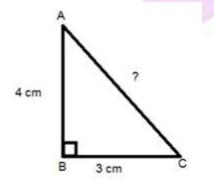


CBSE Board Class 10 Maths Chapter 8- Introduction to Trignometry Objective Questions

Introduction

- 1. In a right triangle ABC, the right angle is at B. Which of the following is true about the other two angles A and C?
 - (A) There is no restriction on the measure of the angles
 - (B) Both the angles should be obtuse
 - (C) Both the angles should be acute
 - (D) One of the angles is acute and the other is obtuse


Answer: (C) Both the angles should be acute

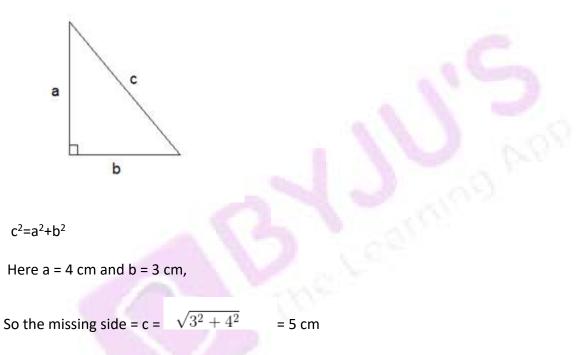
Solution: In triangle ABC, $\angle A + \angle B + \angle C = 180^{\circ}$

 $\angle A + \angle C = 180^{\circ} - 90^{\circ} = 90^{\circ} \Rightarrow$ None of the angles can be $\ge 90^{\circ}$

∴ The other 2 angles must be acute angles.

2. In a right triangle ABC, the right angle is at B. What is the length of missing side in the figure?

- (A) 25 cm
- (B) 12cm
- (C) 7cm
- (D) 5cm



Answer: (D) 5cm

Solution: Pythagoras theorem: In a right angled triangle,

Hypotenuse² = Sum of squares of other 2 sides

That is,

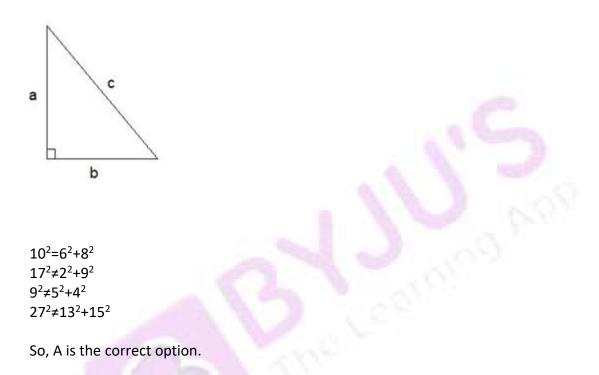
- 3. Which of the following numbers can form sides of a right angled triangle?
 - (A) 13 cm , 27 cm , 15 cm
 (B) 4 cm , 5 cm , 9 cm
 (C) 2 cm , 17 cm , 9 cm
 (D) 10 cm , 6 cm , 8 cm

Solution: The basic condition for any type of triangle is:

- (i) The sum of 2 sides of a triangle should be greater than the third side
- (ii) The difference of any 2 sides should be less than the third side.

For a triangle to be a right angled triangle, there is an additional condition.

https://byjus.com


Answer: (D) 10 cm, 6 cm, 8 cm

Pythagoras theorem: In a right angled triangle, Hypotenuse²= Sum of squares of other 2 sides

That is, $c^2=a^2+b^2$; Also note that the hypotenuse is the largest side in a right triangle.

Considering each of the given options,

- 4. Which of the following are Pythagorean triplets?
 - (A) 4 cm , 6 cm , 8 cm
 (B) 24 cm , 10 cm , 26 cm
 (C) 13 cm , 27 cm , 30 cm
 (D) 2 cm , 17 cm , 9 cm

Answer: (B) 24 cm, 10 cm, 26 cm

Solution: Pythagorean triplets are those set of numbers which satisfy the Pythagoras theorem.

Considering the options given to us -

 $8^2 \neq 4^2 + 6^2$

17²≠2²+9²

26²=24²+10²

 $30^2 \neq 27^2 + 13^2$

Therefore, 24, 10 and 26 are Pythagorean triplets.

Trigonometric Identities

- **5**. If $\sec\theta + \tan\theta = x$, then $\tan\theta$ is:
 - (A) $(x^2-1) / 2x$ (B) $(x^2+1) / 2x$ (C) $(x^2-1) / x$ (D) $(x^2+1) / x$

Answer: (A) (x²-1) / 2x

Solution: We know that, $\sec^2\theta - \tan^2\theta = 1$

Therefore, $(\sec\theta + \tan\theta) (\sec\theta - \tan\theta) = 1$

Since, $(\sec\theta + \tan\theta) = x$

Thus, $(\sec\theta - \tan\theta) = 1/x$

Solving both equations

We get $\tan \theta = (x^2 - 1) / 2x$

6. If p cotθ =

$\sqrt{q^2 - p^2}$		
VI I	then the value of sin θ is _	$_$. (θ being an acute angle)

(A) q/3p (B) q/2p (C) p/q (D) 0

Answer: (C) p/q

Given, p cot θ = $\sqrt{q^2 - p^2}$

$$\therefore \cot \theta = (\sqrt{q^2 - p^2})/2$$

Using the identity, $cosec^2\theta = 1 + cot^2\theta$

$$=1+\frac{\sqrt{q^2-p^2}}{p^2}$$

 $= q^2 / p^2$

Hence, $cosec\theta = q/p$

$$\therefore \sin \theta = p/q$$

- 7. If sin A = 8/17, find the value of secA cosA + cosecA cosA.
 - (A) 23/8 (B) 15/8 (C) 8/15 (D) 6/23

Answer: (A) 23/8

Solution: sin A = 8/17

cosec A = 17/8

$$\cos A = \sqrt{1 - \sin^2 A}$$
$$= \sqrt{1 - \frac{64}{289}} = \sqrt{\frac{225}{289}}$$
$$= 15/17$$

sec A = 17/15

secA cosA + cosecA cosA = (17/15) * (15/17) + (17/15) * (15/17)

= 1 + (15/8)

= 23/8

8. $(\sin A - 2 \sin^3 A) / (2 \cos^3 A - \cos A) =$

(A) tan A
(B) cot A
(C) sec A
(D) 1

Answer: (A) tan A

Solutions: $(\sin A - 2 \sin^3 A) / (2 \cos^3 A - \cos A) = (\sin A (1 - 2 \sin^2 A)) / (\cos A(2 \cos^2 A - 1))$

= $(\sin A (\sin^2 A + \cos^2 A - 2 \sin^2 A)) / (\cos A (2 \cos^2 A - (\sin^2 A + \cos^2 A)))$

= $(\sin A (\cos^2 A - \sin^2 A)) / (\cos A (\cos^2 A - \sin^2 A))$

=tan A

Trigonometric Ratios

- 9. (cos A / cot A) + sin A=
 - (A) cot A
 - (B) 2 sin A
 - (C) 2 cos A
 - (D) sec A

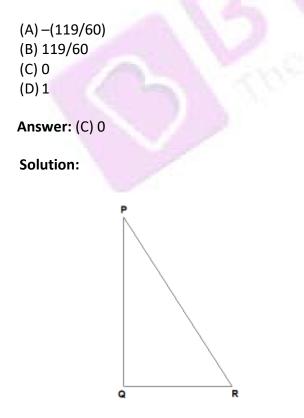
Answer: (B) 2 sin A

Solution: (cos A / cot A) + sin A

= Cos A / (cos A/sin A) + sin A = sin A + sin A = 2 sin A

10. If $5\tan\theta=4$, then value of $(5\sin\theta-4\cos\theta)/(5\sin\theta+4\cos\theta)$ is:

(A) 1/6 (B) 5/6 (C) 0 (D) 5/3


Answer: (C) 0

Solution: Divide both numerator and denominator by $\cos \theta$ and solve

 $(5 \sin \theta - 4 \cos \theta) / (5 \sin \theta + 4 \cos \theta)$

$(5sin\theta - 4cos\theta)$	
cos0	
$(5sin\theta + 4cos\theta)$	
cost	
$5tan\theta - 4$	
$-\frac{5tan\theta+4}{5tan\theta+4}$	
4-4	
$=\frac{1}{4+4}$	
= 0	(Since, given that 5 tan θ = 4)

11. In \triangle PQR, PQ = 12 cm and PR = 13 cm. \angle Q=90° Find tan P - cot R

Given that in \triangle PQR, PQ = 12 cm and PR = 13 cm.

Now, from Pythagoras theorem, $PQ^2+QR^2=PR^2$ $\Rightarrow QR^2=PR^2-PQ^2$ $\Rightarrow QR^2=13^2-12^2$ $\Rightarrow QR^2=169-144=25$

 \Rightarrow QR= $\sqrt{25}$ = 5 cm

Now, tan P= opposite side/ adjacent side = QR/PQ= 5/12 cot R= adjacent side/ opposite side = QR/PQ = 5/12

```
∴tan P-cot R= (5/12)-(5/12) = 0
```

12. If $\tan\theta = (x \sin\phi) / (1 - x\cos\phi)$ and, $\tan\phi = (y \sin\theta) / (1 - y \cos\theta)$ then x/y = 1

(A) $\sin\theta / (1-\cos\phi)$ (B) $\sin\theta / (1-\cos\theta)$ (C) $\sin\theta/\sin\phi$ (D) $\sin\phi / \sin\theta$ Answer: (C) $\sin\theta/\sin\phi$ Solution: We have, $\tan\theta = (x \sin\phi)/(1-x\cos\phi)$ $\Rightarrow (1-x\cos\phi) / (x \sin\phi) = 1/\tan\theta \Rightarrow (1/x\sin\phi) - \cot\phi = \cot\theta$ $\Rightarrow 1/x\sin\phi = = \cot\theta + \cot\phi$ and $\tan\phi = y \sin\theta / (1-y \cos\theta) \Rightarrow (1-y \cos\theta) / y \sin\theta = 1/\tan\phi$ $\Rightarrow (1/y \sin\theta) - \cot\theta = \cot\phi \Rightarrow (1/y \sin\theta) = \cot\phi + \cot\theta$

 $\Rightarrow (1/y\sin\theta) = (1/x\sin\phi) \Rightarrow x/y = \sin\theta/\sin\phi$

Trigonometric Ratios of Complementary Angles

13. The value of tan1° × tan2° × tan3° ×.....× tan 89° is :

- (A) ½
- (B) 2
- (C) 1
- (D)0

Answer: (C) 1

Solution: $tan\theta cot\theta = 1$,

```
\tan(90-\theta) = \cot\theta
```

and tan45°=1

```
Given: tan1°.tan2°,tan3° ......tan88°. tan89°
```

```
= (tan1°. tan89°),(tan2°. tan88°).....(tan44°.tan46°) (tan45°)
```

```
= [(tan1°. tan (90°–1°)]. [(tan 2°. tan(90°–2°)]...... [(tan44°. tan(90°–44°)].1
```

= (tan1°. cot1°). (tan2°. cot2°) (tan44°. cot44°)

= 1

14. If tan2A = cot(A-18°), then value of A is:

- (A) 27° (B) 24° (C) 36°
- (D) 18°

Answer: (C) 36°

Solution: Given, tan 2A = cot (A - 18°)

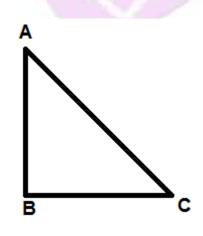
- \Rightarrow tan 2A = tan (90 (A 18°)
- \Rightarrow tan 2A = tan (108° A)
- \Rightarrow 2A = 108° A
- ⇒ 3A = 108°
- ⇒ A = 36°

- **15.** If tan $4\theta = \cot(\theta 10^\circ)$, where 4θ and $(\theta 10^\circ)$ are acute angles then the value of θ in degrees is
 - (A) 16°
 - (B) 20°
 - (C) 32°
 - (D) 40°

Answer: (B) 20°

Solution: Given, tan $4\theta = \cot(\theta - 10^\circ)$

This can be written as


cot(90°-4θ)=cot(θ-10°) -----(i)

 $(:: Tan \theta = Cot(90^\circ - \theta))$

Hence, from (i) we have

```
\Rightarrow 90^{\circ} - 4\theta = \theta - 10^{\circ}\Rightarrow 5\theta = 100^{\circ}\Rightarrow \theta = 20^{\circ}
```

16. In the given triangle right angled at B, which pair of angles are complementary?

- (A) None of these(B) C and A
- (C) A and B
- (D) B and C

Answer: (B) C and A

Solution: Two angles are said to be complementary, if their sum is 90°. The triangle is right angled at B. With angle sum property of the triangle, $\angle A + \angle B + \angle C = 180^\circ$

 $\angle A + \angle C = 90^\circ$, Hence angle A and C are complementary.

Trigonometric Ratios of Specific Angles

17. Which of the following is correct for some θ , such that $0^{\circ} \le \theta < 90^{\circ}$

(A) $1/\cos\theta < 1$ (B) $\sec\theta = 0$ (C) $1/\sec\theta < 1$ (D) $1/\sec\theta > 1$

Answer: (C) $1 / \sec \theta < 1$

Solution: $1 / \sec \theta = \cos \theta$. And value of $\cos \theta$ ranges from 0 to 1

- **18.** The value cot² 30°-2cos² 60°-3/4sec² 45°-4sin² 30° is
 - (A) 2 (B) -1 (C) 1
 - (D)0

Answer: (D) 0

Solution: cot² 30°-2cos² 60°-3/4 (sec² 45°) -4sin² 30°

$$= \frac{(\sqrt{3})^2 - 2(\frac{1}{2})^2 - \frac{3}{4}(\sqrt{2})^2 - 4(\frac{1}{2})^2)}{= 3 - (1/2) - (3/2) - 1 = 0}$$

19. If Cosec (A+ B) =
$$\frac{2}{\sqrt{3}}$$
 sec(A-B)= $\frac{2}{\sqrt{3}}$

0°<A+B≤90°, Find A and B. (A) 25°,35° (B) 30°, 30° (C) 45°, 15° (D) 10°,50°

Answer: (C) 45°, 15°

Solution: If A+B lies in this range 0°<A+B≤90°

cosec (A+B) = $\frac{2}{\sqrt{3}}$ only when A+B=60° (1)

sec (A-B) = $\frac{2}{\sqrt{3}}$ only when A-B=30°(2)

By Solving equation 1 and equation 2 A=45° and B=15°

20. $\cos 1^\circ \times \cos 2^\circ \times \cos 3^\circ \times \dots \times \cos 180^\circ$ is equal to:

(A) 0 (B) 1 (C) ½ (D) -1

Answer: (A) 0

Solution: Since cos 90° = 0 The given expression

cos 1° × cos 2° × cos 3° ×....× cos 90° ×......× cos 180°

reduces to zero as it contains cos 90° which is equal to 0

https://byjus.com