

Exercise 1E

Page No: 34

Question 1: State Euclid's division lemma.

Solution:

As per Euclid's division lemma: For any two positive integers, say a and b, there exit unique integers q and r, such that a = bq + r; where $0 \le r < b$.

Also written as: Dividend = (Divisor x Quotient) + Remainder

Question 2: State fundamental theorem of Arithmetic.

Solution:

Every composite number can be uniquely expressed as a product of two primes, except for the order in which these prime factors occurs.

Question 3. Express 360 as product of its prime factors. Solution: 2 360 2 180 2 90

2	360
2	180
2	90
3	45
3	15
5	5
	1

 $360 = 2 \times 2 \times 2 \times 3 \times 3 \times 5 = 2^3 \times 3^2 \times 5$

Question 4: If a and b are two prime numbers, then find HCF (a, b). Solution:

HCF of two primes is always 1.

HCF (a, b) = 1

Question 5: If a and b are two prime numbers then find LCM (a, b).

Solution:

LCM of two prime numbers ia always the product of these two numbers.

If a and b are two prime numbers, then

LCM (a, b) = ab

Question 6: If the product of two numbers is 1050 and their HCF is 25, find their LCM. Solution:

Product of two numbers = HCF x LCM ...(1)

Given: Product of two numbers = 1050

and HCF = 25

From equation (1), we have

1050 = 25 x LCM

or LCM = 1050 / 25 = 42

Question 7: What is a composite number? Solution:

A composite number has more than two factors. Another definition: A composite number is a number which is not a prime.

Question 8: If a and b are relatively prime then what is their HCF? Solution:

If a and b are two primes, then their HCF will be 1.

HCF (a, b) = 1

Question 9.

If the rational number a/b has a terminating b decimal expansion, what is the condition to be satisfied by b.

Solution:

Since a/b is a rational number and it has terminating decimal "b" will in the form $2^m \times 5^n$ where m and n are some non-negative integers.

Question 10: Simplify

$$\frac{2\sqrt{45} + 3\sqrt{20}}{2\sqrt{5}}$$

Solution:

$$\frac{2\sqrt{45+3\sqrt{20}}}{2\sqrt{5}} = \frac{2\sqrt{9\times5}+3\sqrt{4\times5}}{2\sqrt{5}}$$

$$= \frac{2 \times 3\sqrt{5} + 3 \times 2\sqrt{5}}{2\sqrt{5}}$$
$$= \frac{6\sqrt{5} + 6\sqrt{5}}{2\sqrt{5}} = 6$$

Question 11: Write the decimal expansion of

 $\frac{73}{2^4 \times 5^3}$

Solution:

73			73			
2^{4}	\times	5^3	=	16	\times	125

= 73/1000

Question 12: Show that there is no value of n for which $(2^n \times 5^n)$ ends in 5.

Solution:

2ⁿ x 5ⁿ can also be written as

 $2^n \times 5^n = (2 \times 5)^n = (10)^n$

Which always ends in a zero

There is no value of n for which (2ⁿ x 5ⁿ) ends in 5

Question 13: Is it possible to have two numbers whose HCF is 25 and LCM is 520?

Solution:

HCF is always a factor is its LCM. Given: HCF is 25 and LCM is 520 But 25 is not a factor of 520 It is not possible to have two numbers having HCF is 25 and LCM is 520.

Question 14: Give an example of two irrationals whose sum is rational.

Solution:

Let us consider two irrational number be $(5 + \sqrt{3})$ and $(5 - \sqrt{3})$.

Sum = $(5 + \sqrt{3}) + (5 - \sqrt{3}) = 10$ Which is a rational number.

Question 15: Give an example of two irrationals whose product is rational.

Solution:

Let us consider that the two irrational number be $(3 + \sqrt{2})$ and $(3 - \sqrt{2})$

Product = $(3 + \sqrt{2})(3 - \sqrt{2})$

 $= (3)^2 - (\sqrt{2})^2 = 7$

Which is a rational number.

Question 16: If a and b are relatively prime, what is their LCM?

Solution: Two relatively prime numbers do not have a common factor other than 1.

i.e, HCF = 1.

We know HCF × LCM = product of numbers.

LCM = Product of numbers

If a and b are two numbers then

 $LCM = a \times b = ab.$

Question 17: The LCM of two numbers is 1200. Show that the HCF of these numbers cannot be 500. Why?

Solution:

Given: LCM of two numbers = 1200

HCF should divide LCM exactly.

Using Euclid's division lemma - a = bq + r. where q is the quotient, r is the remainder and b is the divisor.

Let us say, a = 1200 and b = 500.

If HCF divides LCM completely, then remainder is zero.

Here 1200 = 500(2) + 200

r = 200 ≠ 0

Question 18: Express $0.\overline{4}$ as a rational number in simplest form.

Solution:

Let $x = 0.\overline{4}$ - (i)

Multiply 10 on both sides -

10x = 4.4 - (ii)

Subtract the equations (i) from (ii)

So
$$x = \frac{4}{9}$$

19. Express $0.\overline{23}$ as a rational number in simplest form.

Solution:

Let x = 0.23 - (i)

Multiply 100 on both sides -

100x = 23.23 - (ii)

Subtract the equations (i) from (ii)

$$\Rightarrow 99x = 23$$

So x = $\frac{23}{99}$

Question 20: Express why 0.15015001500015... is an irrational number. Solution:

As we know, Irrational numbers are non-terminating non-recurring decimals.

Thus, 0.15015001500015 ... is an irrational number.

Question 21: Show that $\sqrt{2}/3$ is irrational.

Solution: Let us assume that $\sqrt{2/3}$ is rational Which is possible if 1/3 is rational and $\sqrt{2}$ is rational

But the fact is $\sqrt{2}$ is an irrational.

Which is contradict, our assumption is wrong.

 $\sqrt{2/3}$ is irrational.

Question 22: Write a rational number between $\sqrt{3}$ and 2. **Solution:**

The value of $\sqrt{3}$ is 1.73.

A rational number between $\sqrt{3}$ and 2 is 1.8.

Question 23: Explain why 3.1416 is a rational number.

Solution:

3.1416

A non - terminating repeating decimal.

So it is a rational number.