

CBSE Board Class 10 Maths Chapter 6- Triangles Objective Questions

Areas of Similar Triangles

- 1. If \triangle ABC ~ \triangle DEF such that AB = 12 cm and DE = 14 cm. Find the ratio of areas of \triangle ABC and \triangle DEF.
 - (A) 49/9
 - (B) 36/49
 - (C) 49/16
 - (D) 25/49

Answer: (B) 36/49

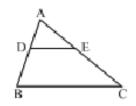
Solution: We know that the ratio of areas of two similar triangles is equal to the ratio of the squares. Of any two corresponding sides, area of \triangle ABC / area of \triangle DEF = (AB/DE) ²= (12/14) ²= 36/49

- 2. D and E are points on the sides AB and AC respectively of a △ABC such that DE || BC. Which of the following statement is true?
 - (i) \triangle ADE ~ \triangle ABC
 - (ii) (area of \triangle ADE/ area of \triangle ABC) = (AD²/AB²)
 - (iii) (area of \triangle ADE/ area of \triangle ABC)= (AB²/ AD²)

(A) only (iii)
(B) only (i)
(C) only (i) and (ii)
(D) all (i) , (ii) and (iii)

Answer: (i) \triangle ADE $\sim \triangle$ ABC and (ii) (area of \triangle ADE/ area of \triangle ABC) = (AD²/AB²)

Solution:



In \triangle ADE and \triangle ABC, we have

 $\angle ADE = \angle B$

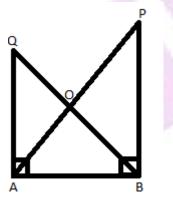
[Since $DE \parallel BC \angle ADE = \angle B$ (Corresponding angles)]

and, $\angle A = \triangle A$ [Common]

 $\bigtriangleup ADE \sim \bigtriangleup ABC$

Therefore, (area of \triangle ADE / area of \triangle ABC) = (AD²/AB²)

3.



In the figure, PB and QA are perpendicular to segment AB. If OA = 5 cm, PO = 7cm and area (Δ QOA) = 150 cm², find the area of Δ POB.

(A) 233 cm²
(B) 294 cm²

- (C) 300 cm^2
- (D) 420 cm^2

Answer: (B) 294 cm²

Solution: Consider Δ ~QOA and Δ POB

QA || PB,

Therefore, $\angle AQO = \angle PBO$ [Alternate angles]

 \angle QAO = \angle BPO [Alternate angles]

and

 \angle QOA = \angle BOP [Vertically opposite angles]

 Δ s QOA ~ BOP [by AAA similarity]

Therefore, (OQ/OB) = (OA/OP)

Now, area (POB)/ area (QOA) = (OP) 2 / (OA) 2 = 7^{2} / 5^{2}

Since area (QOA) =150cm²

 \Rightarrow area (POB) =294cm²

- **4.** Two isosceles triangles have equal angles and their areas are in the ratio 16: 25. The ratio of corresponding heights is:
 - (A) 4:5 (B) 5:4
 - (C) 3:2
 - (D) 5:7

Answer: (A) 4:5

Solution: For similar isosceles triangles,

Area (Δ_1) / Area $(\Delta_2) = (h_1)^2 / (h_2)^2$

$$(h_1 / h_2) = 4/5$$

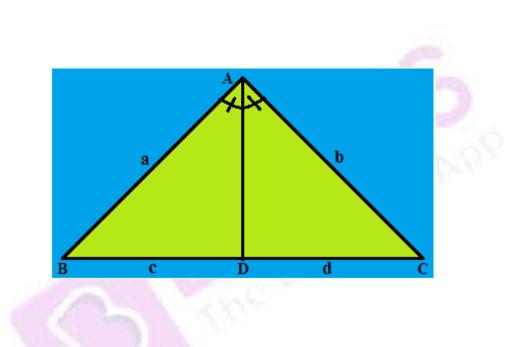
Basic Proportionality Theorem

5. In \triangle ABC, AB = 3 and, AC = 4 cm and AD is the bisector of \angle A. Then, BD : DC is —

(A) 9: 16
(B) 4:3
(C) 3:4
(D) 16:9

Answer: (C) 3:4

Solution:



The Angle-Bisector theorem states that if a ray bisects an angle of a triangle, then it divides the opposite side into segments that are proportional to the other two sides (It may be similar or may not depending on type of triangle it divides)

 $\mathsf{In} \bigtriangleup \mathsf{ABC}$

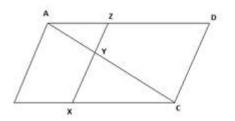
as per the statement AB/ AC= BD/DC i.e. a/b= c/d

So, BD/ DC= AB/AC= 3/4

So, BD: DC = 3: 4

6. ABCD is a parallelogram with diagonal AC If a line XY is drawn such that XY || AB.

BX/XC=?



(A) (AY/AC) (B) DZ/AZ

(C) AZ/ZD

(D) AC/AY

Answer: (C) AZ/ZD

Solution: In the \triangle ABC,

AB || XZ

AB || XY

∴ BX/ XC= AY/YC.... (By BPT)..... (1)

In parallelogram ABCD, AB || CD

AB || CD || XZ

In the ∆ ACD, CD ∥ YZ

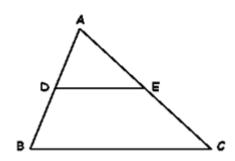
∴ AY/YC= AZ/ZD ... (By BPT)..... (2)

From 1 & 2,

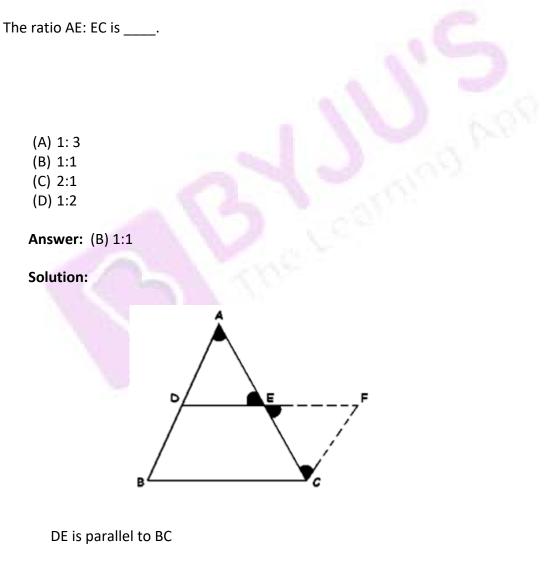
BX/XC= AY/YC= AZ/ZD

BX/XC= AZ/ZD

7.



In ABC, Given that DE//BC, D is the midpoint of AB and E is a midpoint of AC.



So, In triangles ABC, ADE

 $\angle DAE = \angle ECF \{Alternate angles\}$

 $\angle ADE = \angle EFC \{Alternate angles\}$

 \angle BAC = \angle DAE By A.A.A similarity ABC=ADE

 \Rightarrow AD/DB= AE/EC (Basic Proportionality Theorem)

Since, D is midpoint of AB.

AD=DB

$$\Rightarrow$$
 AD/DB= 1/1=AE/EC

$$\Rightarrow AE/EC = 1/1$$

 \therefore AE: EC= 1:1

- **8.** In \triangle ABC, AC = 15 cm and DE || BC. If AB/AD=3, Find EC.
 - (A) 5cm
 - (B) 10 cm
 - (C) 2.5cm
 - (D) 9cm

Answer: (B) 10cm

Solution: Given: DE||BC

From basic proportionality theorem

AD/DB=AE/EC

Now, AB/AD= (AD+DB) /AD= 1 + (DB/AD)

⇒1+ (DB/AD) = 3

- \Rightarrow (DB/AD) = 2
- \Rightarrow AD/DB=AE/EC = $\frac{1}{2}$
- ⇒2AE=EC⇒AC=AE+EC------ (1) On substituting value of EC in (1), we get $15=3AE\Rightarrow5=AE\RightarrowEC=10cm$

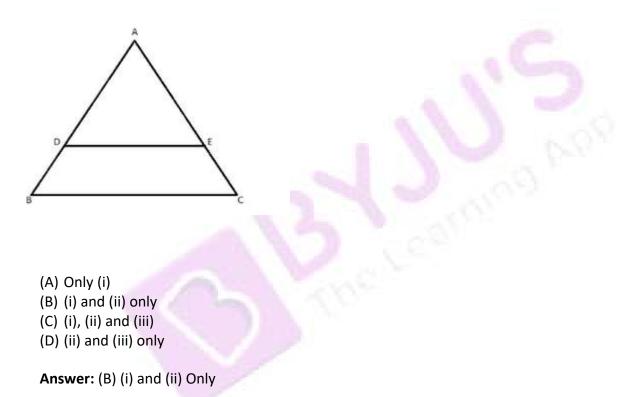
Criteria for Similarity of Triangles

9. \triangle ABC is an acute angled triangle. DE is drawn parallel to BC as shown. Which of the following are always true?

i) \triangle ABC ~ \triangle ADE

ii) AD/BD= AE/EC

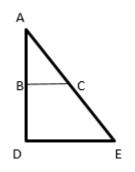
iii) DE = BC/2



Solution: Since DE || BC, AD/BD=AE/EC and hence \triangle ABC ~ \triangle ADE

DE = BC/2 only if D and E are the mid points of AB and AC respectively. So this may not be true always.

10. The triangles ABC and ADE are similar



Which of the following is true?

(A) EC/AC=AD/DE(B) BC/BD=CE/DE(C) AB/AD=BC/DE(D) All of the Above

Answer: (C) AB/AD=BC/DE

Solution: Since the given triangles are similar, the ratios of corresponding sides are equal.

So, AB/AD=BC/DE=AC/AE

11. If in \triangle CAB and \triangle FED, AB/ EF=BC/FD=AC/ED, then:

(A) \triangle ABC~ \triangle DEF (B) \triangle CAB~ \triangle DEF (C) \triangle ABC~ \triangle EFD (D) \triangle CAB~ \triangle EFD

Answer: (C) \triangle ABC \sim \triangle EFD

Solution: If two triangles are similar, corresponding sides are proportional. Therefore, $\triangle ABC \sim \triangle EFD$.

- **12.** A tower of height 24m casts a shadow 50m and at the same time, a girl of height 1.8m casts a shadow. Find the length of the shadow of girl.
 - (A) 3.75m
 - (B) 3.5m
 - (C) 3.25m
 - (D) 3m

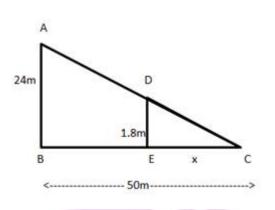
Answer: (A) 3.75m

Solution: In $\triangle ABC$ and $\triangle DEC$ $\angle ABC = \angle DEC = 90^{\circ}$ $\angle C = \angle C$ (common) Therefore, $\triangle ABC \sim \triangle DEC$ [by AA similarity]

So, DE/AB=EC/BC

EC=DE × (BC/AB)

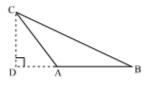
 $\mathsf{EC=1.8} \times (50/24) \Rightarrow \mathsf{EC=3.75} \text{ m}$



Pythagoras Theorem

13. In the adjoining figure, if BC = a, AC = b, AB = c and $\angle CAB = 120^{\circ}$,

then the correct relation is-



(A) $a^2 = b^2 + c^2 - bc$ (B) $a^2 = b^2 + c^2 + bc$ (C) $a^2 = b^2 + c^2 - 2bc$ (D) $a^2 = b^2 + c^2 + 2bc$

Answer: (B)
$$a^2 = b^2 + c^2 + bc$$

Solution: In \triangle CDB,

 $BC^2 = CD^2 + BD^2$ [By Pythagoras Theorem]

 $BC^2 = CD^2 + (DA+AB)^2$

$$BC^{2} = CD^{2} + DA^{2} + AB^{2} + (2 \times DA \times AB)$$
 (i)

In $\triangle ADC$,

 $CD^2 + DA^2 = AC^2$ (ii) [By Pythagoras Theorem]

Also, Cos60° = AD/AC

Putting the values from (ii) and (iii) in (i), we get

$$BC^2 = AC^2 + AB^2 + (AC \times AB)$$

 $a^2 = b^2 + c^2 + bc$

Alternatively,

Since $\angle A$ is an obtuse angle in $\triangle ABC$, so

$$BC^2 = AB^2 + AC^2 + 2AB . AD$$

 $= AB^2 + AC^2 + 2 \times AB \times \frac{1}{2} \times AC$

$$[:: AD = AC \cos 60^\circ = 1/2AC]$$

$$= AB^2 + AC^2 + AB \times AC$$

$$a^2 = b^2 + c^2 + bc.$$

- **14.** If the distance between the top of two trees 20 m and 28 m tall is 17 m, then the horizontal distance between the trees is :
 - (A) 11m
 - (B) 31m
 - (C) 15m
 - (D) 9m

Answer: (C) 15m

Solution: Let AB and CD be two trees such that AB = 20 m, CD = 28 m & BD = 17 m

Draw BE parallel to CD. Then, ED = 8 m.

By applying Pythagoras theorem:

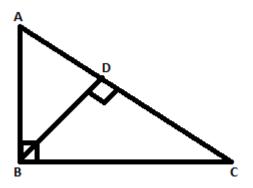
BE²+DE²=BD²

:
$$BE = \sqrt{BD^2 - ED^2} = \sqrt{17^2 - 8^2}$$

$$=\sqrt{225}$$
 =15m

∴ AC = BE = 15 m

15.

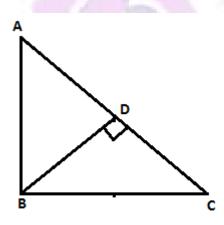


In the figure \triangle ABC is a right angled triangle with right angle at B. BD is perpendicular to AC. Then which of the following options will hold true?

- (A) $AD^2=DC \times AC$ (B) $AB^2=AD \times AC$ (C) $AB^2=AD \times DC$
- (D) $AB^2 = DC^2 + AD^2$

Answer: (B) AB²=AD×AC

Solution:

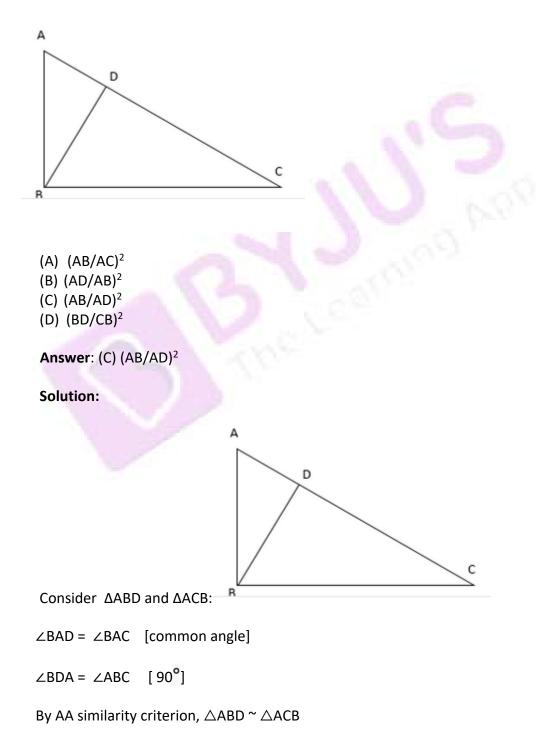


In $\triangle ABC$ and $\triangle ADB$ $\angle ABC = \angle ADB = 90^{\circ}$ $\angle A = \angle A$ (common angle) Therefore, $\triangle ABC \sim \triangle ADB$ [by AA similarity]

AB/AD= AC/ AB

AB²=AC×AD

16. In a right \triangle ABC, a perpendicular BD is drawn on to the largest side from the opposite vertex. Which of the following does not give the ratio of the areas of \triangle ABD and \triangle ACB?



Hence,

ar (ΔABD)/ ar(ΔACB) = (AB/AC)² = (AD/AB)² = (BD/CB)²

Similar Triangles

- **17.** \triangle ABC is such that AB = 3 cm, BC = 2 cm and CA = 2.5 cm. \triangle DEF is similar to \triangle ABC. If EF = 4 cm, then the perimeter of \triangle DEF is –
 - (A) 7.5 cm (B) 15cm
 - (C) 30cm
 - (D) 22.5cm

Answer: (B) 15cm

Solution: AB/DE= AC/DF=BC/EF=2/4=1/2

 $DE = 2 \times AB = 6 \text{ cm}, DF = 2 \times AC = 5 \text{ cm}$

 \therefore Perimeter of \triangle DEF = (DE + EF + DF) = 15 cm.

18. In \triangle ABC and \triangle DEF, $\angle A = \angle E = 40\circ$ and AB/ED=AC/EF. Find $\angle B$ if $\angle F$ is 65°

(A)85° (B)75° (C)35° (D)65°

Answer: (B) 75°

Solution:



AB/ED= AC/EF (Given) ∠A = ∠E = 40°

Since, the ratio of adjacent sides and the included angles are equal. $\therefore \triangle ABC$ is similar to $\triangle EDF$ by SAS similarity criterion.

Now, $\angle C = \angle F = 65^{\circ}$ [Corresponding angles of a similar triangles are equal]

 $\therefore \angle B = 180^{\circ} - (\angle A + \angle C)$ =180° - (40° + 65°) = 75°

19. The ratio of the corresponding sides of two similar triangles is 1: 3. The ratio of their corresponding heights is _____

(A) 1:3

- (B) 3:1
- (C) 1:9
- (D) 9:1

Answer: (A) 1:3

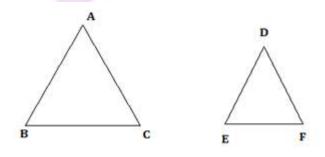
Solution: Ratio of heights = Ratio of sides = 1: 3.

20. If \triangle ABC and \triangle DEF are similar such that 2AB = DE and BC = 8 cm, then Find EF.

- (A) 16 cm
- (B) 12 cm
- (C) 8 cm
- (D) 4 cm

Answer: (A) 16 cm

Solution:



2BC = EF

 \Rightarrow 2×8 = EF

 \Rightarrow EF = 16 cm

(E)

