# CBSE Board Class 10 Chapter 5- Arithmetic Progression Objective Questions 

## General Term of AP

1. Find the number of terms in each of the following APs:
(i) $7,13,19 \ldots, 205$
(ii) $18,31 / 2,13, \ldots-47$
(A) 26,35
(B) 27,34
(C) 35,26
(D) 34,27

Answer: (D) 34, 27

Solution: (i) 7, 13, 19...., 205
First term, $a=7$
Common difference, $\mathrm{d}=13-7=6$
$a_{n}=205$
Using formula $a n=a+(n-1) d$ to find $n^{\text {th }}$ term of arithmetic progression, we get

$$
\begin{aligned}
& 205=7+(n-1) 6 \\
& \Rightarrow 205=6 n+1 \\
& \Rightarrow 204=6 n \\
& \Rightarrow n=204 / 6=34
\end{aligned}
$$

Therefore, there are 34 terms in the given arithmetic progression.
(ii) $18,31 / 2,13, \ldots-47$

First term, $\mathrm{a}=18$

Common difference, $\mathrm{d}=(31 / 2)-18=-5 / 2$

$$
a_{n}=-47
$$

Using formula $a_{n}=a+(n-1) d$ to find $\mathrm{n}^{\text {th }}$ term of arithmetic progression, we get

$$
\begin{aligned}
& -47=18+(n-1)(-5 / 2) \\
& \Rightarrow-94=36-5 n+5 \\
& \Rightarrow 5 n=135 \\
& \Rightarrow n=135 / 5=27
\end{aligned}
$$

Therefore, there are 27 terms in the given arithmetic progression.
2. Find the 31st term of an AP whose 11th term is 38 and 16th term is 73 .
(A) 185
(B) 210
(C) 178
(D) 150

Answer: (C) 178
Solution: We are given that $a_{11}=38$ and $a_{16}=73$ where, $a_{11}$ is the $11^{\text {th }}$ term and $a_{16}$ is the $16^{\text {th }}$ term of an AP.

Using formula $a_{n}=a+(n-1) d$ to find $n$th term of arithmetic progression, we get $38=a+10 \mathrm{~d} . . .$. . (i)
$73=a+15 d$
equation (ii) - equation (i) gives,
$35=5 d$
$d=7$.
Substituting (iii) in (i) we get, $a=-32$
$\mathrm{a}_{31}=-32+(31-1)(7)$
$\Rightarrow-32+210=178$
Therefore, $31^{\text {st }}$ term of AP is 178 .
3. If the third and the ninth terms of an AP are 4 and -8 respectively, which term of this AP is zero?
(A) $5^{\text {th }}$
(B) $4^{\text {th }}$
(C) $3^{\text {rd }}$
(D) $6^{\text {th }}$

Answer: (B) $4^{\text {th }}$
Solution: It is given that 3rd and 9th term of AP are 4 and -8 respectively.
It means $\mathrm{a}_{3}=4$ and $\mathrm{a}_{9}=-8$
Where, $\mathrm{a}_{3}$ and $\mathrm{a}_{9}$ are third and ninth terms respectively.
Using formula $a_{n}=a+(n-1) d$ to find $n^{\text {th }}$ term of arithmetic progression, we get
$4=a+(3-1) d$
$\Rightarrow 4=a+2 d . . .(i)$
$-8=a+(9-1) d$
$\Rightarrow-8=a+8 d$...(ii)
From equation (i) we have $a=4-2 d$
Substituting in equation (ii), we have
$-8=4-2 d+8 d$
$\Rightarrow-12=6 d$
$\Rightarrow d=-126=-2$
Solving for (a), we get
$\Rightarrow-8=\mathrm{a}-16$
$\Rightarrow \mathrm{a}=8$
Therefore, first term a = 8 and Common Difference $d=-2$
We know $a_{n}=a+(n-1) d$ (where $a_{n}$ is the $n^{\text {th }}$ term)
Finding value of $n$ where $a n=0$
$0=8+(n-1)(-2)$
$\Rightarrow 0=8-2 n+2$
$\Rightarrow 0=10-2 n$
$\Rightarrow 2 n=10$
$\Rightarrow \mathrm{n}=10 / 2=5$

Therefore, 5th term is equal to 0 .
4. Which term of the AP: $3,15,27,39, \ldots$ will be 132 more than its $54^{\text {th }}$ term?
(A) 70
(B) 65
(C) 80
(D) 55

Answer: (B) 65

Solution: Let's first calculate $54^{\text {th }}$ of the given AP.

```
First term =a = 3
Common difference \(=\mathrm{d}=15-3=12\)
Using formula \(\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}\), to find \(\mathrm{n}^{\text {th }}\) term of arithmetic
progression, we get
\(a_{54}=a+(54-1) d\)
\(a_{54}=3+53(12)=3+636=639\)
```

We want to find which term is 132 more than its $54^{\text {th }}$ term. Let's suppose it is $\mathrm{n}^{\text {th }}$ term which is 132 more than $54^{\text {th }}$ term.

Therefore, we can say that
$a_{n}=a_{54}+132$
$\left.a_{n}=a+(n-1) d=3+(n-1)(12)\right\}$
$\Rightarrow 3+(n-1) 12=639+132$
$\Rightarrow 3+12 n-12=771$
$\Rightarrow 12 n-9=771$
$\Rightarrow 12 n=780$
$\Rightarrow \mathrm{n}=780 / 12=65$

Therefore, $65^{\text {th }}$ term is 132 more than its $54^{\text {th }}$ term.
5. Two AP's have the same common difference. The difference between their $100^{\text {th }}$ terms 100 , what is the difference between their $1000^{\text {th }}$ terms.
(A) 200
(B) 150
(C) 100
(D) 55

The Learning App
Answer: (C) 100
Solution: Let first term of first $\mathrm{AP}=\mathrm{a}$

Let first term of 2 nd AP = $\mathrm{a}^{\prime}$
It is given that their common difference is same. Let their common difference be d .
It is given that difference between their $100^{\text {th }}$ terms is 100 . Using formula $a_{n}=a+(n-1) d$, to find $\mathrm{n}^{\text {th }}$ term of arithmetic progression, we can say that
$a+(100-1) d-\left(a^{\prime}+(100-1) d\right)=a+99 d-a^{\prime}-99 d=100$
$\Rightarrow a-a^{\prime}=100$
We want to find difference between their $1000^{\text {th }}$ terms which means we want to calculate:
$a+(1000-1) d-\left(a^{\prime}+(1000-1) d\right)=a+999 d-a^{\prime}-999 d=a-a^{\prime}$
Putting equation (1) in the above equation we get,
$a+(1000-1) d-\left(a^{\prime}+(1000-1) d\right)=a+999 d-a^{\prime}-999 d=a-a^{\prime}=100$
Therefore, difference between their $1000^{\text {th }}$ terms would be equal to 100
6. How many three-digit numbers are divisible by 7 ?
(A) 112
(B) 114
(C) 128
(D) 110

Answer: (C) 128
Solution: We have an AP starting at 105 because it is the first three digit number divisible by 7 .

AP will end at 994 because it is the last three digit number divisible by 7 .

Therefore, we have an AP $105,112,119 \ldots 994$

First term, a = 105

Common difference, $\mathrm{d}=112-105=7$
Using formula $a_{n}=a+(n-1) d$, to find $n^{\text {th }}$ term of arithmetic progression, we can say that $994=105+(n-1)(7)$
$\Rightarrow 994=105+(n-1)(7)$
$\Rightarrow 889=7(\mathrm{n}-1)$
$\Rightarrow \mathrm{n}-1=889 / 7 \Rightarrow \mathrm{n}=127+1=128$
994 is the $128^{\text {th }}$ term of AP. Therefore, there are 128 terms in AP. In other words, we can also say that there are 128 three digit numbers divisible by 7 .
7. For what value of $n$, are the $n^{\text {th }}$ terms of two AP's: $63,65,67 \ldots$ and $3,10,17, .$. equal?
(A) 11
(B) 14
(C) 12
(D) 13

Answer: (D) 13
Solution: Let's first consider AP: 63, 65, 67.....
First term $=a=63$
Common difference $=\mathrm{d}=65-63=2$
Using formula $a_{n}=a+(n-1) d$, to find $n^{\text {th }}$ term of arithmetic progression, we can say that
$a_{n}=63+(n-1)(2)$
Now, consider second AP 3, 10, 17...
First term $=\mathrm{a}=3$

Common difference $=\mathrm{d}=10-3=7$
Using formula $a_{n}=a+(n-1) d$, to find $n^{\text {th }}$ term of arithmetic progression, we can say that
$a_{n}=3+(n-1)(7)$
According to the given condition, we can write

$$
\begin{aligned}
& (1)=(2) \\
& \Rightarrow 63+(n-1)(2)=3+(n-1)(7) \\
& \Rightarrow 63+2 n-2=3+7 n-7 \\
& \Rightarrow 65=5 n \\
& \Rightarrow n=65 / 5=13
\end{aligned}
$$

Therefore, 13th terms of both the AP's are equal.

## Introduction to AP

8. If $(x+1), 3 x$ and $(4 x+2)$ are first three terms of an $A P$, then its 5 th term is :
(A) 14
(B) 19
(C) 24
(D) 28

Answer: (D) 28
Solution: Given, $(x+1), 3 x,(4 x+2)$ are in AP.
Hence, the difference of two consecutive terms will be same.

Hence, $3 x-(x+1)=(4 x+2)-3 x$
$\Rightarrow 2 x-1=x+2$
$\Rightarrow x=3$

So, the first term, $a=(x+1)=4$.
The common difference, $d=9-4=5$.

The $\mathrm{n}^{\text {th }}$ term of an AP is given by
$t_{n}=a+(n-1) d$
$\Rightarrow t_{5}=4+4(5)=24$.

The Learning App
9. The sum of first ten terms of an A.P. is four times the sum of its first five terms, then ratio of the first term and common difference is
(A) $1 / 2$
(B) $1 / 4$
(C) 4
(D) 1

Answer: (A) $1 / 2$
Solution: Let $\mathrm{S}_{10}$ be the sum of first 10 terms and S 5 be the sum of first 5 terms.
We know,
$S_{n}=(n / 2)[2 a+(n-1) d]$
Given,
$S_{10}=4 S_{5}$
$\Rightarrow(10 / 2)[2 a+(10-1) d]=4 \times(5 / 2)[2 a+(5-1) d]$
$\Rightarrow(10 / 2)[2 a+9 d]=4 \times(5 / 2)[2 a+4 d]$
$\Rightarrow 2 a+9 d=4 a+8 d$
$\Rightarrow a / d=1 / 2$
10.Find the common difference (d) in the following APs respectively.
(i) $20,40,60,80,100, .$.
(ii) $5,0,-5,-10,-15, \ldots$
(iii) $2,2,2,2,2$..
(A) 20, 5, 0
(B) $-20,-5,0$
(C) $-20,5,0$
(D) $20,-5,0$

Answer: (D) 20, -5, 0

The Learning App

Solution: Common difference is
(i) $20,40,60,80,100$,
$d=40-20=20$
(ii) $5,0,-5,-10,-15, \ldots$
$d=0-5=-5$
(iii) 2, 2, 2, 2, 2....
$d=2-2=0$
11. Which of the following sequences form an AP?
(i) $2,4,8,16 \ldots . . .$.
(ii) $2,3,5,7,11 \ldots . .$.
(iii) $-1,-1.25,-1.5,-1.75 \ldots . .$.
(iv) $1,-1,-3,-5,-7 \ldots . . . . . . .$.

Answer: (iii) $-1,-1.25,-1.5,-1.75 . \ldots .$. and
(iv) $1,-1,-3,-5,-7$

Solution: Consider each list of numbers:
(i) $2,4,8,16$........

Difference between the first two terms $=4-2=2$
Difference between the third and second term =8-4=4
Since $a_{2}-a_{1} \neq a_{3}-a_{2}$, this sequence is not an AP
(ii) $2,3,5,7,11 \ldots . . .$.

Difference between the first two terms =3-2 =1
Difference between the third and second term =5-3=2

The Learning App
Since $a_{2}-a_{1} \neq a_{3}-a_{2}$, this sequence is not an AP
(iii) $-1,-1.25,-1.5,-1.75 \ldots . . .$.

Difference between the first two terms $=-1.25-(-1)=-0.25$

Difference between the third and second term $=-1.5-(-1.25)=-0.25$
Difference between the fourth and third term $=-1.75-(-1.5)=-0.25$

Since $a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}$, this sequence is an AP
(iv) $1,-1,-3,-5,-7$. $\qquad$

Difference between the first two terms $=-1-1=-2$
Difference between the third and second term $=-3-(-1)=-2$
Difference between the fourth and third term $=-5-(-3)=-2$

Since $a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}$, this sequence is an AP
12. What are the conditions for a sequence to be an AP?
(A) The sum of two consecutive terms should be constant.
(B) The product of two consecutive numbers should be constant.
(C) The difference between two consecutive terms should be constant.
(D) The ratio of two consecutive terms should be constant.

Answer: (C) The difference between two consecutive terms should be constant.
Solution: Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8} \ldots$ be a sequence.

For this sequence to be an AP, the difference between any two consecutive terms should be constant.
$a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=d$
This difference is called the common difference of the AP and is denoted by d.

So an AP can also be represented in this form as well $a, a+d, a+2 d . .$.

The Learning App
13. Which of the following list of numbers forms an AP?
(i) $4,4+\sqrt{ } 3,4+2 \sqrt{ } 3,4+3 \sqrt{ } 3,4+4 \sqrt{ } 3$
(ii) $0.3,0.33,0.333,0.3333,0.33333$
(iii) $3 / 5,6 / 5,9 / 5,12 / 5,3$
(iv) $-1 / 5,-1 / 5,-1 / 5,-1 / 5,-1 / 5$

Answer: (i), (iii) and (iv)

Solution: Consider each series (i) $4,4+\sqrt{ } 3,4+2 \sqrt{ } 3,4+3 \sqrt{ } 3,4+4 \sqrt{ } 3$
Difference between first two consecutive terms $=4+\sqrt{ } 3-4=\sqrt{ } 3$

Difference between third and second consecutive terms $=4+2 \mathrm{~V} 3-4+\sqrt{ } 3=\sqrt{ } 3$

Difference between fourth and third consecutive terms $=4+3 \mathrm{~V} 3-4+2 \mathrm{~V} 3=\sqrt{ } 3$

Since $a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}$

This series is an AP
(ii) $0.3,0.33,0.333,0.3333,0.33333$

Difference between first two consecutive terms $=0.33-0.3=0.03$

Difference between third and second consecutive terms $=0.333-0.33=0.003$
Since $a_{2}-a_{1} \neq a_{3}-a_{2}$

This series is not an AP
(iii) $3 / 5,6 / 5,9 / 5,12 / 5,3$

Difference between first two consecutive terms $=(6 / 5)-(3 / 5)=3 / 5$
Difference between third and second consecutive terms $=(9 / 5)-(6 / 5)=3 / 5$

Difference between fourth and third consecutive terms $=(12 / 5)-(9 / 5)=3 / 5$
Since $a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}$

The Learning App

This series is an AP
(iv) $-1 / 5,-1 / 5,-1 / 5,-1 / 5,-1 / 5$

Difference between first two consecutive terms $=-1 / 5-(-1 / 5)=0$

Difference between third and second consecutive terms $=-1 / 5-(-1 / 5)=0$
Difference between fourth and third consecutive terms $=-1 / 5-(-1 / 5)=0$

Since $a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}$
This series is an AP

## Sum of Terms in AP

14. The first term of an AP is 5 , the last term is 50 and the sum is 440 . Find the number of terms and the common difference
(A) $17 ; 3$
(B) $16 ; 2$
(C) $17 ; 2$
(D) $16 ; 3$

Answer: (D) 16; 3
Solution: First term, $\mathrm{a}=5$
Last term, l=50
$S_{n}=440$
Applying formula, $S_{n}=n / 2(a+1)$ to find sum of $n$ terms of $A P$, we get

$$
\begin{aligned}
& 440=n / 2(5+50) \\
& \Rightarrow 440 / 55=n / 2 \\
& \Rightarrow 8=n / 2 \\
& \Rightarrow n=16
\end{aligned}
$$

Applying formula, $S_{n}=n / 2(2 a+(n-1) d)$ to find sum of $n$ terms of AP and putting value of $n$, we get

$$
\begin{aligned}
& 440=16 / 2(2(5)+(16-1) d) \\
& \Rightarrow 440=8(10+15 \mathrm{~d}) \\
& \Rightarrow 10+15 \mathrm{~d}=55 \\
& \Rightarrow 15 \mathrm{~d}=45 \\
& \Rightarrow \mathrm{~d}=45 / 15=3
\end{aligned}
$$

15. The first and the last terms of an AP are 17 and 350 respectively. If, the common difference is 9 , how many terms are there and what is their sum?
(A) $38 ; 7114$
(B) $32 ; 7114$
(C) $38 ; 6973$
(D) $32 ; 6973$

Answer: (C) 38; 6973
Solution: First term $=a=17$

Last term = I = 350
Common difference $=d=9$

Using formula $a_{n}=a+(n-1) d$, to find nth term of arithmetic progression, we can say that
$350=17+(n-1)(9)$
$\Rightarrow 350=17+9 n-9$
$\Rightarrow 342=9 n$
$\Rightarrow n=342 / 9=38$
Applying formula, $S_{n}=n / 2(2 a+(n-1) d)$ to find sum of $n$ terms of AP and putting value of $n$, we get
$\mathrm{S}_{38}=38 / 2(34+(38-1)(9))$
$\Rightarrow S_{38}=19(34+333)=6973$

Therefore, there are 38 terms and their sum is equal to 6973.
16. Find the sum of first 22 terms of an AP in which $d=7$ and the $22^{\text {nd }}$ term is 149 .
(A) 1623
(B) 1712
(C) 1542
(D) 1661

Answer: (D) 1661
Solution: It is given that 22 nd term is equal to 149.
It means $\mathrm{a}_{22}=149$
Using formula $a_{n}=a+(n-1) d$, to find $n^{\text {th }}$ term of AP, we can say that

$$
\begin{aligned}
& 149=a+(22-1)(7) \\
& \Rightarrow 149=a+147 \\
& \Rightarrow a=2
\end{aligned}
$$

Applying formula, $S_{n}=n / 2(2 a+(n-1) d)$ to find Sum of $n$ terms of AP and putting value of a, we get

$$
S_{22}=22 / 2(4+(22-1)(7))
$$

$$
\Rightarrow S_{22}=11(4+147)
$$

$$
\Rightarrow S_{22}=1661
$$

Therefore, sum of first 22 terms of AP is equal to 1661.
17. Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectively.
(A) 5610
(B) 5840
(C) 5320
(D) 5000

Answer: (A) 5610

The Learning App

Solution: It is given that second and third terms of AP are 14 and 18 respectively.
Using formula $a_{n}=a+(n-1) d$, to find $n^{\text {th }}$ term of arithmetic progression, we can say that
$14=a+(2-1) d$
$\Rightarrow 14=a+d$
And, $18=a+(3-1) d$
$\Rightarrow 18=a+2 d$

These are equations consisting of two variables. We can solve them by the method of substitution.

Using equation (1), we can say that $a=14-d$
Putting value of a in equation (2), we can say that
$18=14-d+2 d$
$\Rightarrow d=4$

Therefore, common difference $\mathrm{d}=4$

Putting value of $d$ in equation number (1), we can say that
$18=a+2(4)$
$\Rightarrow \mathrm{a}=10$

Applying formula, $S_{n}=n / 2(2 a+(n-1) d)$ to find sum of $n$ terms of AP, we get
$\mathrm{S}_{15}=51 / 2(20+(51-1) 4)=51 / 2(20+200)=51 \times 110=5610$
Therefore, sum of first 51 terms of an AP is equal to 5610.
18. The sum of four consecutive numbers in an A.P. with $d>0$ is 20 . Sum of their square is 120 , then the middle terms are
(A) 8,10
(B) 6,8
(C) 4,6
(D) 2,4

## Answer: (C) 4, 6

## Solution: Let the numbers are $a-3 d, a-d, a+d, a+3 d$

Given: $a-3 d+a-d+a+d+a+3 d=20$
$4 a=20$
$a=5$ and
$(a-3 d)^{2}+(a-d)^{2}+(a+3 d)^{2}+(a+3 d)^{2}=120$
(4) $(a)^{2}+20 d^{2}=120$
(4) $(5)^{2}+20 d^{2}=120$
$d^{2}=1$
$d=+1$ or -1
Hence numbers are $2,4,6$, and 8
19. Find the sum of all the non-negative terms of the following sequence: $100,97,94, \ldots$.
(A) 1717
(B) 1719
(C) 1721
(D) 1723

Answer: (A) 1717
Solution: Here, $\mathrm{t}_{1}=100$, common difference, $\mathrm{d}=\mathrm{t}_{2}-\mathrm{t}_{1}=97-100=-3$
$t_{n}=t_{1}+(n-1) d \Rightarrow 100+(n-1)(-3)=100-3(n-1)=103-3 n$.
Let $t_{n}$ be the first negative term. i.e,
$\mathrm{t}_{\mathrm{n}}<0 \Rightarrow 103-3 \mathrm{n}<0 \Rightarrow \mathrm{n}>103 / 3>34$
That is, the $35^{\text {th }}$ term will be negative.
Sum of the first 34 terms $=(34 / 2)($ first term + last term $)$

$$
=17(100+100+(34-1)(-3))=1717
$$

20. What is the sum of all 3 digit numbers that leave a remainder of ' 2 ' when divided by 3 ?
(A) 149700
(B) 164749
(C) 164850
(D)897

## Answer: (C) 164850

Solution: The smallest 3 digit number that will leave a remainder of 2 when divided by 3 is 101 .
The next number that will leave a remainder of 2 when divided by 3 is $104,107, \ldots$.
The largest 3 digit number that will leave a remainder of 2 when divided by 3 is 998 .
So, it is an AP with the first term being 101 and the last term being 998 and common difference being 3 .

Sum of an AP $=n / 2(a+1)$
we know that in an A.P., the $n$th term $a_{n}=a_{1}+(n-1) \times d$

In this case, therefore,

$$
\begin{aligned}
& 998=101+(n-1) \times 3 \\
& \Rightarrow 897=(n-1) \times 3 \\
& \Rightarrow 299=(n-1) \\
& \Rightarrow n=300
\end{aligned}
$$

Sum of the AP will therefore, be $(101+198) / 2 \times 300=164,850$

