CBSE Class 10 Maths Chapter 3 - Pair of Linear Equations in Two Variable

Objective Questions

Algebraic Solution

1. Half the perimeter of a rectangular room is 46 m , and its length is 6 m more than its breadth. What is the length and breadth of the room?
(A) $2 \mathrm{~m}, 20 \mathrm{~m}$
(B) $2 \mathrm{~m}, 3 \mathrm{~m}$
(C) $56 \mathrm{~m}, 40 \mathrm{~m}$
(D) $26 \mathrm{~m}, 20 \mathrm{~m}$

Answer: (D) 26m, 20m
Solution: Let I and b be the length and breadth of the room. Then, the perimeter of the room $=2(1+b)$ metres
From question, l=6+b... (1)

$$
\frac{1}{2} \times 2(1+b)=46 \Longrightarrow 1+b=46 \ldots \text { (2) }
$$

Using Substitution method:
Substituting the value of I from (1) in (2), we get
$6+b+b=46$
$\Rightarrow 6+2 b=46 \Rightarrow 2 b=40$
$\Rightarrow b=20 \mathrm{~m}$.
Thus, $\mathrm{l}=26 \mathrm{~m}$
2. Solve the following pair of equations:
$2 x+y=7$
$3 x+2 y=12$
Choose the correct answer from the given options.
(A) $(-3,2)$
(B) $(1,0)$
(C) $(3,2)$
(D) $(2,3)$

Answer: (D) $(2,3)$

Solution: We have,

$$
\begin{align*}
& 2 x+y=7 \quad \ldots \text { (1) } \tag{1}\\
& 3 x+2 y=12 \ldots \text { (2) }
\end{align*}
$$

Multiply equation (1) by 2 , we get:
$2(2 x+y)=2(7)$
$\Rightarrow 4 x+2 y=14 \ldots$ (3)
Subtracting (2) from (3) we get,
$x=2$
Substituting the value of x in (1) we get,
$2(2)+y=7 \Rightarrow y=3$

Thus, the solution for the given pair of linear equations is $(2,3)$.
3. Solve
$\frac{3 x}{2}-\frac{5 y}{3}=-2 ; \frac{x}{2}+\frac{y}{2}=\frac{13}{6}$
(A) $Y=\frac{51}{19}$
(B) $X==\frac{51}{19}$
(C) $Y=\frac{94}{57}$
(D) $\mathrm{X}=\frac{117}{54}$

Answer: (A) $Y=\frac{51}{19}$
Solution: $\frac{3 x}{2}-\frac{5 y}{3}=-2$

LCM of 2 and 3 is 6 . Multiply by 6 on both sides

$9 x-10 y=-12$
$\frac{x}{2}+\frac{y}{2}=\frac{13}{6}$

LCM is 6 . Multiply by 6 on both sides
$3 x+3 y=13$ \qquad

Multiply equation (2) by 3 to eliminate x; so we get, $9 x+9 y=39$.

Subtract (3) from (1) we have

$$
-19 y=-51 \Rightarrow y=\frac{51}{19}
$$

Substitute this in one of the equation and we get

$$
\begin{aligned}
& X=10\left[\frac{\frac{51}{91}-2}{9}\right]=\frac{282}{19 \times 9}=\frac{94}{3 \times 19}=\frac{94}{57} \\
& \Rightarrow X=\frac{94}{57}
\end{aligned}
$$

4. Given: $3 x-5 y=4 ; 9 x=2 y+7$

Solve above equations by Elimination method and find the value of x.
(A) $X=\frac{9}{13}$
(B) $Y=\frac{5}{13}$
(C) $X=\frac{-5}{13}$
(D) $Y=\frac{9}{13}$

Answer: $X=\frac{9}{13}$

Solution: Given:
$3 x-5 y=4 \ldots . .$. (1)
$9 x=2 y+7$
$9 x-2 y=7 . . .$. (2)
Multiply equation (1) by 3
$\Rightarrow 9 x-15 y=12$. .
Subtracting (2) from (3) we get,

$$
-13 y=5
$$

$$
Y=-\frac{-5}{13}
$$

Substituting the value of y in (2)

$$
\begin{aligned}
& 9 x=2 y+7 \\
& x=\frac{7+2 y}{9}
\end{aligned}
$$

$$
X=\frac{7-\frac{10}{18}}{9}=\frac{81}{13 \times 9}
$$

$$
X=\frac{9}{13}
$$

The Learning App

All about Lines

5. Choose the pair of equations which satisfy the point $(1,-1)$
(A) $4 x-y=3,4 x+y=3$
(B) $4 x+y=3,3 x+2 y=1$
(C) $2 x+3 y=5,2 x+3 y=-1$
(D) $2 x+y=3,2 x-y=1]$

Answer: (B) $4 x+y=3,3 x+2 y=1$
Solution: For a pair of equations to satisfy a point, the point should be the unique solution of them.
Solve the pair equations $4 x+y=3,3 x+2 y=1$
let $4 x+y=3$.
and $3 x+2 y=1$.....(2)
$y=3-4 x \quad$ [From (1)]
Substituting value if y in (2)
$3 x+2 y=1$
$3 x+2(3-4 x)=1$
$3 x+6-8 x=1$
$-5 x=-5 \Rightarrow x=1$
Substituting $x=1$ in (1),
$4(1)+y=3 \Rightarrow y=-1$
$\Rightarrow(1,-1)$ is the solution of pair of equation.
\therefore Pair of equations which satisfy the point ($1,-1$)
Note: - We can also substitute the value ($1,-1$) in the given equations and check if it satisfies the pair of equations or not. In this case it only satisfies the pair of equation $4 x+y=3,3 x+2 y=1$ and hence $(1,-1)$ is the unique solution of the equation.
6. 54 is divided into two parts such that sum of 10 times the first part and 22 times the second part is 780 . What is the bigger part?
(A) 34
(B) 32
(C) 30
(D) 24

Answer: (A) 34

Solution: Let the 2 parts of 54 be x and y

$$
\begin{align*}
& x+y=54 \ldots \text { (i) } \\
& \text { and } 10 x+22 y=780 \tag{ii}
\end{align*}
$$

Multiply (i) by 10, we get

$$
\begin{equation*}
10 x+10 y=540 \tag{iii}
\end{equation*}
$$

$10 x+22 y=780$
(ii) \{Subtracting (ii) from (iii)\}
$(-) \quad(-) \quad(-)$
\qquad
$-12 y=-240$

$$
y=20
$$

Substituting $y=20$ in $x+y=54$, we have $x+20=54 ; x=34$

Hence, $\mathrm{x}=34$ and $\mathrm{y}=20$.
7. What are the values of \mathbf{a}, \mathbf{b} and \mathbf{c} for the equation $\mathbf{y}=0.5 x+\sqrt{7}$ when written in the standard form: $a x+b y+c=0$?
(A) $0.5,1, \sqrt{7}$
(B) $0.5,1,-\sqrt{7}$
(C) $0.5,-1, \sqrt{7}$
(D) $-0.5,1, \sqrt{7}$

Answer: (C) $0.5,-1, \sqrt{7}$

Solution: $\mathrm{Y}=0.5 \mathrm{X}+\sqrt{7}$
$\Rightarrow 0.5 x-y+\sqrt{7}=0$
The general form of an equation is $a x+b y+c=0$.
Here, on comparing, we get
$a=0.5, b=-1$ and $c=\sqrt{7}$
8. Which of the following pair of linear equations has infinite solutions?
(A) $\frac{1}{2} \mathrm{X}+2 \mathrm{Y}=\frac{7}{11} ; \mathrm{X}+6 \mathrm{Y}=21$
(B) $y+2 x=10 ; 11 x+6 y=21$
(C) $4 x+3 y=7 ; 3 x+6 y=25$
(D) $x+2 y=7 ; 3 x+6 y=21$

Answer: (D) $x+2 y=7 ; 3 x+6 y=21$

Solution: If two equations are consistent and overlapping, then they will have infinite solutions. Option A consists of two equations where the second equation can be reduced to an equation which is same as the first equation.
$x+2 y=7 . .$. (i)
$3 x+6 y=21$
Dividing equation (ii) by 3 , we get
$x+2 y=7$ which is the same as equation (i).
The equations coincide and will have an infinite solution.

Alternate Method:

Let the two equations be
$a_{1} \mathrm{x}+b_{1} \mathrm{y}+c_{1}=0$
$a_{2} \mathrm{x}+b_{2} \mathrm{y}+c_{2}=0$

The condition for having infinite solutions is:
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \ldots$ (1)
For the equations, on substituting values in eq (i), we get
$\frac{1}{3}=\frac{2}{6}=\frac{-7}{-21}$
\therefore The pair of equations $\mathrm{x}+2 \mathrm{y}=7$ and $3 \mathrm{x}+6 \mathrm{y}=21$. Have infinite solutions.
Similarly, we can check that other options don't have infinite solutions.

Basics Revisited

9. Which of these points lie on the line $7 x+8 y=61$
(A) $(3,4)$
(B) $(2,5)$
(C) $(-3,7)$
(D) $(3,5)$

Answer: (D) (3, 5)
Solution: Substituting the value of $x=3$ and $y=4$, $7 x+8 y=61=7(3)+8(4)=53$.

Substituting the value of $x=2$ and $y=5$, $7 x+8 y=61=7(2)+8(5)=54$.

Substituting the value of $x=-3$ and $y=7$, $7 x+8 y=61=7(-3)+8(7)=35$.

Substituting the value of $x=3$ and $y=5$, $7 x+8 y=61=7(3)+8(5)=61$

Hence, $(3,5)$ lies on the given line
10. Which of these following equations have $x=-3, y=2$ as solutions?
(A) $3 x-2 y=0$
(B) $3 x+2 y=0$
(C) $2 x+3 y=0$
(D) $2 x-3 y=0$

Answer: (C) $2 x+3 y=0$

Solution: Substituting the values in LHS,
L.H.S $=2 x+3 y$
L.H.S=2(-3) $+3(2)$
L.H.S=0=R.H.S

Hence $x=-3, y=2$ is the solution of the equation $2 x+3 y=0$
11. If $y=\frac{1}{2}(3 x+7)$ is rewritten in the form $a x+b y+c=0$, what are the values of a, b and c?
(A) $\frac{1}{2}, \frac{7}{2}, \frac{3}{2}$
(B) $7,2,3$
(C) $-2,3,-7$
(D) $-3,2,-7$

Answer: (D) -3, 2,-7
Solution: The given equation is:

$$
y=\frac{1}{2}(3 x+7)
$$

Simplifying the equation we get:

$$
\begin{align*}
& 2 y-3 x-7=0 \\
& \Rightarrow-3 x+2 y-7=0 \tag{1}
\end{align*}
$$

Thus, the value of a, b and c is $-3,2$ and -7 respectively.

The equation can also be written as,
$3 x-2 y+7=0$
Thus, the value of a, b and c is $+3,-2$ and +7 respectively.
The option $-3,2$ and -7 is correct [Since $+3,-2$ and +7 is not an option]
12. $x-y=0$ is a line:
(A) Passing through origin
(B) Passing through (1,-1)
(C) $\|$ to y axis
(D) || to x axis

Answer: (A) Passing through origin

Solution: $x-y=0$, is a line passing through the origin as point $(0,0)$ satisfies the given equation
13. If $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$ in the system of equations $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$

Statement 1: This is the condition for inconsistent equations
Statement 2: There exists infinitely many solutions
Statement 3: The equations satisfying the condition are parallel
Which of the above statements are true?
(A) s_{1} only
(B) s_{1} and s_{2}
(C) s_{1} and s_{3}
(D) S_{2} only

Answer: $(\mathrm{C}) \mathrm{S}_{1}$ and S_{3}

Solution: If $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$,

The condition is for inconsistent pair of equations which are parallel and have no solution.
\therefore Statement 1 and 3 are correct
14. $\frac{x}{5}+\frac{y}{3}=1$ and $\frac{x}{k}+\frac{y}{m}=1$. Choose the correct statement.
(A) For $k \neq 3 \frac{m}{5}$ a unique solution exists
(B) For $\mathrm{k}=3 \frac{m}{5}$, infinitely many solutions exists
(C) For $\mathrm{k}=5 \frac{\mathrm{~m}}{3}$, a unique solution exists
(D) For $\mathrm{k}=5 \frac{\mathrm{~m}}{3}$, infinitely many solutions exist

Answer: For $\mathrm{k}=5 \frac{\mathrm{~m}}{3}$, infinitely many solutions exist

Solution: $\frac{a_{1}}{a_{2}}=\frac{k}{5} \quad \frac{b_{1}}{b_{2}}=\frac{m}{3}$

$$
\text { For, unique solution, } \frac{k}{5} \neq \frac{\mathrm{m}}{3} \quad \Rightarrow \mathrm{k} \neq 5 \frac{\mathrm{~m}}{3}
$$

For, infinitely many solutions $\frac{k}{5}=\frac{m}{3} \quad \Rightarrow \mathrm{k}=5 \frac{m}{3}$
15. The figure shows the graphical representation of a pair of linear equations. On the basis of graph, the pair of linear equation gives \qquad solutions.

(A) Four
(B) Only one
(C) Infinite
(D) Zero

Answer: (B) Only one

Solution: If the graph of linear equations represented by the lines intersects at a point, this point gives the unique solution. Here the lines meet at the point $(1,-1)$ which is the unique solution of the given pair of linear equations.
16. For what value of k, the pair of linear equations $3 x+k y=9$ and $6 x+4 y=18$ has infinitely many solutions?
(A) -5
(B) 6
(C) 1
(D) 2

Answer: Given equations gives infinitely many solutions if,

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$

The given linear equations are:
$3 x+k y=9 ; 6 x+4 y=18$.
$\Rightarrow a_{1}=3, b_{1}=k, c_{1}=-9$ and $a_{2}=6, b_{2}=4, c_{2}=-18$
$\Rightarrow \frac{3}{6}=\frac{k}{4}=\frac{-9}{-18}$
$\Rightarrow \frac{1}{2}=\frac{k}{4}$
$\Rightarrow \mathrm{k}=2$

Solving Linear Equations

17. Solve the following pair of linear equation

$$
\begin{aligned}
& \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \\
& \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1
\end{aligned}
$$

(A) 9,8
(B) 4,9
(C) 3,2
(D) $\frac{1}{2}, \frac{1}{3}$

Answer: (B) 4, 9

Solution: The pair of equations is not linear. We will substitute $\frac{1}{x}$ as u^{2} and $\frac{1}{y}$ as v^{2} then we will get the equation as
$2 u+3 v=2$
$4 u-9 v=-1$

We will use method of elimination to solve the equation.
Multiply the first equation by 3 , we get
$6 u+9 v=6$
$4 u-9 v=-1$

Adding the above two equations
$10 u=5$
$\mathrm{u}=\frac{1}{2}$

Substituting u in equation $4 u-9 v=-1$ we get $v=\frac{1}{3}$
So $x=\frac{1}{u^{x}}=4$

$$
y=\frac{1}{v^{2}}=9
$$

18. Solve the following pair of equation

$$
\begin{aligned}
& \frac{7 x-2 y}{x y}=5 \\
& \frac{8 x+6 y}{x y}=15
\end{aligned}
$$

(A) None of these
(B) 2, not defined
(C) $\frac{5}{2}$, not defined
(D) $\frac{-2}{5}$, not defined

Answer: (D) $\frac{-2}{5}$, not defined

Solution: First separate the variables

$$
\frac{7 x-2 y}{x y}=5
$$

$\frac{7 x}{x y}-\frac{2 y}{x y}=5$
$\frac{7}{y}-\frac{2}{x}=5$

Similarly we can do separation of variables for second equation

$$
\begin{aligned}
& \frac{8 x+6 y}{x y}=15 \\
& \frac{8}{y}-\frac{6}{x}=15
\end{aligned}
$$

Now we see that the equation is not linear.
So we will substitute $\frac{1}{x}=\mathrm{u}$ and $\frac{1}{y}=\mathrm{v}$

The pair of equation can be written as
$-2 u+7 v=5$
$-6 u+8 v=15$

We can solve the pair of equation by method of elimination.
$-6 u+21 v=15-$
$-6 u+8 v=15$

Subtracting (2) from (1), we get $13 v=0 ; v=0$
Substituting $v=0$ in $-2 u+7 v=5$
we get $u=-\frac{5}{2}$
$\frac{1}{x}=\mathrm{u}$ and $\frac{1}{y}=\mathrm{v}$
$\therefore \mathrm{x}=-\frac{2}{5}$ and $\mathrm{y}=$ not defined
19. Find x and y if $\frac{5}{2+x}+\frac{1}{y-4}=2$

$$
\frac{6}{2+x}+\frac{3}{y-4}=1
$$

(A) $x=-2, y=2$
(B) $x=7, y=-8$
(C) $x=0, y=8$
(D) $x=1, y=7$

Answer: (D) $\mathrm{x}=1, \mathrm{y}=7$
Solution: Let, $\mathrm{p}=\frac{1}{2+x}$ and $\mathrm{q}=\frac{1}{y-4}$

$$
\begin{aligned}
& \text { Thus, } 5 p+q=2----(i) \\
& 6 p-3 q=1---- \text { (ii) }
\end{aligned}
$$

Multiply (i) by 3

$$
\Rightarrow 15 p+3 q=6----(i i i)
$$

Adding (iii) and (ii),

$$
\begin{aligned}
& 21 p=7 \\
& p=\frac{1}{3}
\end{aligned}
$$

Substitute the value of p in (i)

$$
\begin{aligned}
& 5 \times \frac{1}{3}+q=2 \\
& q=2-\frac{5}{3} \\
& \Rightarrow q=\frac{1}{3}
\end{aligned}
$$

Now, $\mathrm{p}=\frac{1}{2+x}$

$$
\Rightarrow \frac{1}{3}=\frac{1}{2+x}
$$

$$
\Rightarrow x=1
$$

$$
\mathrm{q}=\frac{1}{y^{-4}}
$$

$$
\Rightarrow \frac{1}{3}=\frac{1}{y-4}
$$

$$
\Rightarrow y=7
$$

20. Solve the following pair of equations:
$\frac{1}{x}+\frac{3}{y}=1$
$\frac{6}{x}-\frac{12}{y}=2$
(where $x \neq 0, y \neq 0$)
(A) $X=\frac{5}{3}, Y=\frac{15}{2}$
(B) $x=4, y=9$
(C) $x=3, y=11$
(D) $X=\frac{3}{5}, Y=\frac{7}{3}$

Answer: (A) $X=\frac{5}{3}, Y=\frac{15}{2}$

Solution: Let $\frac{1}{x}=\mathrm{a}$ and $\frac{1}{y}=\mathrm{b}$
(As $\mathrm{x} \neq 0, \mathrm{y} \neq 0$)
Then, the given equations become
$a+3 b=1 . . .(1)$
$6 a-12 b=2$... (2)
Multiplying equation (1) by 4 , we get $4 a+12 b=4$... (3)
On adding equation (2) and equation (3), we get 10a=6 $\Rightarrow a=\frac{3}{5}$

Putting $a=\frac{3}{5}$ in equation (1), we get
$\frac{3}{5}+3 b=1$
$\Rightarrow b=\frac{1-(\overbrace{9}^{3})}{3}$
$\Rightarrow \mathrm{b}=\frac{2}{15}$

Hence, $x=\frac{5}{3}$ and $y=\frac{15}{2}$

