Objective Questions

Introduction to Circles

1. Two concentric circles of radii a and $b(a>b)$ are given. Find the length of the chord of the larger circle which touches the smaller circle.
(A) $\sqrt{a^{2}+b^{2}}$
$\sqrt{a^{2}-b^{2}}$
(B)
(C) $2 \sqrt{a^{2}-b^{2}}$
(D) $2 \sqrt{a^{2}+b^{2}}$

Answer: (C)

$$
2 \sqrt{a^{2}-b^{2}}
$$

Solution: Let O be the common center of the two circles and $A B$ be the chord of the larger circle which touches the smaller circle at C .
Join OA and OC.
Then $O C \perp A B$
Let $O A=a$ and $O C=b$.

Since $O C \perp A B, O C$ bisects $A B$
[\because perpendicular from the centre to a chord bisects the chord].

In right $\triangle \mathrm{ACO}$, we have

$$
O A^{2}=O C^{2}+A C^{2} \quad[\text { by Pythagoras' theorem }]
$$

$\Rightarrow A C=\sqrt{O A^{2}-O C^{2}}=\sqrt{a^{2}-b^{2}}$
$\therefore A B=2 A C=2 \sqrt{a^{2}-b^{2}} \quad[\because \mathrm{C}$ is the midpoint of AB$]$
i.e., Length of the chord $A B=2 \sqrt{a^{2}-b^{2}}$
2. Three circles touch each other externally. The distance between their centres is $5 \mathrm{~cm}, 6$ cm and 7 cm . Find the radii of the circles.
(A) $2 \mathrm{~cm}, 3 \mathrm{~cm}, 4 \mathrm{~cm}$
(B) $1 \mathrm{~cm}, 2 \mathrm{~cm}, 4 \mathrm{~cm}$
(C) $1 \mathrm{~cm}, 2.5 \mathrm{~cm}, 3.5 \mathrm{~cm}$
(D) $3 \mathrm{~cm}, 4 \mathrm{~cm}, 1 \mathrm{~cm}$

Answer: (A) $2 \mathrm{~cm}, 3 \mathrm{~cm}, 4 \mathrm{~cm}$
Solution: Consider the below figure wherein three circles touch each other externally.

Since the distances between the centres of these circles are $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm respectively, we have the following set of equations with respect to the above diagram: $x+y=5$
$y+z=6$
...... (2) $(\Rightarrow y=6-z)$...
$x+z=7$

Adding (1), (2) and (3), we have $2(x+y+z)=5+6+7=18$
$\Rightarrow x+y+z=9 \ldots$.

Using (1) in (4), we have $5+z=9 \Rightarrow z=4$
Now using, (3) $\Rightarrow x=7-z=7-4=3$
And $(2.1) \Rightarrow y=6-z=6-4=2$

Therefore, the radii of the circles are $3 \mathrm{~cm}, 2 \mathrm{~cm}$ and 4 cm .
3. A point P is 13 cm from the centre of the circle. The length of the tangent drawn from P to the circle is 12 cm . Find the radius of the circle.
(A) 5 cm
(B) 7 cm
(C) 10 cm
(D) 12 cm

Answer: (A) 5cm

Solution:

Since,
tangent to a circle is perpendicular to the radius through the point of contact
So, $\angle O T P=90^{\circ}$
So, in triangle OTP
$(\mathrm{OP})^{2}=(\mathrm{OT})^{2}+(\mathrm{PT})^{2}$
$13^{2}=(\mathrm{OT})^{2}+12^{2}$
(OT) ${ }^{2}=13^{2}-12^{2}$
$\mathrm{OT}^{2}=25$
$\mathrm{OT}=\sqrt{25}$
OT=5
So, radius of the circle is 5 cm
4. In the adjoining figure ' O ' is the center of circle, $\angle C A O=25^{\circ}$ and $\angle C B O=35^{\circ}$. What is the value of $\angle A O B$?

(A) 120°
(B) 110°
(C) 55°
(D) Data insufficient

Answer: (A) 120°

Solution:

The Learning App

```
                                In \triangleAOC,
OA=OC
--------(radii of the same circle)
\(\therefore \triangle \mathrm{AOC}\) is an isosceles triangle
\(\rightarrow \angle O A C=\angle O C A=25^{\circ}----\) (base angles of an isosceles triangle )
In \(\triangle B O C\),
\(\mathrm{OB}=\mathrm{OC}\)--------(radii of the same circle)
\(\therefore \triangle B O C\) is an isosceles triangle
\(\rightarrow \angle O B C=\angle O C B=35^{\circ}\)-----(base angles of an isosceles triangle )
\(\angle \mathrm{ACB}=25^{\circ}+35^{\circ}=60^{\circ}\)
\(\angle A O B=2 \times \angle A C B\)----(angle at the center is twice the angle at the circumference)
\[
\begin{aligned}
& =2 \times 60^{\circ} \\
& =120^{\circ}
\end{aligned}
\]
```

5. A: What is a line called, if it meets the circle at only one point?

B: Collection of all points equidistant from a fixed point is \qquad .

1: Chord
2: Tangent
3: Circle

4: Curve

5: Secant

Which is correct matching?
(A) A-2; B-4
(B) A-5; B-4
(C) $A-4 ; B-1$
(D) A-2; B-3

Answer: (D) A-2; B-3
Solution: Tangent is a line which touches the circle at only 1 point.
Collection of all points equidistant from a fixed point is called a circle.

The Learning App
6. A point A is 26 cm away from the centre of a circle and the length of tangent drawn from A to the circle is 24 cm . Find the radius of the circle.

(A) $2 \sqrt{313}$
(B) 12
(C) 7
(D) 10

Answer: (D) 10
Solution: Let O be the centre of the circle and let A be a point outside the circle such that $O A=26 \mathrm{~cm}$.

Let AT be the tangent to the circle.
Then, AT = 24 cm . Join OT.

Since the radius through the point of contact is perpendicular to the tangent, we have $\angle O T A=90^{\circ}$. In right \triangle OTA, we have
$O T^{2}=O A^{2}-A T^{2}$
$=\left[(26)^{2}-(24)^{2}\right]=(26+24)(26-24)=100$.
$\Rightarrow \quad O T=\sqrt{100}=10 \mathrm{~cm}$
Hence, the radius of the circle is 10 cm .
7. The quadrilateral formed by joining the angle bisectors of a cyclic quadrilateral is a
(A) cyclic quadrilateral
(B) parallelogram
(C) square
(D) Rectangle

Answer: (A) cyclic quadrilateral

Solution:

$A B C D$ is a cyclic quadrilateral $\therefore \angle A+\angle C=180^{\circ}$ and $\angle B+\angle D=180^{\circ}$
$1 / 2 \angle A+1 / 2 \angle C=90^{\circ}$ and $1 / 2 \angle B+1 / 2 \angle D=90^{\circ}$
$x+z=90^{\circ}$ and $y+w=90^{\circ}$

In $\triangle A R B$ and $\triangle C P D, x+y+\angle A R B=180^{\circ}$ and $z+w+\angle C P D=180^{\circ}$
$\angle A R B=180^{\circ}-(x+y)$ and $\angle C P D=180^{\circ}-(z+w)$
$\angle A R B+\angle C P D=360^{\circ}-(x+y+z+w)=360^{\circ}-(90+90)$

$$
=360^{\circ}-180^{\circ} \angle A R B+\angle C P D=180^{\circ}
$$

$\angle S R Q+\angle Q P S=180^{\circ}$

The sum of a pair of opposite angles of a quadrilateral PQRS is 180 .
Hence PQRS is cyclic quadrilateral
8. In the given figure, $A B$ is the diameter of the circle. Find the value of $\angle A C D$

(A) 25°
(B) 45°
(C) 60°
(D) 30°

Answer: (B) 45°
Solution: $\mathrm{OB}=\mathrm{OD}$ (radius)
$\angle O D B=\angle O B D$
$\angle \mathrm{ODB}+\angle \mathrm{OBD}+\angle \mathrm{BOD}=180^{\circ}$
$2 \angle \mathrm{ODB}+90^{\circ}=180^{\circ}$
$\angle O D B=45^{\circ}$
$\angle O B D=\angle A C D$ (Angle subtended by the common chord AD)
Therefore $\angle A C D=45^{\circ}$
9. Find the value of $\angle \mathrm{DCE}$:

(A) 80°
(B) 75°
(C) 90°
(D) 100°

Answer: (A) 80°

Solution: $\angle B A D=1 / 2 B O D$

$$
\begin{aligned}
& \angle B A D=1 / 2\left(160^{\circ}\right) \\
& \angle B A D=80^{\circ}
\end{aligned}
$$

$A B C D$ is a cyclic quadrilateral

$$
\begin{aligned}
& \angle B A D+\angle B C D=180^{\circ} \\
& \angle B C D=100^{\circ} \\
& \angle D C E=180^{\circ}-\angle B C D \\
& \angle D C E=180^{\circ}-100^{\circ} \\
& \angle D C E=80^{\circ}
\end{aligned}
$$

10. $A B C D$ is a cyclic quadrilateral $P Q$ is a tangent at B. If $\angle D B Q=65^{\circ}$, then $\angle B C D$ is

(A) 35°
(B) 85°
(C) 90°
(D) 115°

Answer: (D) 115°

Solution:

Join OB and OD

We know that $O B$ is perpendicular to $P Q$
$\angle \mathrm{OBD}=\angle \mathrm{OBQ}-\angle \mathrm{DBQ}$
$\angle O B D=90^{\circ}-65^{\circ}$
$\angle O B D=25^{\circ}$
$O B=O D$ (radius)
$\angle O B D=\angle O D B=25^{\circ}$

In \triangle ODB
$\angle O B D+\angle O D B+\angle B O D=180^{\circ}$
$25^{\circ}+25^{\circ}+\angle \mathrm{BOD}=180^{\circ}$
$\angle B O D=130^{\circ}$
$\angle B A D=1 / 2 \angle B O D$
(Angle subtended by a chord on the centre is double the angle subtended on the circle)
$\angle B A D=1 / 2\left(130^{\circ}\right)$

$$
\angle B A D=65^{\circ}
$$

$A B C D$ is a cyclic quadrilateral
$\angle B C D+\angle B A D=180^{\circ}$
$\angle B C D+65^{\circ}=180^{\circ}$
$\angle B C D=115^{\circ}$
11. In a circle of radius $5 \mathrm{~cm}, A B$ and $A C$ are the two chords such that $A B=A C=6 \mathrm{~cm}$. Find the length of the chord $B C$
(A) None of these
(B) 9.6 cm
(C) 10.8 cm
(D) 4.8 cm

Answer: (B) 9.6 cm

Solution:

Consider the triangles OAB and OAC are congruent as
$A B=A C$
OA is common
$O B=O C=5 \mathrm{~cm}$.

So $\angle O A B=\angle O A C$

Draw OD perpendicular to $A B$
Hence $A D=A B / 2=6 / 2=3 \mathrm{~cm}$ as the perpendicular to the chord from the center bisects the chord.

In $\triangle A D O$
$O D^{2}=A O^{2}-A D^{2}$
$O D^{2}=5^{2}-3^{2}$
$O D=4 \mathrm{~cm}$
So Area of $O A B=1 / 2 A B \times O D=1 / 26 \times 4=12 \mathrm{sq} . \mathrm{cm}$.
Now $A O$ extended should meet the chord at E and it is middle of the $B C$ as $A B C$ is an isosceles with $A B=A C$

Triangles AEB and AEC are congruent as
$A B=A C$

AE common,
$\angle O A B=\angle O A C$.
Therefore triangles being congruent, $\angle \mathrm{AEB}=\angle \mathrm{AEC}=90^{\circ}$
Therefore $B E$ is the altitude of the triangle $O A B$ with $A O$ as base.
Also this implies $\mathrm{BE}=\mathrm{EC}$ or $\mathrm{BC}=2 \mathrm{BE}$
Therefore the area of the $\triangle O A B$
$=1 / 2 \times A O \times B E=1 / 2 \times 5 \times B E=12$ sq. cm as arrived in eq (i).
$B E=12 \times 2 / 5=4.8 \mathrm{~cm}$

Therefore $B C=2 B E=2 \times 4.8 \mathrm{~cm}=9.6 \mathrm{~cm}$.
12.

In a circle of radius 17 cm , two parallel chords are drawn on opposite sides of a diameter. The distance between the chords is 23 cm . If the length of one chord is 16 cm , then the length of the other is
(A) None of these
(B) 15 cm
(C) 30 cm
(D) 23 cm

Answer: (C) 30cm

Solution:

Given that
$O B=O D=17$
$A B=16 \Rightarrow A E=B E=8 \mathrm{~cm}$ as perpendicular from centre to the chord bisects the chords
$E F=23 \mathrm{~cm}$

Consider \triangle OEB
$O E^{2}=O B^{2}-E B^{2}$

$$
\begin{aligned}
& O E^{2}=17^{2}-8^{2} \\
& O E=15 \mathrm{CM} \\
& \mathrm{OF}=\mathrm{EF}-\mathrm{OE} \\
& \mathrm{OF}=23-15 \\
& \mathrm{OF}=8 \mathrm{~cm} \\
& F D^{2}=O D 2-O F^{2} \\
& F D^{2}=17^{2}-8^{2} \\
& F D=15
\end{aligned}
$$

Therefore CD $=2 \mathrm{FD}=30 \mathrm{~cm}$
13. The distance between the centres of equal circles each of radius 3 cm is 10 cm . The length of a transverse tangent $A B$ is

(A) 10 cm
(B) 8 cm
(C) 6 cm
(D) 4 cm

Answer: (B) 8cm
Solution: $\angle \mathrm{OAC}=\angle \mathrm{CBP}=90^{\circ}$
$\angle \mathrm{OCA}=\angle \mathrm{PCB}$ (Vertically opposite angle)
Triangle OAC is similar to PBC
$O A / P B=O C / P C$

The Learning App
$3 / 3=O C / P C$
$O C=P C$

But $\mathrm{PO}=10 \mathrm{~cm}$
Therefore OC $=\mathrm{PC}=5 \mathrm{~cm}$
$A C^{2}=O C^{2}-O A^{2}$
$A C^{2}=5^{2}-3^{2}$
$\mathrm{AC}=4 \mathrm{~cm}$

Similarly $B C=4 \mathrm{~cm}$
Therefore $A B=8 \mathrm{~cm}$
14. A point P is 10 cm from the center of a circle. The length of the tangent drawn from P to the circle is 8 cm . The radius of the circle is equal to
(A) 4 cm
(B) 5 cm
(C) None of these
(D) 6 cm

Answer: (D) 6cm

Solution:

Given that $\mathrm{OP}=10 \mathrm{~cm}, \mathrm{PQ}=8 \mathrm{~cm}$

As, tangent to a circle is perpendicular to the line joining the centre of the circle to the tangent at the point of contact to the circle.

Angle OQP $=90^{2}$
Applying Pythagoras theorem to triangle OPQ
$O Q^{2}+Q P^{2}=O P^{2}$
$O Q^{2}+8^{2}=10^{2}$
$O Q^{2}=100-64$
$=36$
$O Q=6 \mathrm{~cm}$.

Ans: Radius of the circle is 6 cm .
15. In fig, O is the centre of the circle, $C A$ is tangent at A and $C B$ is tangent at B drawn to the circle. If $\angle A C B=75^{\circ}$, then \angle

AOB=
(A) 75°
(B) 85°
(C) 95°
(D) 105°

Answer: (D) 105°

Solution: $\angle O A C=\angle O B C=90^{\circ}$
$\angle O A C+\angle O B C+\angle A C B+\angle A O B=360^{\circ} \ldots .$. (sum of angles of a quadrilateral)
$90^{\circ}+90^{\circ}+75^{\circ}+\angle A O B=360^{\circ}$
$\angle A O B=105^{\circ}$
16. PA and PB are the two tangents drawn to the circle. O is the centre of the circle. A and B are the points of contact of the tangents $P A$ and $P B$ with the circle. If $\angle O P A=35^{\circ}$, then $\angle P O B=$

(A) 55°
(B) 65°
(C) 85°
(D) 75°

Answer: (A) 55°
Solution: $\angle O A P=\angle O B P=90^{\circ}$

$\angle A O P=180^{\circ}-35^{\circ}-90^{\circ}$
$\angle A O P=55^{\circ}$
$O A=O B$
$A P=P B$

OP is common base

Therefore $\triangle \mathrm{OAP} \cong \triangle O B P$
$\angle A O P=\angle B O P$

Ans: $\angle B O P=55^{\circ}$
17. A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the center O at a point Q such that $O Q=13 \mathrm{~cm}$. Length $P Q$ is:
(A)
$\sqrt{119}$
(B) 8.5 cm
(C) 13 cm
(D) 12 cm

Answer: (D) 12 cm

Solution:

Given that $O P=5 \mathrm{~cm}, O Q=13 \mathrm{~cm}$
To find $P Q$
Applying Pythagoras theorem to triangle OPQ

$$
\begin{aligned}
& O P^{2}+Q P^{2}=O Q^{2} \\
& 5^{2}+Q P^{2}=13^{2} \\
& Q P^{2}=169-25=144 \\
& Q P=\sqrt{144} \mathrm{~cm} \\
& Q P=12 \mathrm{~cm}
\end{aligned}
$$

18. The length of the tangent from a point A to a circle, of radius 3 cm , is 4 cm . The distance of A from the centre of the circle is
(A)
(B) 7 cm
(C) 5 cm
(D) 25 cm

Answer: (C) 5 cm

Solution:

Given that $A B=4 \mathrm{~cm}, O B=3 \mathrm{~cm}$
To find OA
Applying Pythagoras theorem to triangle OAB
$O B^{2}+A B^{2}=O A^{2}$
$3^{2}+4^{2}=O A$
$\mathrm{OA}^{2}=25$
$O A=5 \mathrm{~cm}$
Therefore the distance of A from the centre of the circle is 5 cm .
19. If TP and TQ are two tangents to a circle with center O such that $\angle P O Q=110^{\circ}$, then, $\angle \mathrm{PTQ}$ is equal to:

(A) 90°
(B) 80°
(C) 70°
(D) 60°

Answer: (C) 70°
Solution:

We know that $\angle O Q T=\angle O P T=90^{\circ}$.

Also $\angle \mathrm{OQT}+\angle \mathrm{OPT}+\angle \mathrm{POQ}+\angle \mathrm{PTQ}=360^{\circ}$.
$\angle \mathrm{PTQ}=360^{\circ}-90^{\circ}-90^{\circ}-110^{\circ}$
$=70^{\circ}$
$\therefore \angle \mathrm{PTQ}=70^{\circ}$
20. In the given figure, $P A Q$ is the tangent. $B C$ is the diameter of the circle. $\angle B A Q=60^{\circ}$, find $\angle A B C$:

(A) 25°
(B) 30°
(C) 45°
(D) 60°

Answer: (B) 30°

Solution:

Join OA
As the tangent at any point of a circle is perpendicular to the radius through the point of contact
$\angle O A Q=90^{\circ}$
$\angle O A B=\angle O A Q-\angle B A Q$
$\angle O A B=90^{\circ}-60^{\circ}$
$\angle O A B=30^{\circ}$
$\mathrm{OA}=\mathrm{OB}$ (radius)
$\angle O A B=\angle O B A$

Therefore $\angle O B A=30^{\circ}$
$\angle A B C=30^{\circ}$

