Book a FREE class

Class 10 Maths Formulas PDF

The Maths formulas for class 10 are the general formulas which are not only crucial for class 10 but also form the base for higher-level maths concepts. The maths formulas are also important in various higher education fields like engineering, medical, commerce, finance, computer science, hardware etc. Even in almost every industry, the most common formulas introduced in class 10 are used.

The class 10 maths formulas include formulas related to real numbers, polynomials, quadratic equations, triangles, circles, statistics, probability, (https://byjus.com/maths/probability/) etc. These maths formulas (https://byjus.com/math-formulas/) will be extremely helpful for students to be able to solve questions more accurately and quickly.

List of Maths Formulas for Class 10

The basic maths class 10 formulas are almost the same for all the boards. The list of maths formulas are:

- Pair of Linear Equation in Two Variables Formulas
- Algebra and Quadratic Equation Formulas
- Arithmetic Progression Formulas
- Trigonometry Formulas
- Circle Formulas
- Surface Area and Volume Formulas
- Statistics Formulas

Download Class 10 Maths Formulas PDF Here:

Linear Equations

One Variable	$a x+b=0$	$a \neq 0$ and $a \& b$ are real numbers
Two variable	$a x+b y+c=0$	$a \neq 0 \& b \neq 0$ and $a, b \& c$ are real numbers
Three Variable	$a x+b y+c z+d=0$	$a \neq 0, b \neq 0, c \neq 0$ and a, b, c, d are real numbers

Pair of Linear Equations in two variables:

$$
\begin{aligned}
& a_{1} x+b_{1}+c_{1}=0 \\
& a_{2} x+b_{2}+c_{2}=0
\end{aligned}
$$

Where

- $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}$, and c_{2} are all real numbers and
- $a_{1}{ }^{2}+b_{1}{ }^{2} \neq 0 \& a_{2}{ }^{2}+b_{2}{ }^{2} \neq 0$

It should be noted that linear equations in two variables
(https://byjus.com/maths/linear-equations-in-two-variables/) can also be represented in graphical form.

Algebra or Elgebraic Equations

The standard form of Quadratic Equations:

$a x^{2}+b x+c=0$ where $a \neq 0$

And $x=\left[-b \pm \sqrt{ }\left(b^{2}-4 a c\right)\right] / 2 a c$

Algebraic formulas:

- $(a+b)^{2}=a^{2}+b^{2}+2 a b$
- $(a-b)^{2}=a^{2}+b^{2}-2 a b$
- $(a+b)(a-b)=a^{2}-b^{2}$
- $(x+a)(x+b)=x^{2}+(a+b) x+a b$
- $(x+a)(x-b)=x^{2}+(a-b) x-a b$
- $(x-a)(x+b)=x^{2}+(b-a) x-a b$
- $(x-a)(x-b)=x^{2}-(a+b) x+a b$
- $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
- $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
- $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 x z$
- $(x+y-z)^{2}=x^{2}+y^{2}+z^{2}+2 x y-2 y z-2 x z$
- $(x-y+z)^{2}=x^{2}+y^{2}+z^{2}-2 x y-2 y z+2 x z$
- $(x-y-z)^{2}=x^{2}+y^{2}+z^{2}-2 x y+2 y z-2 x z$
- $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)(x 2+y 2+z 2-x y-y z-x z)$
- $x^{2}+y^{2}=1 / 2\left[(x+y)^{2}+(x-y)^{2}\right]$
- $(x+a)(x+b)(x+c)=x^{3}+(a+b+c) x^{2}+(a b+b c+c a) x+a b c$
- $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
- $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
- $x^{2}+y^{2}+z^{2}-x y-y z-z x=1 / 2\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$

Click here to check all algebra formulas (https://byjus.com/algebra-formulas/)
Basic formulas for powers

- $p^{m} \times p^{n}=p^{m+n}$
- $\left\{p^{m}\right\}\left\{p^{n}\right\}=p^{m-n}$
- $\left(p^{m}\right)^{n}=p^{m n}$
- $p^{-m}=1 / p^{m}$
- $p^{1}=p$
- $P^{0}=1$

Arithmetic Progression(AP) Formulas

If $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, \ldots$ are the terms of AP and d is the common difference between each term, then we can write the sequence as; $a, a+d, a+2 d, a+3 d, a+4 d$, $a+5 d, \ldots, n$ nth term... where a is the first term. Now, $n^{\text {th }}$ term for arithmetic progression (https://byjus.com/maths/arithmetic-progression/) is given as;

$$
\mathrm{n}^{\text {th }} \text { term }=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}
$$

Sum of $n^{\text {th }}$ term in Arithmetic Progression;

$$
S_{n}=n / 2[a+(n-1) d]
$$

Trigonometry Formulas For Class 10

Trigonometry maths formulas for Class 10 covers three major functions Sine, Cosine and Tangent for a right-angle triangle. Also, in trigonometry
(https://byjus.com/maths/trigonometry/), the functions sec, cosec and cot formulas can be derived with the help of sin, cos and \tan formulas.

Let a right-angled triangle $A B C$ is right-angled at point B and have $\angle \theta$.
$\operatorname{Sin} \theta=\frac{\text { Side opposite to angle } \theta}{\text { Hypotenuse }}=\frac{\text { Perpendicular }}{\text { Hypotenuse }}=\mathrm{P} / \mathrm{H}$
$\operatorname{Cos} \theta=\frac{\text { Adjacent side to angle } \theta}{\text { Hypotenuse }}=\frac{\text { Adjacentside }}{\text { Hypotenuse }}=\mathrm{B} / \mathrm{H}$
$\operatorname{Tan} \theta=\frac{\text { Side opposite to angle } \theta}{\text { Adjacent side to angle } \theta}=\mathrm{P} / \mathrm{B}$
$\operatorname{Sec} \theta=\frac{1}{\cos \theta}$
$\operatorname{Cot} \theta=\frac{1}{\tan \theta}$
$\operatorname{Cosec} \theta=\frac{1}{\sin \theta}$
$\operatorname{Tan} \theta=\frac{\operatorname{Sin} \theta}{\operatorname{Cos} \theta}$

Trigonometry Table

Angle	$\mathbf{0}^{\circ}$	$\mathbf{3 0 ^ { \circ }}$	$\mathbf{4 5 ^ { \circ }}$	$\mathbf{6 0 ^ { \circ }}$	$\mathbf{9 0}^{\boldsymbol{\circ}}$
$\operatorname{Sin} \theta$	0	$1 / 2$	$1 / \sqrt{ } 2$	$\sqrt{ } 3 / 2$	1
$\operatorname{Cos} \theta$	1	$\sqrt{ } 3 / 2$	$1 / \sqrt{ } 2$	$1 / 2$	0
$\operatorname{Tan} \theta$	0	$1 / \sqrt{ } 3$	1	$\sqrt{ } 3$	Undefined
$\operatorname{Cot} \theta$	Undefined	$\sqrt{ } 3$	1	$\sqrt{ } 3 / 2$	0
$\operatorname{Sec} \theta$	1	$2 / \sqrt{ } 3$	$\sqrt{ } 2$	2	Undefined
$\operatorname{Cosec} \theta$	Undefined	2	$\sqrt{ } 2$	$2 / \sqrt{ } 3$	1

Other Trigonometric formulas

- $\sin \left(90^{\circ}-\theta\right)=\cos \theta$
- $\cos \left(90^{\circ}-\theta\right)=\sin \theta$
- $\tan \left(90^{\circ}-\theta\right)=\cot \theta$
- $\cot \left(90^{\circ}-\theta\right)=\tan \theta$
- $\sec \left(90^{\circ}-\theta\right)=\operatorname{cosec} \theta$
- $\operatorname{cosec}\left(90^{\circ}-\theta\right)=\sec \theta$
- $\sin ^{2} \theta+\cos ^{2} \theta=1$
- $\sec ^{2} \theta=1+\tan ^{2} \theta$ for $0^{\circ} \leq \theta<90^{\circ}$
- $\operatorname{Cosec}^{2} \theta=1+\cot ^{2} \theta$ for $0^{\circ} \leq \theta \leq 90^{\circ}$

Get complete Trigonometry Formulas list here (https://byjus.com/maths/trigonometry-formulas/)

Circles Formulas For Class 10

- Circumference of the circle $=2 \pi r$
- Area of the circle $=\pi r^{2}$
- Area of the sector of angle $\theta=(\theta / 360) \times \pi r^{2}$
- Length of an arc of a sector of angle $\theta=(\theta / 360) \times 2 \pi r$
(r = radius of the circle)

Surface Area and Volumes Formulas For Class 10

The common formulas from the surface area and volumes
(https://byjus.com/maths/surface-areas-volumes/) chapter in $10^{\text {th }}$ class include the following:

Diameter of sphere	$2 r$
Circumference of Sphere	$2 \pi r$
Surface area of sphere	$4 \pi r^{2}$
Volume of Cylinder	$4 / 3 \pi r^{2}$

- Cylinder Formulas

Circumference of	$2 \pi r h$
Cylinder	

Curved surface area of Cylinder	$2 \pi r^{2}$
Total surface area of Cylinder	Circumference of Cylinder + Curved surface area of Cylinder $=2 \pi r h+2 \pi r^{2}$
Volume of Cylinder	$\pi r^{2} h$

- Cone Formulas

Slant height of cone	$I=\sqrt{ }\left(r^{2}+h^{2}\right)$
Curved surface area of cone	$\pi r l$
Total surface area of cone	$\pi r(I+r)$
Volume of cone	$1 / 3 \pi r^{2} h$

- Cuboid Formulas

Perimeter of cuboid	$4(1+b+h)$
Length of the longest diagonal of a cuboid	$\sqrt{ }\left(l^{2}+b^{2}+h^{2}\right)$
Total surface area of cuboid	$2(1 \times b+b \times h+l \times h)$
Volume of Cuboid	$1 \times b \times h$

Here, $\mathrm{l}=$ length, $\mathrm{b}=$ breadth and $\mathrm{h}=$ height \ln case of Cube, put $\mathrm{l}=\mathrm{b}=\mathrm{h}=\mathrm{a}$, as cube all its sides of equal length, to find the surface area and volumes.

In class 10, the chapter statistics (https://byjus.com/maths/statistics/) mostly deals with finding the mean median and standard deviation of grouped data.
(I) The mean of the grouped data can be found by 3 methods.

1. Direct Method: $\overline{\mathbf{x}}=\frac{\sum_{i=1}^{n} f_{i} x_{i}}{\sum_{i=1}^{n} f_{i}}$, where $\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$ is the sum of observations from value $\mathrm{i}=1$ to n And f_{i} is the number of observations from value $\mathrm{i}=1$ to n
2. Assumed mean method : $\overline{\mathbf{x}}=a+\frac{\sum_{i=1}^{n} f_{i} d_{i}}{\sum_{i=1}^{n} f_{i}}$
3. Step deviation method: $\overline{\mathbf{x}}=a+\frac{\sum_{i=1}^{n} f_{i} u_{i}}{\sum_{i=1}^{n} f_{i}} \times h$
(II) The mode of grouped data:

Mode $=l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h$
(III) The median for a grouped data:

Median $=l+\frac{\frac{n}{2}-c f}{f} \times h$
Check out more important class 10 maths resources from below:

Class 10 Maths Important Questions
(https://byjus.com/maths/importa nt-questions-class-10-maths/)

Revision Notes For Class 10th Maths (https://byjus.com/cbse-notes/class-10-maths-revision-notes/)

Sample Papers For Class 10
Maths (https://byjus.com/cbse-class-10-sample-papers-formaths/)

Previous Year Question Papers For Class 10 Maths (https://byjus.com/cbse-study-material/class-10-maths-previous-yearpapers/)

Check More Classwise Maths Formulas:

Maths Formulas	Maths Formulas	Maths Formulas	Maths Formulas
for Class 8	for Class 9	for Class 11	for Class 12
(https://byjus.com	(https://byjus.com	(https://byjus.com/	(https://byjus.com/
/maths/maths-	/maths/maths-	maths/maths-	maths/math-
formulas-for-	formulas-for-	formulas-for-class-	formulas-for-class-
class-8/)	class-9/)	$11 /$)	$12 /$)

