CBSE Board Class 10 Maths Chapter 15- Probability Objective Questions

Introduction to Probability

1. What is the probability that the minute and hour hands of a clock will form an acute angle at any given time?
(A) $\mathrm{P}>0.5$
(B) $P=0.5$
(C) $\mathrm{P}<0.5$
(D) $\mathrm{P} \leq 0.25$

Answer: (C) $\mathrm{P}<0.5$
Solution: The amount of time in a period of 12 hours when the hands will form an acute angle will be the same as that for obtuse angle. So, you would think that the probability is 12 . But if you take into account the small amounts of time when the hands are aligned $\left(0^{\circ}\right)$, hands are at right angles and hands are facing in opposite directions (180°), then the probability would be slightly less than 0.5.

Complementary Events

2. Two dice are thrown at the same time. Find the probability of getting different values on both.
(A) $5 / 6$
(B) $1 / 2$
(C) $1 / 6$
(D) $1 / 36$

Answer: (A) 5/6

Solution: Let E be the event of getting different values on both the dice. The complementary event is getting the same value on both, for which there are 6 favorable outcomes: $(1,1),(2,2),(3,3),(4,4),(5,5)$ and $(6,6)$. Thus, $P($ not $E)=1 / 6$ Thus, $P(E)=1-P(n o t E)=1-(1 / 6)=5 / 6$
3. If $P(A)$ and $P(\operatorname{not} A)$ are complementary events and $P(A)=0.15$, then $P(\operatorname{not} A)=$?
(A) 0.35
(B) Cannot be determined
(C) 0.85
(D) 0.3

The Learning App

Answer: (C) 0.85

Solution: Given, $P(A)=0.15$
As, $P(A)$ and $P(\operatorname{not} A)$ are complementary events, $P(A)+P(n o t A)=1$
$P(\operatorname{not} A)=1-P(A)=1-0.15=0.85$
4. What is the probability of not picking a king if you choose randomly from a pack of 52 cards?
(A) $1 / 13$
(B) $12 / 13$
(C) $51 / 52$
(D) $1 / 52$

Answer: (B) 12/13
Solution: Since there are 4 kings in a deck of 52 , the probability of drawing a king is $4 / 52=1 / 13$.
Hence, the probability of not picking a king is $1-1 / 13=12 / 13$.
$(\because$ For an event $E, P(E)=1-P($ not $E))$.
5. What is the probability of not picking a face card when you draw a card at random from a pack of 52 cards?
(A) $1 / 13$
(B) $4 / 13$
(C) $10 / 13$
(D) $12 / 13$

Answer: (C) 10/13

Solution: Since there are 12 face cards in a deck of 52cards, the probability of drawing a face card is $12 / 52=3 / 13$
Hence, the probability of not picking a face card $=1-3 / 13=10 / 13$

Experimental Probability

6. 24 cards numbered $1,2,3, \ldots ., 23,24$ are put in a box and mixed thoroughly. One person draws a card from the box. The probability that the number on the card is divisible by 2 or 3 or both is
(A) $5 / 6$
(B) $2 / 3$
(C) $1 / 3$
(D) $1 / 6$

Answer: (B) 2/3

Solution: The total possible outcomes $=24$
Numbers divisible by only 2 are $2,4,8,10,14,16,20,22$ (8 numbers)
Numbers divisible only by 3 are 3, 9, 15, 21 (4 numbers)
Numbers divisible by both 2 and 3 are 6, 12, 18, 24 (4 numbers)
From (1), (2) and (3), we see that the number of favourable outcomes is 16 (i.e., $8+4+$ 4).

We know that, Probability of an event $E, P(E)=$ number of favourable outcomes/ total number of outcomes
=16/24
$=2 / 3$
7. A bag contains 6 black, 7 red and 2 white balls. A ball is drawn from the bag at random. Find the probability that the ball drawn is black or white.
(A) $8 / 15$
(B) $3 / 5$
(C) $2 / 3$
(D) $1 / 5$

Answer: (A) 8/15
Solution: Total number of balls $=15$
Number of balls that are either black or white $=8$
Hence the number of favourable outcomes of ball drawn being black or white is 8 .
We know that, Probability of an event E, P (E) = number of favourable outcomes/total number of outcomes
So, the required probability is $8 / 15$.
8. A card is drawn from a well-shuffled deck of playing cards. Find the probability of drawing a black card which is neither a face card nor an ace?
(A) $10 / 13$
(B) $9 / 13$
(C) $9 / 26$
(D) $9 / 52$

Answer: (C) 9/26

Solution: In each suit, there are 9 cards that are not face cards and ace.
Hence, there will be a total of 18 cards in a deck which are black and are not face cards and ace.
We know that, Probability of an event $E, P(E)=$ number of favourable outcomes/total number of outcomes
Required probability is $18 / 52=9 / 26$.
9. Each of letters of the word PILOTS is on separate cards, face down on the table. If you pick a card at random, what is the probability that the letter will be a T or an L?
(A) $1 / 6$
(B) $1 / 3$
(C) $1 / 2$
(D) $2 / 3$

Answer: (B) $1 / 3$

Solution: There are 6 outcomes out of which 2 are favourable (which are, getting T or L).
Probability of an event $E, P(E)=$ number of favourable outcomes/ total number of outcomes
Required probability $=2 / 6=1 / 3$.

Theoretical Probability

10. A single die is rolled. The probability of getting 1 or an even number is
(A) $1 / 6$
(B) $4 / 6$
(C) $5 / 6$
(D) $3 / 6$

Answer: (D) 3/6

Solution: The favorable outcomes are 1, 2, 4 and 6 .
We have 4 favorable outcomes out of a total outcomes of 6.

Thus the required probability $=4 / 6=2 / 3$.
11. A bucket contains 10 brown balls, 8 green balls, and 12 red balls and you pick one randomly without looking. What is the probability that the ball will be brown?
(A) 0.33
(B) 0.61
(C) $1 / 3$
(D) $4 / 15$

Answer: (C) 1/3

Solution: There are a total of $10+8+12=30$ balls, out of which 10 are brown.
The required probability is $10 / 30=1 / 3$.
12. A number is chosen at random among the first 100 natural numbers. Find the probability that the number chosen is prime.
(A) $1 / 4$
(B) $3 / 10$
(C) $29 / 100$
(D) $27 / 100$

Answer: (A) ¼

Solution: There are 25 prime numbers in the set of the first 100 natural numbers. They are:
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89$, and 97.
We know that, Probability of an event $\mathrm{E}, \mathrm{P}(\mathrm{E})=$ number of favourable outcomes/ total number of outcomes.

Hence, the required probability $=25 / 100=1 / 4$.
13. From a well-shuffled pack of 52 cards, a card is drawn at random, find the probability that it is a spade.
(A) $1 / 2$
(B) $1 / 4$
(C) $1 / 51$
(D) $1 / 52$

Answer: (B) $1 / 4$

Solution: There are 13 spades in a deck of 52 . Hence, the probability of drawing a spade is $13 / 52=1 / 4$
14. A die is thrown once, the probability of getting a composite number on the die is
(A) $1 / 3$
(B) $1 / 2$
(C) $2 / 3$
(D) $1 / 6$

Answer: (A) 1/3

Solution: The composite numbers among the numbers on a die are 4 and 6 . Thus, we have 2 favourable outcomes out of a total of 6 outcomes. Hence, the required probability is $2 / 6=1 / 3$.
15. The probability of an event of a trial
(A) is greater than 1
(B) 0
(C) lies between 0 and 1 (both inclusive)
(D) 1

Answer: (C) lies between 0 and 1 (both inclusive)
Solution: The probability of any event will lie between 0 and 1, both included
16. What is the probability of getting all heads or all tails, when three coins are tossed simultaneously?
(A) $3 / 4$
(B) $1 / 2$
(C) $1 / 4$
(D) $1 / 8$

Answer: (C) 1/4
Solution: When three coins are tossed simultaneously, there are 8 possible outcomes, which are (HHH), (HHT), (HTH), (THH), (HTT), (THT), (TTH), (TTT), where H is represents the head and T represents the tail.
Favorable outcomes of getting all heads or all tails are HHH and TTT.
We know that, Probability of an event $\mathrm{E}, \mathrm{P}(\mathrm{E})=$ Number of favorable outcomes /Total number of outcomes
Hence, the required probability $=2 / 8=1 / 4$

The Learning App
17. There are 5 green, 6 black and 7 white balls in a bag. A ball is drawn at random from the bag. Find the probability that it is not white.
(A) $5 / 18$
(B) $2 / 3$
(C) $7 / 18$
(D) $11 / 18$

Answer: (D) 11/18

Solution: Given,
Number of green balls $=5$

Number of black balls = 6

Number of white balls = 7

Total number of outcomes $=5+6+7=18$

There are 18 balls out of which 11 are not white.
\Rightarrow Number of favourable outcomes $=11$

Probability of an event, $P(E)==$ Number of favourable outcomes / Total number of outcomes
$\Rightarrow P($ ball drawn is not white $)=11 / 18$

Therefore, probability that the ball drawn is not white is $11 / 18$.

Alternate Method:
$P($ ball drawn is white $)=7 / 18$

We know that,
P (ball drawn is white) +P (ball drawn is not white) $=1$

Because the sum of the probability of an event and its complementary event is always 1.
$\Rightarrow P($ ball drawn is not white $)=1-P$ (ball drawn is white $)=1-7 / 18=11 / 18$

Therefore, probability that the ball drawn is not white is $11 / 18$.
18. From a set of 17 cards, numbered $1,2, \ldots 17$, one card is drawn. What is the probability that the number is a multiple of 3 or 7 ?
(A) $5 / 17$
(B) $7 / 17$
(C) $8 / 17$
(D) $6 / 17$

Answer: (B) 7/17
Solution: The total number of possible outcomes is 17
The number of favourable outcomes is $3,6,7,9,12,14$ and 15

$$
=7
$$

Thus, the required probability = number of favourable outcomes/ total number of outcomes

$$
=7 / 17
$$

