$+2$
 PRACTICALS

I-ORGANIC QUALITATIVE ANALYSIS

S.no	Experiment	Observation	Inference
Preliminary tests			
1	Odour: Note the Odour of the organic compound.	(i) Fish odour (ii) Bitter almond odour (iii) Phenolic odour (iv) Pleasant fruity odour	(i) May be an amine (ii) May be benzaldehyde (iii) May be phenol (iv) May be an ester
2	Test with litmus paper: Touch the Moist litmus paper with an organic compound.	(i) Blue litmus turns red (ii) Red litmus turns blue (iii) No colour change is noted	(i) May be a carboxylic acid or phenol (ii) May be an amine (iii) Absence of carboxylic acid, phenol and amine
3	Action with sodium bicarbonate: Take 2 ml of saturated sodium bi carbonate solution in a test tube. Add 2 or 3 drops (or a pinch of solid) of an organic compound to it.	(i) Brisk effervescence (ii) No brisk effervescence	(i) Presence of a carboxylic acid. (ii) Absence of a carboxylic acid.
4	Action with Borsche's reagent: Take a small amount of an organic compound in a test tube. Add 3 ml of Borsche's reagent, 1 ml of Conc HCl to it, then warm the mixture gently and cool it.	yellow or orange or red precipitate	Presence of an aldehyde or ketone

$\mathbf{5}$	Charring test: Take a small amount of an organic compound in a dry test tube. Add 2 ml of conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ to it, and heat the mixture.	Charring takes place with smell of burnt sugar	Presence of carbohydrate			
Tests for Aliphatic or Aromatic nature:						

TEST FOR CARBOXYLIC ACIDS

$\mathbf{1 0}$	Esterification reaction: Take 1 ml (or a pinch of solid) of an organic compoundin a clean test tube. Add 1 ml of ethyl alcohol and 4 to 5 drops of conc. sulphuric acid to it. Heat the reaction mixture strongly for about 5 minutes. Then pour the mixture into a beaker containing dil. Sodium carbonate solution and note the smell.

A Pleasant fruity odour is Presence of carboxylic group. noted.

Test for aldehydes.

$\mathbf{1 1}$	Tollen's reagent test: Take 2 ml of Tollen's reagent in a clean dry test tube. Add 3-4 drops of an organic compound (or 0.2 g of solid) to it, and warm the mixture on a water bath for about 5 minutes.	Shining silver mirror is formed.	Presence of an aldehyde
$\mathbf{1 2}$	Fehling's test: Take 1 ml each of Fehling's solution A and B are taken in a test tube. Add 4-5 drops of an organic compound (or 0.2g of solid) to it, and warm the mixture on a water bath for about 5 minutes.	Red precipitate is formed.	Presence of an aldehyde
Test for ketones	Legal's test: A small amount of the substance is taken in a test tube. 1 ml sodium nitro prusside solution is added. Then sodium hydroxide solution is added dropwise.	Red colouration.	Presence of a ketone.
\mathbf{l}Test for an amine.			

14	Dye test: Take A small amount of an organic substance in a clean test tube, add 2 ml of HCl to dissolve it. Add few crystals of NaNO_{2}, and cool the mixture in ice bath. Then add 2 ml of ice cold solution of β-naphtholin NaOH .	Scarlet red dye is obtained.	Presence of an aromatic primary amine
Test for diamide			
15	Biuret test: Take A small amount of an organic compound in a test tube. Heat strongly and then allow to cool. Dissolve the residue with 2 ml of water. To this solution Add 1 ml of dilute copper sulphate solution and few drops of $10 \% \mathrm{NaOH}$ solution drop by drop.	Violet colour is appeared.	presence of a diamide
Test for carbohydrates			
16	Molisch's test: Take A small amount of an organic compound in a test tube. It is dissolved in 2 ml of water. Add 3-4 drops of alpha naphthol to it.Then add conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ through the sides of test tube carefully.	Violet or purple ring is formed at the junction of the two liquids.	Presence of carbohydrate
17	Osazone test: Take A small amount of an organic compound in a test tube. Add 1 ml of phenyl hydrazine solution and heat the mixture for about 5 minutes on a boiling water bath.	Yellow crystals are obtained	Presence of carbohydrate

Report:

The given organic compound contains /is
(i) Aromatic / aliphatic
(ii) Saturated / unsaturated
(iii) \qquad functional group

List of organic compounds for analysis:

1. Benzaldehyde
2. Benzoic acid
3. Aniline
4. Cinnamaldehyde
5. Acetophenone
6. Cinnamic acid
7. Salicylic acid
8. Benzophenone
9. Urea
10. Glucose

REASONING

3. Action with sodium bicarbonate:

Carboxylic acids react with sodium bi carbonate and liberate CO_{2}. Evolution of carbon dioxide gives brisk effervescence.

$$
2 \mathrm{R}-\mathrm{COOH}+2 \mathrm{NaHCO}_{3} \longrightarrow 2 \mathrm{R}-\mathrm{COONa}+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}
$$

4. Action with Borsches reagent:

Borsches reagent is prepared by dissolving 2,4-dinitrophenylhydrazine in a solution containing methanol and little of conc sulphuric acid.

Aldehydes and ketones react with borsches reagent to form yellow, orange or red precipitate (dinitro phenylhydrazone)

Aliphatic carbonyl compounds give deep yellow precipitate.
Aromatic carbonyl compounds give red precipitate.
2,4-dinitrophenyl hydrazine can be used to qualitatively detect the carbonyl group of an aldehyde or ketone. A positive result is indicated by the formation of an yellow or orange-red precipitate of 2,4-dinitrophenyl hydrazone.

Aldehyde
2,4 dinitrophenylhydrazine

Ketone
2,4 dinitrophenylhydrazine

Aldehyde 2,4 dinitrophenylhydrazone (Yellow or orange)

Ketone 2,4 dinitrophenylhydrazone (Yellow or orange or red)

5.Charring test:

When carbohydrates are treated with concentrated sulphuric acid, dehydration of carbohydrates results in charring.

$$
\mathrm{C}_{\mathrm{x}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{y}} \xrightarrow[\Delta]{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{xC}+\mathrm{yH}_{2} \mathrm{O}
$$

6. Ignition test

Aromatic compounds burn with a strong sooty yellow flame because of the high carbon-hydrogen ratio. Aliphatic compounds burn with non-sooty flame.

7.Test with bromine water:

In this test, the orange-red colour of bromine solution disappears when it is added to an unsaturated organic compound.

8. Test with KMnO_{4} (Baeyer's Test)

In this test, pink colour of KMnO_{4} disappears, when alkaline KMnO_{4} is added to an unsaturated hydrocarbon. The disappearance of pink colour may take place with or without the formation of brown precipitate of MnO_{2}.

$$
2 \mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{KOH}+2 \mathrm{MnO}_{2}+3(\mathrm{O})
$$

9. Neutral FeCl_{3} test:

Phenol reacts with ferric ions to form violet coloured complex.
Aqueous solution Naphthols do not give any characteristic colour with neutral ferric chloride. But alcoholic solution of α and β naphtholsgiveblue-violet and green colouration respectively due to the formation of binaphthols.

10. Esterification test:

Alcohols react with carboxylic acids to form fruity smelling compounds called esters. This esterification is catalysed by an acid such as concentrated sulphuric acid.

11. Tollen's reagent test:

Aldehydes react with Tollen's reagent to form elemental silver, accumulated onto the inner surface of the test tube. Thus silver mirror is produced on the inner walls of the test tube.

Tollen's reagent preparation:

Tollen's reagent is ammoniacal silver nitrate. It is prepared as follows. About 1 g of silver nitrate crystals are dissolved in distilled water in a clean dry test tube. To this aqueous solution of silver nitrate, add 2 ml of dilute NaOH solution to it. A brown precipitate of silver oxide is formed. This precipitate is dissolved by adding dilute ammonia solution drop wise.

12. Fehling's Test

Fehling's solution A is an aqueous solution of copper sulphate.
Fehling's solution B is a clear solution of sodium potassium tartrate (Rochelle salt) and strong alkali (NaOH).

The Fehling's solution is obtained by mixing equal volumes of both Fehling's solution A and Fehling's solution B that has a deep blue colour. In Fehling's solution, copper (II) ions form a complex with tartrate ions in alkali. Aldehydes reduces the $\mathrm{Cu}(\mathrm{II})$ ions in the Fehling's solution to red precipitate of cuprous oxide(copper (I) oxide).

$$
\underset{\substack{\text { Aldehyde }}}{\mathrm{RCHO}}+\underset{\substack{\text { Cund } \\ \text { Fehing's solution }}}{2 \mathrm{Cu}^{2+}+5 \mathrm{CH}^{-}} \longrightarrow \underset{\substack{\text { Curous oxide) } \\ \text { Red collour) }}}{\mathrm{Cu}_{2} \mathrm{O} \downarrow}+\mathrm{RCOO}^{-}+3 \mathrm{H}_{2} \mathrm{O}
$$

Note: Benzaldehyde may not give this test as the reaction is very slow.

13. Sodium nitroprusside Test

The anion of the ketone formed by a alkali reacts with nitroprusside ion to form a red coloured complex.this test is not given by aldehydes.

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COCH}_{3} \xrightarrow{-\mathrm{OH}} \mathrm{CH}_{3} \mathrm{COCH}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \\
& {\left[\underset{\text { sodium nitro prusside }}{\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}^{2-}\right.}+\mathrm{CH}_{3} \mathrm{COCH}_{2}^{-} \longrightarrow \longrightarrow \underset{\substack{\text { sed coloured complex) }}}{\left[\mathrm{Fe}(\mathrm{CN})_{2} \mathrm{NO}_{2} \mathrm{CH}_{3} \mathrm{COCH}_{2}\right]^{3-}}\right.}
\end{aligned}
$$

14. Azo-Dye Test

This test is given by aromatic primary amines. Aromatic primary amines react with nitrous acid to form diazonium salts. These diazonium salts undergo coupling reaction with β-naphthol to form orange coloured azo dye.

15. Biuret test

On strong heating Diamide (like urea) form biuret, which forms a copper complex with Cu^{2+} ions from copper sulphate solution. This copper -biuret complex is deep violet coloured.

$\left[\mathrm{Cu}(\text { Biuret })_{4}\right]^{2+}$ complex
(violet colour)

16. Molisch's test:

Disaccharides, and polysaccharidesare hydrolysed to Monosaccharides by strong mineral acids. Pentoses are then dehydrated to furfural, while hexoses are dehydrated to 5-hydroxymethylfurfural. These aldehydes formed will condense with two molecules of α-Naphthol to form a purple-coloured product, as shown below.

17.Osazone test:

Phenyl hydrazine in acetic acid, when boiled with reducing sugars forms Osazone. The first two carbon atoms are involved in this reaction. The sugars that differ in their configuration on these carbon atoms give the same type of Osazone. Thus glucose, fructose and mannose give the same needle type yellow crystals.

II-VOLUMETRIC ANALYSIS

1. Estimation of Ferrous Sulphate (Fe^{2+})

Aim :

To estimate the amount of ferrous sulphate dissolved in 750 ml of the given unknown solution volumetrically. For this you are given with a standard solution of ferrous ammonium sulphate (FAS) of normality 0.1102 N and potassium permanganate solution as link solution.

Principle:

During these titrations, Fe^{2+} ions (from ferrous salts) are oxidised to MnO_{4}^{-}ions and MnO_{4}^{-}ion (from Mn^{2+}) is reduced to Mn^{2+} ion.

Oxidation $: \quad 5 \mathrm{Fe}^{2+} \longrightarrow 5 \mathrm{Fe}^{3+}+5 \mathrm{e}^{-}$

$\begin{aligned} & \text { Overall reaction } \\ & \text { Short procedure: }\end{aligned} \quad 5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \longrightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

S.no	Content	Titration-I	Titration-II
1	Burette solution	KMnO_{4}	KMnO_{4}
2	Pipette solution	20 ml of standard FAS	20 ml of unknown FeSO_{4}
3	Acid to be added	20 ml of $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}($ approx $)$	$20{\mathrm{ml} \mathrm{of} 2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4} \text { (approx) }}^{2}$
4	Temperature	Lab temperature	Lab temperature
5	Indicator	Self-indicator $\left(\mathrm{KMnO}_{4}\right)$	Self-indicator ($\left.\mathrm{KMnO}_{4}\right)$
6	End point	Appearance of permanent pale pink colour	Appearance of permanent pale pink colour
7	Equivalent weight of $\mathrm{FeSO}_{4}=278$		

Procedure:

Titration-I

(Link KMnO_{4})Vs (Standard FAS)

Burette is washed with water, rinsed with KMnO_{4} solution and filled with same KMnO_{4} solution up to the zero mark. Exactly 20 ml of standard FAS solution is pipetted out into the clean, washed conical flask. To this FAS solution, approximately 20 ml of 2 N sulphuric acid is added. This mixture is titrated against KMnO_{4} Link solution from the burette. KMnO_{4} is added drop wise till the appearance of permanent pale pink colour. Burette reading is noted, and the same procedure is repeated to get concordant values.

Titration -I

(Link KMnO_{4})Vs (Standard FAS)

S.no	Volume of standard FAS (ml)	Burette readings		Concordant value (Volume of KMnO_{4})(ml)
		Initial (ml)	$\begin{aligned} & \text { Final } \\ & (\mathrm{ml}) \end{aligned}$	
1	20			
2	20			
3	20			

Calculation :

Volume of KMnO_{4} (link) solution $\left(\mathrm{V}_{1}\right) \quad=---------\mathrm{ml}$
Normality $\mathrm{KMnO}_{4}($ link $)$ solution $\left(\mathrm{N}_{1}\right) \quad=----------\mathrm{N}$
Volume of standard FAS solution $\left(\mathrm{V}_{2}\right)=20 \mathrm{ml}$
Normality of standard FAS solution $\left(\mathrm{N}_{2}\right)=0.1102 \mathrm{~N}$
According to normality equation: $\mathrm{V}_{1} \times \mathrm{N}_{1}=\mathrm{V}_{2} \times \mathrm{N}_{2}$

$$
\mathrm{N}_{1}=\frac{\mathrm{V}_{2} \times \mathrm{N}_{2}}{\mathrm{~V}_{1}}
$$

Normality of KMnO_{4} (link) solution $\quad\left(\mathrm{N}_{1}\right)=\ldots \ldots \ldots$ X__ N

Titration-II

(Unknown FeSO_{4}) Vs (Link KMnO_{4})
Burette is washed with water, rinsed with KMnO_{4} solution and filled with same KMnO_{4} solution up to the zero mark. Exactly 20 ml of unknown FeSO_{4} solution is pipetted out into the clean, washed conical flask. To this FeSO_{4} solution approximately 20 ml of 2 N sulphuric acid is added. This mixture is titrated against KMnO_{4} Link solution from the burette. KMnO_{4} is added drop wise till the appearance of permanent pale pink colour. Burette reading is noted and the same procedure is repeated to get concordant values.

Titration -II

(Link FeSO_{4})Vs (Unknown FeSO_{4} solution)

	Volume of	Burette readings		Concordant value (Volume of KMnO_{4}) (ml)
		Initial (ml)	Final	

Calculation :

Volume of Unknown FeSO_{4} solution

$$
\begin{array}{rlr}
\mathrm{V}_{1} & =20 \mathrm{ml} \\
\mathrm{~N}_{1} & =? \mathrm{~N} \\
\mathrm{~V}_{2} & =\mathrm{ml}
\end{array}
$$

Normality of Unknown FeSO_{4} solution
Volume of KMnO_{4} (link) solution
Normality KMnO_{4} (link) solution
According to normality equation: $\mathrm{V}_{1} \times \mathrm{N}_{1}=\mathrm{V}_{2} \times \mathrm{N}_{2}$

$$
\mathrm{N}_{1}=\frac{\mathrm{V}_{2} \times \mathrm{N}_{2}}{\mathrm{~V}_{1}}
$$

$$
\mathrm{N}_{1}=\ldots \mathrm{Y}
$$

The normality of unknown FeSO_{4} solution = \qquad N

Weight calculation:

The amount of FeSO_{4} dissolved in 1 lit of the

$$
\begin{aligned}
& \text { lit of the } \\
& \text { solution }=\text { (Normality) } \times \text { (equivalent weight) }
\end{aligned}
$$

The amount of FeSO_{4} dissolved in 750 ml of the

$$
\begin{array}{r}
\begin{array}{c}
\text { ml of the } \\
\text { solution }
\end{array}=\frac{\text { Normality } \mathrm{x} \text { equivalentwe }}{1000} \\
\qquad \begin{array}{r}
\mathrm{N}_{1}=\frac{\mathrm{Y} \times 278 \times 3}{4} \\
=
\end{array}
\end{array}
$$

Report :

The amount of FeSO_{4} dissolved in 750 ml of the solution $=\quad \mathrm{g}$

2. Estimation of Ferrous Ammonium Sulphate (FAS)

Aim :

To estimate the amount of ferrous ammonium sulphate (FAS) dissolved in 1500 ml of the given unknown solution volumetrically. For this you are given with a standard solution of ferrous sulphate $\left(\mathrm{FeSO}_{4}\right)$ of normality 0.1024 N and potassium permanganate solution as link solution.

Principle:
Oxidation $\quad: 5 \mathrm{Fe}^{2+} \longrightarrow 5 \mathrm{Fe}^{3+}+5 \mathrm{e}^{-}$

Reduction $: 5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \longrightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
Overall reaction $: 5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \longrightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
Short procedure:

s.no	Content	Titration-I	Titration-II					
1	Burette solution	KMnO_{4}	KMnO_{4}					
2	Pipette solution	20 ml of standard FeSO_{4}	20 ml of unknown FAS					
3	Acid to be added	20 ml of $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}($ approx $)$	20 ml of $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ (approx)	$	$	4	Temperature	Lab temperature
:---	:---	:---	Lab temperature.					

Procedure :

Titration-I

(Link KMnO_{4})Vs (Standard FeSO_{4})
Burette is washed with water, rinsed with KMnO_{4} solution and filled with same FeSO_{4} solution up to the zero mark. Exactly 20 ml of standard FeSO_{4} solution is pipetted out into the clean, washed conical flask. To this solution, approximately 20 ml of 2 N sulphuric acid is added. This mixture is titrated against KMnO_{4} Link solution from the burette. KMnO_{4} is added drop wise till the appearance of permanent pale pink colour. Burette reading are noted, the same procedure is repeated to get concordant values.

Titration -I

(Link KMnO_{4})Vs (Standard FeSO_{4})

s.no	Volume of standard FeSO_{4} (ml)	Initial (ml)	Cinal (ml)	Concordant value (Volume of $\left.\mathrm{KMnO}_{4}\right)$ (ml)
	20			
2	20			
3	20			

Calculation :

Volume of KMnO_{4} (link) solution $\quad \mathrm{V}_{1}=\mathrm{ml}$
Normality KMnO_{4} (link) solution $\quad \mathrm{N}_{1} \quad=\quad ? \mathrm{~N}$
Volume of standard FeSO_{4} solution $\quad \mathrm{V}_{2}=20 \mathrm{ml}$
Normality of standard FeSO_{4} solution $\quad \mathrm{N}_{2} \quad=0.1024 \mathrm{~N}$
According to normality equation:
According to normality equation: $\mathrm{V}_{1} \times \mathrm{N}_{1}=\mathrm{V}_{2} \times \mathrm{N}_{2}$

$$
N_{1}=\frac{V_{2} \times N_{2}}{V_{1}}
$$

Normality of KMnO_{4} (link) solution

$$
\left(\mathrm{N}_{1}\right)=\ldots \mathrm{X}
$$

Titration-II

(Unknown FAS) Vs (Link KMnO_{4})
Burette is washed with water, rinsed with KMnO_{4} solution and filled with same KMnO_{4} solution up to the zero mark. Exactly 20 ml of unknown FAS solution is pipetted out into the clean, washed conical flask. To this FAS solution approximately 20 ml of 2 N sulphuric acid is added. This mixture is titrated against KMnO_{4} Link solution from the burette. KMnO_{4} is added drop wise till the appearance of permanent pale pink colour. Burette reading is noted and the same procedure is repeated to get concordant values.

Titration -II

(Link KMnO_{4})Vs (Unknown FAS)

	Volume of s.no	Burette readings Unknown FAS $(\mathbf{m l})$		Initial $(\mathbf{m l})$
1		Final $(\mathbf{m l})$	(Volume of $\left.\mathrm{KMnO}_{4}\right)$ $(\mathbf{m l})$	
2	20			
3	20			
2				

Calculation :

Volume of Unknown FAS solution
$\mathrm{V}_{1}=20 \mathrm{ml}$
Normality of Unknown FAS solution $\mathrm{N}_{1}=$? N
Volume of KMnO_{4} (link) solution $\quad \mathrm{V}_{2}=\mathrm{ml}$
Normality KMnO_{4} (link) solution $\quad \mathrm{N}_{2}=\mathrm{N}$
According to normality equation: $\mathrm{V}_{1} \times \mathrm{N}_{1}=\mathrm{V}_{2} \times \mathrm{N}_{2}$

$$
\begin{aligned}
& \mathrm{N}_{1}=\frac{\mathrm{V}_{2} \times \mathrm{N}_{2}}{\mathrm{~V}_{1}} \\
& \mathrm{~N}_{1}=\ldots \mathrm{Y}
\end{aligned}
$$

The normality of unknown FAS solution $=$ \qquad N

Weight calculation:

The amount of FAS dissolved in 1 lit of the $=($ Normality $) \mathrm{x}$ (equivalent weight) solution
$\begin{array}{r}\text { The amount of FAS dissolved in } 1500 \mathrm{ml} \text { of the } \\ \text { solution }\end{array}=\frac{\text { Normality } \times \text { equivalentweight } \times 1500}{1000}$

$$
\begin{aligned}
& =\quad \frac{\mathrm{Y} \times 392 \times 1500}{1000} \\
& =\quad \mathrm{g} \quad
\end{aligned}
$$

Report :
The amount of FAS dissolved in 1500 ml of the solution $=\mathrm{g}$

3. Estimation of oxalic acid

Aim :
To estimate the amount of oxalic acid dissolved in 500 ml of the given solution volumetrically. For this you are given with a standard solution of ferrous ammonium sulphate (FAS) of normality 0.1 N and potassium permanganate solution as link solution.

Principle:

During these titrations, oxalic acid is oxidized to CO_{2} and MnO_{4}^{-}ions (from KMnO_{4}) is reduced to Mn^{2+} ion.

Oxidation $\quad: \quad \underset{\substack{\text { pink }}}{\mathrm{MnO}^{-}}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \underset{\text { colurutes }}{\mathrm{Mn}^{2+}}+4 \mathrm{H}_{2} \mathrm{O}$

Overall reaction : $5(\mathrm{COOH})_{2}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+} \longrightarrow 10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$
Since one mole oxalic acid releases 2 moles of electrons, the equivalent weight of oxalic acid $=\frac{106}{2}=63$ (oxalic acid is dihydrated)
Short procedure:

s.no	Content	Titration-I	Titration-II
1	Burette solution	KMnO_{4}	KMnO_{4}
2	Pipette solution	20 ml of standard FAS	20 ml of unknown oxalic acid
3	Acid to be added	20 ml of $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}($ approx $)$	20 ml of $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ (approx)
4	Temperature	Lab temperature	$60-70{ }^{\circ} \mathrm{C}$
5	Indicator	Self-indicator $\left(\mathrm{KMnO}_{4}\right)$	Self-indicator $\left(\mathrm{KMnO}_{4}\right)$
6	End point	Appearance of permanent pale pink colour	Appearance of permanent pale pink colour
7	Equivalent weight of oxalic acid $=63$		

Procedure :

Titration-I

(Link KMnO_{4})Vs (Standard FAS)
Burette is washed with water, rinsed with KMnO_{4} solution and filled with same KMnO_{4} solution up to the zero mark. Exactly 20 ml of standard FAS solution is pipetted out into the clean, washed conical flask. To this FAS solution, approximately 20 ml of 2 N sulphuric acid is added. This mixture is titrated against KMnO_{4} Link solution from the burette. KMnO_{4} is added drop wise till the appearance of permanent pale pink colour. Burette reading is noted and the same procedure is repeated to get concordant values.

Titration -I

(Link KMnO_{4})Vs (Standard FAS solution)

	Volume of s.no	Burette readings standard FAS $(\mathbf{m l})$		Concordant value $(\mathbf{m l})$
		Final $(\mathbf{m l})$	(Volume of $\left.\mathrm{KMnO}_{4}\right)$ $(\mathbf{m l})$	
1	20			
2	20			
3	20			

Calculation :

Volume of KMnO_{4} (link) solution

$$
\mathrm{V}_{1}=\mathrm{ml}
$$

Normality KMnO_{4} (link) solution $\quad \mathrm{N}_{1}=$? N
Volume of standard FAS solution $\mathrm{V}_{2}=20 \mathrm{ml}$
Normality of standard FAS solution $\quad \mathrm{N}_{2}=0.1 \mathrm{~N}$
According to normality equation:

$$
\begin{aligned}
& \mathrm{V}_{1} \times \mathrm{N}_{1}=\mathrm{V}_{2} \times \mathrm{N}_{2} \\
& \mathrm{~N}_{1}=\frac{\mathrm{V}_{2} \times \mathrm{N}_{2}}{\mathrm{~V}_{1}}=
\end{aligned}
$$

Normality KMnO_{4} (link) solution $\mathrm{N}_{1}=$ \qquad N

Titration-II

(Unknown oxalic acid) Vs (Link KMnO_{4})
Burette is washed with water, rinsed with KMnO_{4} solution and filled with same KMnO_{4} solution up to the zero mark. Exactly 20 ml of unknown oxalic acid solution is pipetted out into the clean, washed conical flask. To this oxalic acid solution approximately 20 ml of 2 N sulphuric acid is added. This mixture is heated to $60-70^{\circ} \mathrm{C}$ using Bunsen burner and that hot solution is titrated against KMnO_{4} Link solution from the burette. KMnO_{4} is added drop wise till the appearance of permanent pale pink colour. Burette reading are noted, the same procedure is repeated to get concordant values.

Titration -II

(Link KMnO_{4})Vs (Unknown oxalic acid)

	Volume of s.no	Unknown oxalic acid (ml)		Initial (ml)
1		Final (ml)	Concordant value (Volume of $\left.\mathrm{KMnO}_{4}\right)$ (ml)	
2	20			
3	20			

Calculation :

Volume of Unknown oxalic acid solution $\quad \mathrm{V}_{1}=20 \mathrm{ml}$
Normality of Unknown oxalic acid solution $\mathrm{N}_{1}=$? N
Volume of KMnO_{4} (link) solution $\quad \mathrm{V}_{2}=\mathrm{ml}$
Normality KMnO_{4} (link) solution $\quad \mathrm{N}_{2}=\mathrm{N}$
According to normality equation:

$$
\begin{aligned}
& \mathrm{V}_{1} \times \mathrm{N}_{1}=\mathrm{V}_{2} \times \mathrm{N}_{2} \\
& \mathrm{~N}_{1}=\frac{\mathrm{V}_{2} \times \mathrm{N}_{2}}{\mathrm{~V}_{1}}
\end{aligned}
$$

Normality of Unknown oxalic acid solution $\mathrm{N}_{1}=\ldots \mathrm{Y} \mathrm{N}$

Weight calculation:

The amount of oxalic acid dissolved in 1 lit
of the solution $=($ Normality x (equivalent weight)
The amount of oxalic acid dissolved in 500
ml of the solution $=\frac{\mathrm{Y} \times 63 \times 500}{1000}$

$$
\begin{aligned}
& =\quad \frac{\mathrm{x} 63 \times 500}{1000} \\
& =
\end{aligned}
$$

Report :
The amount of oxalic acid dissolved in 500 ml of given the solution $=\mathrm{g}$

4. Estimation of sodium hydroxide

Aim :
To estimate the amount of sodium hydroxide dissolved in 250 ml of the given unknown solution volumetrically. For this you are given with a standard solution of sodium carbonate solution of normality 0.0948 N and hydrochloric acid solution as link solution.

Principle:

Neutralization of Sodium carbonate by HCl is given below. To indicate the end point, methyl orange is used as an indicator.
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Neutralization of Sodium hydroxide by HCl is given below. To indicate the end point, phenolphthalein is used as an indicator.
$\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
Short procedure:

s.no	Content	Titration-I	Titration-II
1	Burette solution	HCl (link solution)	HCl (link solution)
2	Pipette solution	20 ml of standard $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution	20 ml of unknown NaOH solution
4	Temperature	Lab temperature	Lab temperature
5	Indicator	Methyl orange	Phenolphthalein
6	End point	Colour change from straw yellow to pale pink	Disappearance of pink colour
7	Equivalent weight of $\mathrm{NaOH}=40$		

Procedure:

Titration-I

(Link HCl)Vs (standard $\mathrm{Na}_{2} \mathrm{CO}_{3}$)
Burette is washed with water, rinsed with HCl solution and filled with same HCl solution up to the zero mark. Exactly 20 ml of standard $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution is pipetted out into the clean, washed conical flask. To This solution 2 to 3 drops of methyl orange indicator is added and titrated against HCl link solution from the burette. HCl is added drop wise till the colour change from straw yellow to pale pink. Burette reading is noted and the same procedure is repeated to get concordant values.

Titration -I

(Link HCl)Vs (standard $\mathrm{Na}_{2} \mathrm{CO}_{3}$)

s.no	Volume of standard$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{ml})$	Burette readings		Concordant value (Volume of HCl) (ml)
		Initial (ml)	Final (ml)	
1	20			
2	20			
3	20			

Calculation :

Volume of HCl (link) solution $\quad \mathrm{V}_{1}=\mathrm{ml}$
Normality HCl (link) solution $\quad \mathrm{N}_{1}=$? N
Volume of standard $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $\quad \mathrm{V}_{2}=20 \mathrm{ml}$
Normality of standard $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $\mathrm{N}_{2}=0.0948 \mathrm{~N}$
According to normality equation:
According to normality equation: $\mathrm{V}_{1} \times \mathrm{N}_{1}=\mathrm{V}_{2} \times \mathrm{N}_{2}$

$$
\mathrm{N}_{1}=\frac{\mathrm{V}_{2} \times \mathrm{N}_{2}}{\mathrm{~V}_{1}}
$$

Normality of HCl (link) solution $\left(\mathrm{N}_{1}\right)=$ \qquad N

Titration-II

(Unknown NaOH) Vs (Link HCl)
Burette is washed with water, rinsed with HCl solution and filled with same HCl solution up to the zero mark. Exactly 20 ml of unknown NaOH solution is pipetted out into the clean, washed conical flask. To This solution 2 to 3 drops of phenolphthalein indicator is added and titrated against HCl link solution from the burette. HCl is added drop wise till the pink colour disappears completely. Burette reading is noted and the same procedure is repeated to get concordant values.

Titration -II
(Link HCl)Vs (Unknown NaOH solution)

	Volume of s.n	Burette readings Unknown NaOH (ml)		Initial (ml)
1	20	Final (ml)	Concordant value (Volume of HCl) (ml)	
2	20			
3	20			

Calculation :

Volume of Unknown NaOH solution
$\mathrm{V}_{1}=20 \mathrm{ml}$
Normality of Unknown NaOH solution
$\mathrm{N}_{1}=$? N
Volume of HCl (link) solution
$\mathrm{V}_{2}=\mathrm{ml}$
Normality HCl (link) solution
$\mathrm{N}_{2}=\mathrm{N}$
According to normality equation:

$$
\begin{aligned}
& \mathrm{V}_{1} \times \mathrm{N}_{1}=\mathrm{V}_{2} \times \mathrm{N}_{2} \\
\mathrm{~N}_{1}= & \frac{\mathrm{V}_{2} \times \mathrm{N}_{2}}{\mathrm{~V}_{1}}
\end{aligned}
$$

Normality of Unknown HCl solution $\mathrm{N}_{1}=$ \qquad N

Weight calculation:

The amount of NaOH dissolved in 1 lit of the

$$
\begin{aligned}
& \text { lit of the } \\
& \text { solution }
\end{aligned}
$$

The amount of NaOH dissolved in 250 ml of the $\begin{aligned} \text { solution }\end{aligned}=\frac{\text { Normality x equivalentweight } \mathrm{x} 250}{1000}$

$$
=\frac{\mathrm{Y} \times 40 \times 250}{1000}
$$

$$
=\frac{\mathrm{x} 40 \times 250}{1000} \mathrm{~g}
$$

Report :

The amount of NaOH dissolved in 750 ml of the solution $=\mathrm{g}$

5. Estimation of oxalic acid

Aim :

To estimate the amount of oxalic acid dissolved in 1250 ml of the given unknown solution volumetrically. For this you are given with a standard solution of HCl solution of normality 0.1010 N and sodium hydroxide solution as link solution.

Principle:

Neutralization of Sodium hydroxide by HCl is given below. To indicate the end point, phenolphthalein is used as an indicator.
$\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
Neutralization of Sodium hydroxide by oxalic acid is given below. To indicate the end point, phenolphthalein is used as an indicator.
$2 \mathrm{NaOH}+\underset{\text { Oxalic acid }}{(\mathrm{COOH})_{2}} \longrightarrow \underset{\text { Sodium oxalate }}{(\mathrm{COONa})_{2}}+2 \mathrm{H}_{2} \mathrm{O}$
Short procedure:

s.no	Content	Titration-I	Titration-II
1	Burette solution	HCl (standard solution)	Oxalic acid (unknown solution)
2	Pipette solution	20 ml of NaOH link solution	20 ml of NaOH link solution
4	Temperature	Lab temperature	Lab temperature
5	Indicator	Phenolphthalein	Phenolphthalein
6	End point	Disappearance of pink colour	Disappearance of pink colour
7	Equivalent weight of oxalic acid $=63$		

Procedure :

Titration-I

(standard HCl)Vs (link NaOH)
Burette is washed with water, rinsed with HCl solution and filled with same HCl solution up to the zero mark. Exactly 20 ml of NaOH is pipetted out into the clean, washed conical flask. To This solution 2 to 3 drops of phenolphthalein indicator is added and titrated against HCl solution from the burette. HCl is added drop wise till the pink colour disappears completely. Burette reading is noted and the same procedure is repeated to get concordant values.

Titration -I

(standard HCl)Vs (link NaOH)

s.no	Volume of$\mathrm{NaOH}(\mathrm{ml})$	Burette readings		Concordant value (Volume of std HCl) (ml)
		Initial (ml)	Final (ml)	
1	20			
2	20			
3	20			

Calculation :

Volume of NaOH (link) solution $\quad \mathrm{V}_{1}=20 \mathrm{ml}$
Normality NaOH (link) solution $\quad \mathrm{N}_{1}=$? N
Volume of standard HCl solution $\quad \mathrm{V}_{2}=\mathrm{ml}$
Normality of standard HCl solution $\quad \mathrm{N}_{2}=0.1010 \mathrm{~N}$
According to normality equation:

$$
\begin{aligned}
\mathrm{V}_{1} \times \mathrm{N}_{1} & =\mathrm{V}_{2} \times \mathrm{N}_{2} \\
\mathrm{~N}_{1} & =\frac{\times 0.1010}{20}=
\end{aligned}
$$

Normality NaOH (link) solution $\mathrm{N}_{1}=$ \qquad N

Titration-II

(Unknown oxalic acid) Vs (Link NaOH)
Burette is washed with water, rinsed with oxalic acid solution and filled with same oxalic acid solution up to the zero mark. Exactly 20 ml of NaOH solution is pipetted out into the clean, washed conical flask. To This solution 2 to 3 drops of phenolphthalein indicator is added and titrated against oxalic acid solution from the burette. oxalic acid is added drop wise till the pink colour disappears completely. Burette reading is noted and the same procedure is repeated to get concordant values.

Titration -II

(Link NaOH)Vs (Unknown oxalic acid solution)

s.no	Volume of $\mathbf{N a O H}$ link (ml)	Burette readings Initial (ml)		Final (ml)
1	20			
2	20			
3	20			

Calculation :

Volume of Unknown oxalic acid solution $\quad \mathrm{V}_{1}=\mathrm{ml}$
Normality of Unknown oxalic acid solution $\quad \mathrm{N}_{1}=? \mathrm{~N}$
Volume of NaOH solution $\quad \mathrm{V}_{2}=20 \mathrm{ml}$
Normality NaOH solution $\quad \mathrm{N}_{2}=\mathrm{N}$
According to normality equation:

$$
\begin{aligned}
& \mathrm{V}_{1} \times \mathrm{N}_{1}=\mathrm{V}_{2} \times \mathrm{N}_{2} \\
& \mathrm{~N}_{1}=\frac{\mathrm{V}_{2} \times \mathrm{N}_{2}}{\mathrm{~V}_{1}}
\end{aligned}
$$

Normality of Unknown oxalic acid solution

$$
\mathrm{N}_{1}=\frac{\mathrm{Y}}{} \mathrm{~N}
$$

Weight calculation:
The amount of oxalic acid dissolved in 1 lit of the solution

$$
=(\text { Normality }) \mathrm{x} \text { (equivalent weight) }
$$

$\begin{array}{r}\text { The amount of oxalic acid dissolved in } 1250 \\ \mathrm{ml} \text { of the solution }\end{array}=\frac{\text { Normality x equivalentweight } \mathrm{x} 1250}{1000}$
$=\frac{\mathrm{Y} \times 63 \times 1250}{1000}$
$=\frac{\times 63 \times 1250}{1000}$
$=\quad \mathrm{g}$
Report :
The amount of oxalic acid dissolved in 1250 ml of the solution $=\mathrm{g}$

