CBSE Board Class 10 Chapter 4- Quadratic Equations Objective Questions

Introduction to Quadratic Equations

1. What is the degree of a quadratic equation?
(A) 0
(B) 2
(C) 3
(D) 1

Answer: (B) 2
Solution: The standard form of quadratic equation is $a x^{2}+b x+c=0, a \neq 0$. So the degree of a quadratic equation is 2
2. Find the sum of the roots of the equation $x^{2}-8 x+2=0$
(A) 8
(B) -8
(C) 2
(D) -6

Answer: (A) 8
Solution: For general quadratic equation $a x^{2}+b x+c=0$.
Sum of the roots=-b/a
For $x^{2}-8 x+2=0$
Sum of the roots $=-(-8 / 1)=8$
Sum of the roots of the equation is 8
3. Which of the following is not quadratic equation?
(A) $x(2 x+3)=x^{2}+1$
(B) $x(x+1)+8=(x+2)(x-2)$
(C) $(x+2)^{3}=x^{3}-4$
(D) $(x-2)^{2}+1=2 x-3$

Answer: $(B) x(x+1)+8=(x+2)(x-2)$

Solution: (a) $(x-2)^{2}+1=(2 x-3)$

$$
\begin{aligned}
& x^{2}-4 x+4+1=2 x-3 \\
& x^{2}-4 x+4+1-2 x+3=0 \\
& x^{2}-6 x+8=0
\end{aligned}
$$

This is a quadratic equation.
(b) $(x+2)^{3}=x^{3}-4$

$$
\begin{aligned}
& x^{3}+6 x^{2}+12 x+8=x^{3}-4 \\
& 6 x^{2}+12 x+12=0
\end{aligned}
$$

This is a quadratic equation.
(c) $x(2 x+3)=x^{2}+1$

$$
\begin{aligned}
& 2 x^{2}+3 x=x^{2}+1 \\
& x^{2}+3 x-1=0
\end{aligned}
$$

This is a quadratic equation.
(d) $x(x+1)+8=(x+2)(x-2)$

$$
\begin{aligned}
& x^{2}+x+8=x^{2}-4 \\
& x+12=0
\end{aligned}
$$

This is not a Quadratic equation.
4. If the sum of the roots of a quadratic equation is 5 and the product of the roots is also 5 , then the equation is
(A) $x^{2}+10 x+5=0$
(B) $x^{2}-5 x+5=0$
(C) $x^{2}+5 x-5=0$
(D) $x^{2}-5 x+10=0$

Answer: (B) $x^{2}-5 x+5=0$

Solution: For a quadratic equation $a x 2+b x+c=0$,

$$
\begin{aligned}
& \text { sum of roots = -ba } \\
& \text { product of roots = ca. } \\
& \text { sum of roots =5 = -ba } \\
& \text { product of roots = } 5 \text { = ca, }
\end{aligned}
$$

Thus, quadratic equation is $x^{2}-5 x+5=0$
5. A rectangular field has an area of 3 sq . units. The length is one more than twice the breadth ' x '. Frame an equation to represent this.
(A) $x^{2}-2 x+6=0$
(B) $x^{2}-2 x+3=0$
(C) $2 x^{2}+x-3=0$
(D) $2 x^{2}+x-6=0$

Answer: (C) $2 x^{2}+x-3=0$

Solution: Area of rectangle $=$ length \times breadth

$$
\text { Given, length }=(2 \times \text { breadth }+1)
$$

Let the breadth of the field be x .
Length of the field $=2 x+1$
Area of the rectangular field $=x(2 x+1)=3$

$$
\begin{gathered}
2 x^{2}+x=3 \\
2 x^{2}+x-3=0
\end{gathered}
$$

Solving QE by factorisation

6. The roots of the quadratic equation $x^{2}+5 x-14=0$ is
(A) 2,7
(B) $-2,7$
(C) $-2,-7$
(D) 2, -7

Answer: (D) 2, -7
Solutions: $x^{2}+5 x-14=0$
We need to split the coefficient of x such that the sum of the factors is 5 and their product is -14 .

So we will find the coefficient as 7 and -2 .

The sum of 7 and -2 is 5 and product is -14 .
So now re-write the equation

$$
x^{2}+7 x-2 x-14=0
$$

Taking common terms out
$x(x+7)-2(x+7)=0$
Again taking out the common terms
$(x-2)(x+7)=0$
Now equate the factors to zero to find the roots.

So the roots of the equation are $2,-7$
7. Factorize $x^{2}+5 x+6=0$
(A) $(x-1)(x-3)$
(B) $(x+1)(x+3)$
(C) $(x-2)(x-3)$
(D) $(x+2)(x+3)$

Answer: (D) $(x+2)(x+3)$

Solution: Comparing $x^{2}+5 x+6=0$ to $a x^{2}+b x+c=0$, we have $a=1, b=5$ and $c=6$
Now, we need to find two numbers whose product is 6 and whose sum is 5
Pairs of numbers whose product is 6
1, 6
$-1,-6$

2, 3
$-2,-3$
Of these pairs, the pair that gives the sum 5 is the third pair
Identifying the pair, we rewrite the given quadratic equation as

$$
\begin{aligned}
x^{2}+5 x+6 & =x^{2}+2 x+3 x+6=x(x+2)+3(x+2) \\
& =(x+2)(x+3)
\end{aligned}
$$

8. The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm , find the other two sides (in cm).
(A) 12,5
(B) 7,2
(C) 5,3
(D) 2,5

Answer: (A) 12, 5

Solutions:

Let the base $=\mathrm{xcm}$

Given that the altitude of a right triangle is 7 cm less than its base

Altitude is $=x-7 \mathrm{~cm}$
Given that hypotenuse $=13 \mathrm{~cm}$

Applying Pythagoras theorem, base $^{2}+$ altitude $^{2}=$ hypotenuse 2

Substituting the values, we get

$$
\begin{aligned}
& \Rightarrow \quad x^{2}+(x-7)^{2}=13^{2} \\
& \Rightarrow \quad x^{2}+x^{2}+49-14 x=169 \\
& \Rightarrow 2 x^{2}-14 x+49-169=0 \\
& \Rightarrow 2 x^{2}-14 x-120=0
\end{aligned}
$$

Dividing with 2 on both sides the above equation simplifies to

$$
\begin{aligned}
& \Rightarrow x^{2}-7 x-60=0 \\
& \Rightarrow x^{2}-12 x+5 x-60=0 \\
& \Rightarrow x(x-12)+5(x-12)=0 \\
& \Rightarrow(x-12)(x+5)=0 \\
& \Rightarrow x-12=0 \text { or } x+5=0 \\
& \Rightarrow x=12 \text { or } x=-5
\end{aligned}
$$

The Learning App
Length cannot be negative so x cannot be equal to - 5
base $x=12 \mathrm{~cm}$; altitude $=12-7=5 \mathrm{~cm}$
9. If a train travelled $5 \mathrm{~km} / \mathrm{hr}$ faster, it would take one hour less to travel 210 km . The speed of the train is :
(A) $60 \mathrm{~km} / \mathrm{hr}$
(B) $70 \mathrm{~km} / \mathrm{hr}$
(C) $35 \mathrm{~km} / \mathrm{hr}$
(D) $30 \mathrm{~km} / \mathrm{hr}$

Answer: (D) $30 \mathrm{~km} / \mathrm{hr}$

Solution: Let the speed of the train be $x \mathrm{~km} / \mathrm{hr}$.
Distance travelled $=210 \mathrm{~km}$

Time taken to travel $210 \mathrm{~km}=210 / \mathrm{x}$ hours
When the speed is increased by $5 \mathrm{~km} / \mathrm{h}$, the new speed is ($\mathrm{x}+5$)
Time taken to travel 210 km with the new speed is $210 /(x+5)$ hours

According to the question,
$210 / x-210 /(x+5)=1$
$\Rightarrow 210(\mathrm{x}+5)-210 \mathrm{x}=\mathrm{x}(\mathrm{x}+5)$
$\Rightarrow 210 \mathrm{x}+1050-210 \mathrm{x}=\mathrm{x}^{2}+5 \mathrm{x}$
$\Rightarrow x^{2}+5 x-1050=0$
$\Rightarrow(x+35)(x-30)=0$
$\Rightarrow x=-35,30$

The speed cannot be negative. Thus, the speed of the train is $30 \mathrm{~km} / \mathrm{hr}$
10. If the solutions of the equation $x^{2}+3 x-18=0$ are $-6,3$ then the roots of the equation $2\left(x^{2}+3 x-18\right)=0$ are
(A) 3,3
(B) $-6,3$
(C) $-12,6$
(D) $-6,6$

The Learning App

Answer: (B) -6, 3
Solution: The roots of a quadratic equation do not change when it is multiplied by a constant non-zero real number. So when the equation $x^{2}+3 x-18=0$ is multiplied by 2 , the roots still remain the same i.e. $-6,3$.

Solving QE by completing square

11. The square of $(5 x+1)$ is equal to 16 . What isx?
(A) $x=4,1 / 4$
(B) $x=-1,3 / 5$
(C) $x=1,3 / 2$
(D) $x=-1,4 / 5$

Answer: (B) $x=-1,3 / 5$
Solution: Converting statement into an equation-

$$
\begin{aligned}
& \Rightarrow(5 x+1)^{2}=16 \text { (Applying }(a+b)^{2} \text { formula) } \\
& \Rightarrow 5 x+1= \pm 4 \text { (Taking square root on both sides) } \\
& \Rightarrow 5 x=-5,3 \\
& \Rightarrow x=-1,3 / 5
\end{aligned}
$$

12. Using the method of completion of squares find one of the roots of the equation $2 x^{2}-7 x+3=0$. Also, find the equation obtained after completion of the square.
(A) $6,(x-7 / 4)^{2}-25 / 16=0$
(B) $3,(x-7 / 4)^{2}-25 / 16=0$
(C) $3,(x-7 / 2)^{2}-25 / 16=0$
(D) $13,(x-7 / 2)^{2}-25 / 16=0$

Answer: (В) $3,(x-7 / 4)^{2}-25 / 16=0$
Solution: $2 x^{2}-7 x+3=0$
Dividing by the coefficient of x^{2}, we get $x^{2}-7 / 2 x+3 / 2=0 ; a=1, b=7 / 2, c=3 / 2$

Adding and subtracting the square of $b / 2=7 / 4$, (half of coefficient of x)

We get, $\left[x^{2}-2(7 / 4) x+(7 / 4)^{2}\right]-(7 / 4)^{2}+3 / 2=0$
The equation after completing the square is:

$$
(x-7 / 4)^{2}-25 / 16=0
$$

Taking square root, $(x-7 / 4)=(\pm 5 / 4)$
Taking positive sign $5 / 4, x=3$
Taking negative sign $-5 / 4, x=1 / 2$
13. Find the roots of the equation $5 x^{2}-6 x-2=0$ by the method of completing the square.
(A) $x=3$
(B) $x=(5 \pm \sqrt{ } 19) / 3$
(C) $x=(3 \pm \sqrt{ } 19) / 5$
(D) $x=5$

Answer: $(C) x=(3 \pm \sqrt{ } 19) / 5$
Solution: Multiplying the equation throughout by 5 , we get $25 x^{2}-30 x-10=0$
This is the same as:
$(5 x)^{2}-[2 \times(5 x) \times 3]+3^{2}-3^{2}-10=0$
$\Rightarrow(5 x-3)^{2}-9-10=0$
$\Rightarrow(5 x-3)^{2}-19=0$
$\Rightarrow(5 x-3)^{2}=19$
$\Rightarrow 5 \mathrm{x}-3= \pm \sqrt{ } 19$
$\Rightarrow x=(3 \pm \sqrt{ } 19) / 5$
14. There is a natural number x. Write down the expression for the product of x and its next natural number.
(A) $2 x^{2}+1$
(B) $x^{2}-x$
(C) $x^{2}+x$
(D) $(x+1)(x+2)$

Answer: (C) $x^{2}+x$
Solution: If a natural number is x, the next natural number is greater than x by 1 and hence $x+1$. For eg. For 3 , next natural number is 4 . The product of the 2 numbers is $x(x+1)=x^{2}+x$
15. What number should be added to $x^{2}+6 x$ to make it a perfect square?
(A) 36
(B) 18
(C) 9
(D) 72

Answer: (C) 9
Solution: The identity $(a+b)^{2}=\left(a^{2}+2 a b+b^{2}\right)$ represents a perfect square.
If we observe carefully we can see that $x^{2}+6 x$ can be written in the form of $\left(a^{2}+2 a b+b^{2}\right)$ by adding a constant.
$x^{2}+2(x)(3)+$ constant.
To make $x^{2}+6 x$ a perfect square, divide the co efficient of x by 2 and then add the square of the result to make this a perfect square.
Hence, $6 / 2=3$ and $3^{2}=9$
We should add 9 to make $x^{2}+6 x$ a perfect square.

Solving QE using quadratic formula

16. The equation $x^{2}+4 x+c=0$ has real roots, then
(A) $\mathrm{C} \geq 6$
(B) $\mathrm{C} \leq 8$
(C) $\mathrm{C} \leq 4$
(D) $\mathrm{C} \geq 4$

Answer: $(\mathrm{C}) \mathrm{C} \leq 4$
Solution: Step 1:- For, $x^{2}+4 x+c=0$, value of discriminant $D=4^{2}-4 c=16-4 c$
Step 2:- The roots of quadratic equation are real only when $D \geq 0$

$$
16-4 c \geq 0
$$

Step 3:- $\mathrm{c} \leq 4$
17. Find the discriminant of the quadratic equation $3 x^{2}-5 x+2=0$ and hence, find the nature of the roots.
(A) -1 , no real roots
(B) 1, two equal roots
(C) -1 , two distinct real roots
(D) 1, two distinct real roots

Answer: (D) 1, two distinct real roots
Solution: $D=b^{2}-4 a c=(-5)^{2}-4 \times 3 \times 2=1>0$
$D=1>0 \Rightarrow$ Two distinct real roots.
18. Taylor purchased a rectangular plot of area $634 \mathrm{~m}^{2}$. The length of the plot is 2 m more than thrice its breadth. Find the length and breadth (approximate values).
(A) $34.6 \mathrm{~m} \& 11.20 \mathrm{~m}$
(B) $44.6 \mathrm{~m} \& 14.20 \mathrm{~m}$
(C) $32 \mathrm{~m} \& 16 \mathrm{~m}$
(D) $88 \mathrm{~m} \& 24 \mathrm{~m}$

Answer: (B) 44.6 m \& 14.20 m
Solution: Let x and y be the length and breadth of the rectangle respectively.

Given, $x=2+3 y$

Area of the rectangle=length \times breadth
=xy
$\Rightarrow 634=(2+3 y) y$
$\Rightarrow 634=2 y+3 y^{2}$
So, $3 y^{2}+2 y-634=0$
The roots of the above quadratic equation will be

$$
y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{array}{cc}
& y=\frac{-2 \pm \sqrt{2^{2}-4(3)(-634)}}{2(3)} \\
\Rightarrow & y=\frac{-2 \pm \sqrt{4+7608}}{6} \\
\Rightarrow & y=\frac{-2 \pm \sqrt{7612}}{6} \\
\Rightarrow & y=\frac{-2 \pm 87.246}{6} \\
\Rightarrow & y=\frac{-2+87.246}{6} \\
\Rightarrow \quad y=\frac{-2-87.246}{6} \\
\Rightarrow \quad y=14.20 \text { or } \\
\Rightarrow & y=-14.87
\end{array}
$$

Considering positive value for breadth, we have $\mathrm{y}=14.20$.

Using $x=2+3 y$, we have
$x=2+3(14.20)=44.6$
Now, we have
$\mathrm{x}=44.6$ and $\mathrm{y}=14.20$ (approximately).
19. If the equation $x^{2}+2(k+2) x+9 k=0$ has equal roots, then values of k are
\qquad _.
(A) 1,4
(B) $-1,5$
(C) $-1,-4$
(D) $1,-5$

Answer: (A) 1, 4

Solution: Step 1:- For, $x^{2}+2(k+2) x+9 k=0$, value of discriminant $D=[2(k+2)]^{2}-4(9 k)$ $=4\left(K^{2}+4-5 k\right)$

Step 2:- The roots of quadratic equation are real and equal only when $D=0$
$k^{2}+4-5 k=0$
$\Rightarrow k^{2}-5 k+4=0$
$\Rightarrow k^{2}-k-4 k+4=0$
$\Rightarrow k(k-1)-4(k-1)=0$
$\Rightarrow(\mathrm{k}-1)(\mathrm{k}-4)=0$

Step 3:- k=4 or 1
20. Find the roots of the $3 x^{2}-5 x+2=0$ quadratic equation, using the quadratic formula.
(A) $(7 \pm 1) / 6$
(B) $(4 \pm 1) / 6$
(C) $(5 \pm 2) / 6$
(D) $(5 \pm 1) / 6$

Answer: (D) (5 ± 1)/ 6

Solution: Quadratic equation of the form $a x^{2}+b x+c=0$

The roots of the above quadratic equation will

$$
\begin{aligned}
& \text { be } \begin{array}{l}
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
a=3, \mathrm{~b}=-5 \text { and } \mathrm{c}=2
\end{array} .
\end{aligned}
$$

The Learning App

$$
\begin{aligned}
& x=\frac{-(5) \pm \sqrt{(-5)^{2}-4 \times 3 \times 2}}{2 \times 3} \\
& x=\frac{(5) \pm \sqrt{25-24}}{6}=\frac{5 \pm 1}{6} \\
& x=\frac{5+1}{6}, \frac{5-1}{6}=1, \frac{2}{3}
\end{aligned}
$$

