30 \mathrm{~min}$
$\mathbf{y y y}$	$=1 \mathrm{hr}]$

1:30 \therefore Shalini takes 1hr and 30 min to reach her school Example 2: The school closed for summer vacation, on April 11 and reopened on May 31. For hoy many days the school was closed for summer vacation?

No. of days the school was closed from

No. of days the sdhool was closed from
May 1 to May $30=30$ days.
Total number of days the sebool was closed for
summer vacation $=50$ days.

$\times \bigcirc$

Exercise 7.4

Solve the follayving problems.

1) A worker enters the factory at $6: 15$ a.m. He finishes his work and leaves the factory at $2: 15 \mathrm{p} . \mathrm{m}$. For how many hours has he worked in the factory?
2) A school closes for mid-term vacation on October $3^{\text {rd }}$ and reopens on October $31^{\text {st }}$. How many days has the school closed for mid term vaction?
3) A school starts at $8: 00 \mathrm{a} . \mathrm{m}$ on Saturday and closes at $12: 30$ p.m. How many hours did the school work on that day?
4) Shyam comes to his office at $9: 00$ a.m. He works 8 hours in his office. What time does he leave his office in the evening?
5) Fathima studies for 5 hr . 10 min in her school. At home, she studies 2 hr .50 min . What is the total number of hours she studie on that day?
6) Mahesh spends his 15 days holidays in his uncle's place from 3-10-2011. On which date does he leave his uncle's place?

Chapter-8

SYMMETRICAL FIGURES

After studying this Chapter you can,

- cut and fold the papers, use ink blots to identify the images of figures,
- identify the images of simple geometrical figures,
- identify symmetry in two and three dimensional figures,
- identify the figures obtained when 2D figures sueh as circle, right angled triangle and rectangle are rotated.

Symmetrical figures

Observe the figure of a butterfly. A straight line is drawn on this figure. When the paper is folded along this straight line, one part will exactly coincide with the other part. This is a symmetrical figure. This straight line is called axis of symmetry.

Observe these symmetrical figures. In figure (a), the figures have two axes of symmetry.

In figure (b), the symmetrical figures have many axes of symmetry. Only a few axes are drawn.

In figare (c), they are not symmetrical figures. When we fold the paper on the straight line drawn, they do not coincide with one another. They are not symmetrical figures.

Examples for symmetrical figures

Examples for non - symmetrical figures.

Symmetrical cubical figures
Anu and Manu have bought cakes of different shapes. They cut the cake into two equal parts as shown. Observe the two parts in

Examples for symmetrical cubical figures.

Think:Car, planes, mobile, computer, human being are all

 symmetrical cubical figures. Why?
Images :

Activity 1 : Observe the images obtained by placing different pictures in front of a mirror. The left and the right portion of the object has been changed into right and left portion in the image.

Activity 2 : Take a white paper and put one or two drops of ink on it. Fold the paper and gently rub the paper. Open and see the images
 formed on either side of the paper.

Activity 3 : Take a coloured rectangular paper. Fold it exactly in the middle as shown. In this folded paper, cut any figure of your choice. Open the fold of the paper. Is the left side fold, same as the image of the right side?

In all these activities we got the image of a figure.

Examples :

1) Examine whether the given figures are symmetrical figures. If they are symmetrical figures, how many axes of symmetry can be drawn to them?
a)
b)

a) This is a symmetrical figure, It has only one axis of symmetry.

b) This is not a symmetrical figure. So it has no axis of symmetry.
c) This is a symmetrical figure. It has two axes of symmetry.

2) In the given figure, many straight lines are drawn. Which are the axes of symmetry?
The straight lines (1) and (2) are the axes of symmetry. But straight line (3) is not the axis of symmetry.

3) Examine whether the images of the following letter and numeral are exactly the same as the original letter and numeral.
a) The image of 'A' is exactly the same as the original letter.
b) The image of ' 6 ' is not like the originalnumeral.
4) Mark symmetric figures as ' $\boldsymbol{\lambda}$ ' and non symmetric figure as ' \boldsymbol{X} ' in the following.

5) A few lines have been drawn on the following figures and the lines are denoted by numbers. Identify the axes of symmetry and write its number.

6) Draw axes of symmetry to the following symmetrical figures.

7) A few symmetrical figures wih only half part are given below. Complete the remaining half part by drawing.

8) Pairs of figures are given below: If one figure is the image of the ether figure put a tick ' \checkmark ', if not put ' X '

9) Some figures are given below. Draw their images in the given space.

10) A few numerals and words are given below. Among them a few numerals or words are the images of original numerals and words. List them.
a) 818
b) 310
c) 18081
d) 80888
e) DAD
f) MAM
g) EVE
h) THAT
11) List the symmetrical objects you have seen in your surroundings. Activity : Cut the cardboard intorectangle, right angled triangle and circular shapes. Paste a stick to each one of them as shown in the figure. Rotate these figures by keeping the sticks in the middle of your two hands. Now observe the cubical figures formed. Write

When we rotate rectangle, right angled triangle and circle in definite axis we get cylinder, cone and sphere respectively.

Rotation of figures

Johara hung some figures on the wall:

When she had gone out, her friend turned them upside down (half). When Johara came back, she found that two pictures were upside down and the other twopictures which were also made upside down were found to look alright. Why?

When this figure is rotated one turn we get $2 \cdot{ }^{\circ}$ This is exactly like the original ffgure.

When this figure is rotated half turn, we get
When this figure is rotated $\frac{1}{4}$ turn, we getWhen this figute is rotated $\frac{1}{3}$ turn
(is) When this figure is rotated $\frac{1}{6}$ turn we get \qquad
So when this figure is rotated $\frac{1}{2}, \frac{1}{4}, \frac{1}{3}, \frac{1}{6}$ turn, then it looks completely different from the original figure.
Obsefve the following figures.

When the above figures are rotated $\frac{1}{2}$ turn, they appear exactly like the original figure.

Some more examples are given below. Observe them.

When this figure is rotated $\frac{1}{4}$ th turn $\left(90^{\circ}\right)$, it appears as before.
2)

When this figure is rotated $\frac{1}{3} \operatorname{rd}\left(120^{\circ}\right)$, resembles the original figure.
3)

When this figure is rotated $\frac{1}{6}$ th $\left(60^{\circ}\right)$, it resembles the original figure.
4)

When this figure is turned 1 round, $\frac{1}{2}$ round,,$\frac{1}{4}$ round, then it resembles the original figure.

Note :

- If a figure is rotated $\frac{1}{4}$ th round and they resemble the original figure, then with $\frac{1}{2}$ round also they resemble the original figure.
All figures when rotated one complete round will resemble the original figure.

Examine whether the figure given below resemble the original figure or not when it is rotated $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ and $\frac{1}{6}$ round.

When the figure is rotated $\frac{1}{3}$ round and $\frac{1}{6}$ round, it resembles the original figure. But in $\frac{1}{2}$ round and $\frac{1}{4}$ round, it will not resemble the original figure.

Note: If the figures which are rotated $\frac{1}{6}$ round resemble the original figure, then with $\frac{1}{3}$ round also they resemble the original figure.

Activity: Examine the figure of Ashoka chakra. In which of the following rounds it resembles the original figure? $\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right.$ or $\frac{1}{6}$)

Exercise 8.2

1) Figures are given in the first row of the table given below. In the next rows, the rotations thas to be turned are given. If the figure is turned for given rounds and resembles the original figure, put ' V ' in the boxand if it does not resemble put ' X ' in the box.

2) The following figures when turned $\frac{1}{3}$ round do not resemble the original figure. Make suitable changes in the figure, to make them resemble the original figure when turned $\frac{1}{3}$ round.
Example :

b)

3) a) List the letters from English alphabet, which will not change their shape, when turned $\frac{1}{2}$ rotation. Example : X
b) Which capital letter from English alphabet when turned $\frac{1}{4}$ round gives another letter?
c) Which capital letter from English alphabet when rotated $\frac{1}{2}$ round gives another capital letter?
4) Draw the figures which resemble the original figure when rotated $\frac{1}{4}$ round.
5) Draw the figures which resemble the original figure when rotated $\frac{1}{3}$ round.

Discuss : A boy stands straight in front of a board and observes it. Another boy reads the board in shirshasana posture. What difference do they find in the board?

Chapter-9

THREE DIMENSIONAL FIGURES

After studying this Chapter you can,

- represent 3 dimensional figures as 2 dimensional figures,
- draw the elevation, plan and side view of the 3D geometrical figures,
- draw geometrical sketches of cube, cylinder and cone with definite nets.

We observe many three dimensional objects around us. Some of them are given below.

These objeets resemble three dimensional geometrical shapes. They are rectangular cube (cuboid), cylinder, cube and cone. You have already learnt about the properties of these figures in your previous classes. Study the following table.

Name of 3D figures	Figure	No. of faces	Properties	No. of edges	No. of vertices		
Cube						\quad	6
:---:							
Cuboid							

Cone	\longleftrightarrow	2	1 circular base 1 curved surface	-

Some students drew the figure of the same object - cuboid. Here are a few figures drawn.

Though students drew the figure of the same object, each figure differs from the other. This is because each one of them have seen the object from different directions.
Observe thefgures of some objects with different geometrical shapes.

In all these figures, we cannot see all faces and edges at a time. We denote the edge by a straight line (\qquad) and when we cannot see the edge we denote it by dotted lines (\qquad ..)

Observe this in the following figures.

When we see an object or a cubical figure from different directions it appears different. For example : When we see the bus from different sides, we have the following figures.

In these different views, let usknow about 3 views.

1) Front view (Elevation) When ye see the object from front.
2) Side view : When we'see the object from left or right
3) Plan (Top view): When we see the objêt from the top.

Observe the figures in the following table.

Know this : Before constructing a house or any building, engineers draw the plan, elevation and side view of that house or building. These pictures will give us information about the area of the building, height, structure, number of rooms, number of doors and windows etc.
Example

In this house, there are 2 rooms, 1 door and 3 windows. The roof of this house is slanting.

Some more examples are given below.

1) Suman, Peter and Irsháa constructed a model bridge from match boxes.

a) Peter drew the elevation picture.

b) Suman drew the picture of side view.
c) Irshad drew the picture of plan.

2) Observe the different views of the steps.

Exercise 9.1

I. Answer orally.
a) What is the shape of the faces of a cube ?
b) How many circular faces are there in a cylinder?
c) Mention the number of plane surfaces and curved surfaces in a cone.
II. Observe the following table. Against each shape of solid, some pictures are given. Put ' J ' against the figure which is an example of that shape and put ' x ' against the figure which is not an example of that shape.

III. A robot is constructed using different solid shapes. Identify the shapes and write the number of times it is used.

IV. Different views of a table are given below. Name them.
(a)

(b)

(c)

V. 1) Draw diagrams of cube, cylinder and cone with different measurements in 2D.
2) Draw diagrams of your school showing elevation, side view and plan.
3) Draw diagrans of different objects in you house to show elevation, side viewand plan.
To construct solid figures from nets?
Take a cubical box and draw coloured lines on its edge and cut them. When you open it, you geta plane figure.
(a)
(b)

®

This plane figure is called the net of the cube. This net when folded on its edges, forms the cube.
(a)

Network of cube
(b)

cube

Chapter 10

PATTERNS

After studying this Chapter you can,

- understand the rule followed in the pattern,
- complete the pattern by following the rule,
- create designs,
- know that numbers can be arranged in patterns,
- identify the number pattern,
- form triangular and square numbers through patterns,
- recognize number pattern and solve the problem,
- relate sequence of odd numbers and consecutive square numbers,
- make border strips and tile patterns,
- know about different kinds of border strips and tiling patterns.

Patterns with Numbers
You have already studied humber patterns in the previous class.

Study the following examples.

Example 1
$5,10,15,20,25,30,35,40$ \qquad
These numbers are multiples of 5 and the pattern is
$5, \quad 5+5, \quad 10+5, \quad 15+5, \quad 20+5$ \qquad
Example 2
$2,3,6,7,10,11,14,15$
In this example we see that there is a difference of one between 2 and 3 and a difference of 3 between 3 and 6 .

The same pattern is continued.
i.e, : $2, \quad 2+1, \quad 3+3, \quad 6+1, \quad 7+3, \quad 10+1, \quad 11+3$

Observe the following number patterns and write the next three numbers.

20, 40, 60, 80, \qquad , \qquad , \qquad .
8, 16, 24, 32,
$1,4,7,10$, \qquad , \qquad , ,

$19,18,17,16$, \qquad , \qquad
Now let us study about some more -interesting number patterns.

Square Numbers

Observe the following figures with dots. Identify the figure formed in each case.

We observe that when a group of dots in the same direction are joined a line segment is obtained.

Now, let us consider the points not lying on a straight line.
Observe the number of points used and the shape of the figure formed.

3 points - triangle.

4 points - square

Look at these figures. How many dots are there in each of them?

Observe that we get squares when $4,9,16$, and 25 dots are joined. These are called "Square unmbers" as they form the shape of a square.

Look at the dot patterns and identify the square numbers.

b)

\square

Write the dot diagram for the next square number.

Observe the multiplication table.

The red coloured numbers which run up and across are multiplied.

The green coloured numbers on the diagonal are square numbers.

Triangular Numbers

Observe the figures formed by joining the dots as shown.

The numbers 3, 6, 10, and 15 are called "Triangular Numbers" as they forni triangles.

All numbers do not form triangular numbers.

The sequence of the triangular numbers can be obtained from the natural numbers as shown below. Study the pattern.

$$
\begin{gathered}
1 \\
1+2=3 \\
(1+2)+3=6 \\
(1+2+3)+4=10 \\
(1+2+3+4)+5=15
\end{gathered}
$$

You can illustrate the same triangular numbers by the following drawing.

Observe these dot diagrams. Identify and write the triangular numbers formed in them.

fig (a)

b) 。

00
00
0000
00000
000000
0000000
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
fig (b) \square

Odd numbers and consecutive square numbers

Observe the dot pattern and numbers.

$$
1+3=4
$$

$1+3+5=9$
$1+3+5+7+9=25$

When consecutive odd numbers beginning from one are added we get a "Square Number".

Look at these consecutive odd numbers- add them. Observe the type of number formed.

$$
\begin{aligned}
& \begin{array}{l}
1+3+5+7+9+11=\boxed{36} \\
1+3+5+7+9+11+13= \\
1+39 \\
1+5+7+9+11+13+15= \\
1+3+5+7+9+11+13+15+17=81 \\
1+3+5+7+9+11+13+15+17+19=100
\end{array} \\
& \text { Activity }
\end{aligned}
$$

Pick out consecutive odd numbers from the table and form square numbers.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	1,8	19	20

Example

$$
1+3=4
$$

$$
1+3+5=9
$$

Exercise 10.1

I. Solve the following problems.

1) Write the numbers from 1 to 50 .

Colour the square numbers in red and triangular numbers in blue.

1	2								
									1
									1

a) List the square numbers.
b) List hetriangular numbers
c) How many square numbers are there from 1 to 50 ?
d) How many triangular numbers are there from 1 to 50 ?
2) Observe the given pattern of numbers and fill in the space provided.
$1+2+1=4$
$1+2+3+2+1=9$

\square
3. Express the following square numbers as the sum of consecutive odd numbers.
16, 36, 81, 100, 121, 144, 169, 225
Example : $9=1+3+5$
4. Fill in the missing odd number and write the square number in the circle.

5. List the firist four square numbers and triangular numbers. Represent them through dot diagrans.
6. Here is fun with triangular numbers. First complete the list and then write them in the table as shown.
$1,3,6,10$,

\qquad , \qquad , 36, 45.

Now add them together and write the sum in the bottom row.
What can you say about the numbers formed in this row?
Write your conclusion in the form of a statement.
7. Observe the given table.

Multiplication table of 3	Triangular Numbers	Square Numbers
$3 \times 1=(3)$	$3,6,15$,	9
$3 \times 2=6$	21	
$3 \times 3=9$		
$3 \times 4=12$		
$3 \times 5=15$		
$3 \times 6=18$		
$3 \times 7=(21)$		
$3 \times 8=24$		
$3 \times 9=27$		
$3 \times 10=30$		

- Write multiplication tables of 4,5 and 6. In each table, circle the triangulat numbers as shown in the example. Draw a box for squate numbers. List them in columns as shown.
- Write numbers from 51 to 100. Identify and list triangular numbers and square numbers.

Border strips and tiling patterns.

In your previous class you have learnt to make geometrical patterns based on symmetry.
Observe the given patterns.

We find that there is uniformity in design and space.
Observe the design of the floor.

Observe that tiles are placed in an uniform pattern without any gap or overlapping.
Observe a few more examples of tile patterns given below.

The floor of our houses, temples, platforms etc; are all tiled in an uniform pattern.

This pattern of laying a collection of individual tiles together without any gaps or oyerlaps to fill some flat space is called "Tiling".

Exercise 10.2
I. Complete the border design.

Activity

1. Observe the given tile pattern and make a design of your own. Remember that there must be no gaps between them.

2. Look at the given shapes carefully.

- Which of these shapes will tile a floor (without any gaps).
- Make designs by using these shapes.
- Create your own new tile design out of a square. Can you do the same with a triangle? Try it.

3. Complete the tile design and colour them.

Answers
 Chapter-1
 Exercise 1.1

I 1) 25,258
2) 25,276
3) 21,842
4) 38,064
II. 1) 25,749
2) 27,639
3) 43,524
4) 30,205
III. 1) 90250
2) 50,980
3) 86,158
4) 90,364
5) 75,609
6) 16,354
7) 38,036
8) 38,000
IV. 1) 64,491
2) 78,730
3) 77,336
4) 90,351
V.

1) 37,296
2) 17,280
3) ₹ 55,809
4) ₹ 44,505
I. 1) Quotient $=8$, remainder $=0$,
5) Quotient $=12$, eminder $=0$
6) Quotient $=13$, remainde $=3$,
7) Quotient $=10$, reminder $=2$
II. 1) Quotient 58 , remainder $=0$,
8) Quotient $=23$, temainder $=2$,
III. 1) Quotient $=206$, remainder $=5$,
9) Quotient $=95$, remainde $=10$,
IV. 1) Quotient $=12329$, remainder $=0$
10) Quotient $=3274$, reminder $=5$
11) Quotient $=79$, reminder $=0$
12) Quotient $=43$, reminder $=11$
13) Quotient $=203$, reminder $=8$
14) Quotient $=2000$, remainder $=5$
15) Quotient $=1004$, reminder $=8$
V.
16) 2 metres
17) 48 km
18) 1,786
19) ₹ 86
20) ₹ 7,576
21) 1,140

Exercise 2.2

2) ₹ 195
3) ₹ 1,080

Chapter-3
Exercise 3.1
I. 1) 8,000
2) 3,000
3) 15,000
4) 33,000
II. 1) 30,000
2) 30,000
3) 50,000
4) 50,000
III. 1) 78,000
2) 96,000
3) 53,000
4) 89,000
IV.

1) 80,000
2) 80,000
3) 80,000
4) 60,000
V. 1) 18,000
5) 14,000
6) 32,000
7) 45,000
VI. 1) 20,000
8) 40,000
9) 30,000
10) 30,000
VII. 1) 20,000
11) 45,000
12) 50,000
13) 60,000
VIII. 1) 5
14) 40
15) 50
16) 200
IX. 1) 30,000
17) 20,000
18) $4,000 \mathrm{~km}$.
19) ₹ 10,000

I 1) Zero point five
2) Zero point one three
3) One point seven
4) Five point two one
II. 1) 0.12
2)
6.8
3) 10.5
4) 4.02
5) 6.84
6) 108.06
III. 1) 0.8
2)
3) 8.5
4) 52.5
IV.

1) 0.08

2) 0.72

3) 4.80
4) 15.06
5) 8.70
6) 782.10
7) 20.50
V. 1) 0.75
8) 10.25

Exercise 4.2

I. 1) 0.8
2) 0.7
3) 0.6
4) 1.6
5) 4.2
6) 8.3
7) 0.07
8) 0.72
9) 8.61
10) 16.2
11) 1.41
12) 14.61
13) 0.5
14) 0.75
15) 0.4
16) 0.35
17) 0.76
18) 0.68
19) 0.65
20) 0.32
II.

1) $\frac{7}{10}$
2) $\frac{2}{100}$
3) $\frac{38}{10}$
4) $\frac{145}{10}$
5) $\frac{56}{100}$
6) $\frac{803}{100}$
7) $\frac{1457}{100}$
8) $\frac{854}{10}$
9) $\frac{1475}{10}$
10) $\frac{85}{10}$
11) $\frac{8561}{100}$
12) $\frac{684}{100}$

Chapter-5

Exercise 5.1

I. 1) ₹ 29.95
2) ₹ 8.75
3) ₹ $2,503.25$
4) ₹ 620
II. 1) ₹ 286.5
2) 3,200 paise
3) 1,975 paise
4) ₹ 47.05
III.1) $₹ 1075.75$
2) ₹ 154.25
3) ₹ 63.50
IV.

1) ₹ 151.75
2) ₹ 24.50
3) ₹ 99.25
4) ₹ 679.25
5) ₹ 699.25
V. 1) ₹ 48
6) ₹ 600
7) ₹ 3375
8) ₹ 3,675
9) ₹ 69,120
VI. 1) 400
10) ₹ 158
11) $₹, 1,475$
I.
12) ₹ 8
13) ₹ 1,611
Exercise 5.2
14) ₹ 910
Chapter-6
Exercise 6.1
II. 1) 7,000 gram
15) 7.5 gram
III. 1) 16 kg 635 gram
16) 36 kg 70 gram
17) $16,000 \mathrm{mg}$
18) $1,200 \mathrm{~kg}$
19) 60 kg 782 gram
20) 28 kg
21) 22 kg 330 gram
IV. 1) 15 kg 30 gram
22) 35 kgs 125 gram
23) 30 kg 395 grma
24) 34 kg 70 gram
25) 40 kg 89 gram
V. 1) 8 kg 250 gram
26) 4,600 gram
27) 39 kgs 500 gram 3$) 88,500 \mathrm{~kg}$
28) 19 kg

Exercise 6.2
II. 1) 5000 ml
2) 6,000 litre
3) $\frac{1}{2}$ litre
4) 8 litres
2) 42 litres 550 ml
4) 16 kilo litre 150 litre
IV. 1) 9 litre $600 \mathrm{~m} l$ 2) 39 litre $900 \mathrm{~m} l$
3) 29 litre $950 \mathrm{~m} l$
V. 1) 4 litre 750 m l
4) 6 litres $100 \mathrm{~m} l$
III. 1) $11: 25 \mathrm{pm}$.
4) $6: 40$ p.m.
2) $12: 35 \mathrm{p} . \mathrm{m}$.
3) $2: 45 \mathrm{p} . \mathrm{m}$.
5) $8: 30 \mathrm{a} . \mathrm{m}$.
6) $11: 55$ a.m.

Exercise 7.2
II. 1) 10 hr .50 min
2) 5 hr .50 min
3) 6 hr .30 min
4) 8 hr .20 min
II. 1) 2 hr .20 min
2) 1 hr .20 min .25 s
3) 2 hr .40 min
4) 30 min
5) 2 yr .8 mth
6) 2 yr .9 mth 7) $2 y \mathrm{r} .6 \mathrm{uth}$

Exercise 7.4

1) 8 hr
2) 28 days
3) 4 hr .30 min
4) 5 hr
5) 8 hr
6) $18-10-2011$

Chapter-8

Exercise 8.1
1.
a) x
b) \checkmark
c) $\sqrt{ }$
d) $\sqrt{ }$
2. a) (1)
b) (1)
c) (1) and (3)
5.
b) \checkmark
c) \checkmark
d) x
7. a) 818
c) 18081
(f) MAM

Exercise 8.2

		\square		Δ	$<$	>1	W	8	\%	*	0°	(@)
$\frac{1}{2}$ round	\checkmark	\checkmark	\checkmark			x	X				\checkmark	\checkmark
$\frac{1}{3}$ round	x	x	\checkmark		\checkmark	x	X		x	x	\checkmark	\checkmark
$\frac{1}{4}$ round				X	x			x	\checkmark	\checkmark	x	\checkmark
$\frac{1}{6}$ round			\checkmark	x	\sqrt{x}	x	x	x	x	X	\checkmark	\checkmark

3)

a) $\mathrm{H}, \mathrm{I}, \mathrm{N}, \mathrm{O}, \mathrm{S}, \mathrm{Z}$
b) N
c) M

Chapter-9

Exercise 9.1
I.
a) Square
b) Two
c) One, One
II.
a) X
b) x
c) \checkmark
d) \checkmark
e) \checkmark
f) x
g) x
h) $\sqrt{ }$
i) \checkmark
j) x
k) x
l) x
m) X
n) $\sqrt{ }$
o) x
p) \checkmark
III. Cube - 2,
IV. a) Side View

Cuboid-1
Cylinder - 3
Cone - 2
b) Elevation View
c) Plane View

