CBSE Class 10 Maths Chapter 1 - Real Numbers

Objective Questions

Introduction to Real Numbers

1. What is the least number that must be added to 1056 so the number is divisible by 23 ?
(A) 0
(B) 3
(C) 2
(D) 1

Answer: (C) 2

Solution: We have,
23) 1056 (45

1035

21

On dividing 1056 by 23 , we got 21 as remainder.
\Rightarrow If we add 23-21 = 2 to the dividend 1056, we will get a number completely divisible by 23.
\therefore Required number $=(23-21)=2$
2. The difference of two numbers is 1365 . On dividing the larger number by the smaller, we get 6 as quotient and the 15 as remainder. What is the smaller number?
(A) 360
(B) 295
(C) 270
(D) 240

Answer: (c) 270
Solution: Let the smaller number be x.

$$
\Rightarrow \text { Larger number }=(x+1365)
$$

The Learning App
$\Rightarrow x+1365=6 x+15$
$\Rightarrow 5 \mathrm{x}=1350$
$\Rightarrow \mathrm{x}=270$
\therefore Larger number is $(270+1365)=1635$
and smaller number is 270 .
3. Euclid's division lemma states "Given positive integers a and b, there exist unique integers q and r satisfying $a=b q+r$ ". Which of the following is true for r ?
(A) $\mathrm{r}>\mathrm{a}$
(B) $\mathrm{r}<0$
(C) $0 \leq r<b$
(D) $\mathrm{r}>\mathrm{b}$

Answer: (C) $0 \leq r<b$
Solution: Euclid's division lemma:
Given positive integers a and b, there exist unique integers q and r satisfying $a=b q+r$ where $0 \leq r<b$
Basically, it can be observed that remainder can never be more than the divisor, and is a non-negative integer (could be zero).
4. a and b, when divided by 7 and 6 respectively, leave remainders p and q respectively. What is the maximum value of $p+q$?
(A) 5
(B) 6
(C) 12
(D) 11

Answer: (D) 11

Solution: There exist integers m and n such that $a=7 m+p$ and $b=6 n+q$ such that $0<p<7 \Rightarrow$
Maximum value of p will be 6 .
$0<q<6 \Rightarrow$
Maximum value of p will be 5 .
Therefore, the maximum value of $p+q$ will be 11 .
5. If $\operatorname{HCF}(1008,20)=\operatorname{HCF}(20, a)=\operatorname{HCF}(a, b)$ where $1008=20 \times q+a ; 20=a \times m+b$ where (q, a) and (m, b) are positive integers satisfying Euclid's Division Lemma. What could be the values of a and b ?
(A) 24,8
(B) 20,8
(C) 10, 4
(D) 8,4

Answer: (D) 8, 4
Solution: If $p=d \times q+r,(p>q)$ where p, q, d, r are integers and for a given (p, d), there exist a unique (q, r), then $\operatorname{HCF}(p, d)=\operatorname{HCF}(d, r)$. Because this relation holds true, the Euclid's Division Algorithm exists in a step by step manner. So, to find the $\operatorname{HCF}(1008,20)$, we use Euclid's division lemma at every step.

Step 1: $1008=20 \times 50+8 \Rightarrow \operatorname{HCF}(1008,20)=\operatorname{HCF}(20,8) \Rightarrow$ a could be 8
Step 2: $20=8 \times 2+4 \Rightarrow \operatorname{HCF}(20,8)=\operatorname{HCF}(8,4) \Rightarrow b$ could be 4
Step 3: $8=4 \times 2+0$

HCF $=4$
Since $1008=20 \times q+a$ where q and a are positive integers satisfy Euclid's Division Lemma, we must have $0 \leq a<20$. So a is surely 8 and b is 4 .

Revisiting Irrational Numbers

6. Which one of the following can't be the square of a natural number?
(A) 42437
(B) 20164

The Learning App
(C) 81225
(D) 32761

Answer: (A) 42437
Solutions: We know that the square of a natural number never ends in 2, 3, 7 and 8 .
$\therefore 42437$ can't be the square of a natural number.
7. If the number $91876 y 2$ is completely divisible by 8 , then the smallest whole number in place of y will be:
(A) 2
(B) 4
(C) 3
(D) 1

Answer: (C) 3
Solution: For a number to be divisible by 8 , the last three digits must be divisible by 8 .
Here, 6 y 2 must be divisible by 8 .
For $\mathrm{y}=3,632$ is divisible by 8 .
8. If x and y are the two digits of the number $653 x y$ such that this number is divisible by 80 , then $x+y=$?
(A) 4 or 8
(B) 6
(C) 4
(D) 8

Answer: (B) 6
Solution: If the number is divisible by another number, it will be divisible by its factors too.

For the number to be divisible by both 2 and 5 , the last digit should be 0
So, $y=0$

So we can rewrite the number as 653×0
Now For the number to be divisible by 8 ; last 3 digits should be divisible by 8
So 3×0 should be divisible by 8

So, x can be either 2 or 6 since 320 and 360 are divisible by 8
If $x=2$; then the number becomes 65320 which is not divisible by 80

If $x=6$; then the number becomes 65360 which is divisible by 80

Hence the value of $x=6$

So, $x+y=6+0=6$
9. Which among the following options is irrational?
(A) 3.1415926535... (non-repeating and non-terminating)
(B) 10.2
(C) $(0.2)^{2}$
(D) 0.2

Answer: (A) 3.1415926535... (Non-repeating and non-terminating)
Solution: Non-terminating and non-repeating decimals are irrational.
If the denominator of a rational number is in the form of $2^{n} 5^{m}$ where n and m are non-negative integers, then the rational number is terminating.
$0.2=\frac{2}{10}=\frac{2}{2 \times 5}$
$\therefore 0.2$ has terminating decimal and is a rational number.
$3.1415926535 \ldots$ is non-terminating and non-repeating.
$\therefore 3.1415926535 \ldots$ is irrational.

The Learning App
$\frac{1}{0.2}=\frac{10}{2}$
$\therefore \frac{1}{0.2}$ has terminating decimal and is a rational number.
$(0.2)^{2}=\left(\frac{0.2}{10}\right)^{2}=\left(\frac{0.2}{2 \times 5}\right)^{2}$
$(0.2)^{2}$ has terminating decimal and is a rational number.
10. ' s ' is called irrational if it cannot be written in the form of \qquad where p and q are integers and \qquad
(A) $\frac{P}{Q}, \mathrm{p}=0$
(B) $p q, p \neq 0$
(C) $\frac{P}{Q}, q \neq 0$
(D) $\frac{P}{Q}, \mathrm{q}=0$

Answer: (C) $\frac{P}{Q}, \mathrm{q} \neq 0$
Solution: ' s ' is called irrational if it cannot be written in the form of $p q$, where p and q are integers and $q \neq 0$

Revisiting Rational Numbers and Their Decimal Expansions

11. Write down the decimal expansions of : $\frac{13}{6250}$
(A) 0.0208

The Learning App
(B) 0.00208
(C) 0.00512
(D) 0.00416

Answer: (B) 0.00208
Solution: $\frac{13}{6250}=\frac{13}{2^{1} \cdot 5^{5}}$
To get the denominator in powers of 10 , multiply both numerator and denominator by 2^{4}.

$$
\begin{aligned}
& \Rightarrow \frac{13}{6250}=\frac{13 \times 2^{4}}{5^{5} \times 2^{5}} \\
& \frac{13}{6250}=13 \times \frac{2^{4}}{10^{5}}=\frac{208}{10^{5}}=0.00208
\end{aligned}
$$

12. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating decimal expansion: $\frac{23}{8}$
(A) non-terminating non - repeating decimal
(B) non-terminating repeating decimal
(C) non-terminating decimal
(D) terminating decimal

Answer: (D) terminating decimal
Solution: The given number is $\frac{23}{8}$

We know a rational number is expressed in simplest form $\frac{p}{q}$ and if q can be expressed as

The Learning App
$2^{m} \times 5^{n}$, then it is a terminating decimal

Clearly, 2 and 5 are not the factors of 23
8 can be expressed in terms of its primes as $2 \times 2 \times 2$

Or, $8=2^{m} .5^{n}$, where $\mathrm{m}=3$ and $\mathrm{n}=0$

Since q can be expressed in the form of 2^{m}. 5^{n}, we can say $\frac{23}{8}$ is a terminating decimal.
13. Without actually performing the long division, state whether the following rational number will have a terminating decimal expansion or a non-terminating decimal expansion: $\frac{7^{3}}{2^{3} \times 5^{2}}$ and $\frac{3 \times 7^{3}}{2^{3} \times 3}$
(A) both have terminating decimal expansion
(B) $\frac{7^{8}}{2^{3} \times 5^{2}}$-terminating $\frac{3 \times 7^{3}}{2^{3} \times 3}$ non-terminating
(C) both have non-terminating decimal expansion
(D) $\frac{7^{8}}{2^{3} \times 5^{3}}-$ non - terminating $\frac{3 \times 7^{3}}{2^{3} \times 3}$ - terminating

Answer: (A) both have terminating decimal expansion

Solution: If the denominator of a rational number is in the form of $2^{n} .5^{m}$, where m and n are non-negative integers, then the rational number has terminating decimal expansion.

$$
\frac{7^{3}}{2^{3} \times 5^{2}} \text { has terminating decimal expansion }
$$

$\frac{3 \times 7^{8}}{2^{\mathrm{B}} \times 3}=\frac{7^{\mathrm{B}}}{2^{\mathrm{B}} \times 5^{0}}$ has terminating decimal expansion.

The Learning App
14. Decide whether 52.123456789 is a rational number or not. If rational (in the form $\frac{p}{Q}$, what can you say about the prime factors of q ?
(A) Rational Number, Prime factor of q will be only 2.
(B) Rational Number, Prime factor of q will have a factor other than 2 or 5.
(C) Not rational number
(D) Rational Number, Prime factors of q will have either 2 or 5 or both

Answer: (D) Rational Number, Prime factors of q will have either 2 or 5 or both
Solution: It is rational because decimal expansion is terminating. Therefore, it can be expressed in $\frac{p}{Q}$ form where factors of q are of the form $2^{n} .5^{m}$ and n and m are non-negative integers.
15. Let $x=\frac{p}{Q}$ be a rational number, such that the prime factorization of q is not of the form $2^{n} 5^{m}$, where n, m are non-negative integers. Then, x has a decimal expansion which is \qquad
(A) Terminating
(B) Non-terminating non-repeating
(C) Terminating non-repeating
(D) Non-terminating repeating (recurring)

Answer: (D) Non-terminating repeating (recurring)
Solution: Non-terminating repeating (recurring)

The Fundamental Theorem of Arithmetic

16. Find the HCF of 1848, 3058 and 1331.
(A) 9
(B) 14
(C) 13
(D) 11

Answer: (D) 11
Solution: Consider first two numbers 1848 and 3058, where 3058 > 1848.
$3058=1848 \times 1+1210$
$1848=1210 \times 1+638$
$1210=638 \times 1+572$
$638=572 \times 1+66$
$572=66 \times 8+44$
$66=44 \times 1+22$
$44=22 \times 2+0$
\therefore HCF of 1848 and 3058 is 22 .

Let us find the HCF of the numbers 1331 and 22 .
$1331=22 \times 60+11$
$22=11 \times 2+0$
HCF of 1331 and 22 is 11
\therefore HCF of the three given numbers 1848,3058 and 1331 is 11 .
17. An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?
(A) 8
(B) 7
(C) 6
(D) 9

Answer: (A) 8
Solution: Maximum number of columns $=$ HCF of 616 and 32
$616=2^{3} \times 7 \times 11$
$32=2^{5}$
\therefore HCF of 616 and $32=2^{3}=8$
18. Find the biggest number which can divide both 324 and 144.
(A) 18
(B) 36
(C) 9
(D) 21

Answer: (B) 36
Solution: Finding the biggest number that will divide both 324 and 144 is same as finding the HCF of both.
Prime factorizing the two numbers we get,
$324=3 \times 3 \times 3 \times 3 \times 2 \times 2$
$144=3 \times 3 \times 2 \times 2 \times 2 \times 2$
Now, taking the common factors between them gives us the HCF.
Therefore, HCF $=2 \times 2 \times 3 \times 3=36$
19. Which of the following does not satisfy the following property?

A number which divides 542 and 128 and leaves a remainder 2 in both cases.
(A) 12
(B) 9
(C) 6
(D) 3

Answer: (A) 12
Solution: Suppose the number be x. Since it divides 542 and 128 leave a remainder 2, using the Euclid's division algorithm for 542 and $x, 542=a x+2$, where a is an integer. So, $a x=542-2=540$, i.e. x is a factor of 540. Similarly x is a factor of (128-2).

The HCF of $542-2=540,128-2=126$:
Step 1: 540=126×4+36
Step 2: 126=36×3+18
Step 3: $36=18 \times 2+0$

The Learning App

HCF is 18
$3,6,9$ are factors of 18.12 is the only number which isn't a factor and hence doesn't satisfy the above property.
20. $p=2^{2} \cdot 3^{2} \cdot q^{2}($ where q is a prime <7) is the prime factorization representation of ' p '. What is the value of p ?
(A) $p=700$
(B) $p=900$
(C) $p=36$
(D) can't say

Answer: (B) $p=900$
Solution: So p is 5 and the number is 900 .

