CBSE Board Class 10 Maths Chapter 8- Introduction to Trignometry Objective Questions

Introduction

1. In a right triangle $A B C$, the right angle is at B. Which of the following is true about the other two angles A and C ?
(A) There is no restriction on the measure of the angles
(B) Both the angles should be obtuse
(C) Both the angles should be acute
(D) One of the angles is acute and the other is obtuse

Answer: (C) Both the angles should be acute

Solution: In triangle $A B C, \angle A+\angle B+\angle C=180^{\circ}$
$\angle A+\angle C=180^{\circ}-90^{\circ}=90^{\circ} \Rightarrow$ None of the angles can be $\geq 90^{\circ}$
\therefore The other 2 angles must be acute angles.
2. In a right triangle $A B C$, the right angle is at B. What is the length of missing side in the figure?

(A) 25 cm
(B) 12 cm
(C) 7 cm
(D) 5 cm

Answer: (D) 5cm
Solution: Pythagoras theorem: In a right angled triangle,
Hypotenuse $^{2}=$ Sum of squares of other 2 sides

That is,

b
$c^{2}=a^{2}+b^{2}$

Here $\mathrm{a}=4 \mathrm{~cm}$ and $\mathrm{b}=3 \mathrm{~cm}$,

So the missing side $=\mathrm{c}=\sqrt{3^{2}+4^{2}} \quad=5 \mathrm{~cm}$
3. Which of the following numbers can form sides of a right angled triangle?
(A) $13 \mathrm{~cm}, 27 \mathrm{~cm}, 15 \mathrm{~cm}$
(B) $4 \mathrm{~cm}, 5 \mathrm{~cm}, 9 \mathrm{~cm}$
(C) $2 \mathrm{~cm}, 17 \mathrm{~cm}, 9 \mathrm{~cm}$
(D) $10 \mathrm{~cm}, 6 \mathrm{~cm}, 8 \mathrm{~cm}$

Answer: (D) $10 \mathrm{~cm}, 6 \mathrm{~cm}, 8 \mathrm{~cm}$

Solution: The basic condition for any type of triangle is:
(i) The sum of 2 sides of a triangle should be greater than the third side
(ii) The difference of any 2 sides should be less than the third side.

For a triangle to be a right angled triangle, there is an additional condition.

Pythagoras theorem: In a right angled triangle, Hypotenuse ${ }^{2}=$ Sum of squares of other 2 sides

That is, $\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$; Also note that the hypotenuse is the largest side in a right triangle.
Considering each of the given options,
a

b

$$
\begin{aligned}
& 10^{2}=6^{2}+8^{2} \\
& 17^{2} \neq 2^{2}+9^{2} \\
& 9^{2} \neq 5^{2}+4^{2} \\
& 27^{2} \neq 13^{2}+15^{2}
\end{aligned}
$$

So, A is the correct option.
4. Which of the following are Pythagorean triplets?
(A) $4 \mathrm{~cm}, 6 \mathrm{~cm}, 8 \mathrm{~cm}$
(B) $24 \mathrm{~cm}, 10 \mathrm{~cm}, 26 \mathrm{~cm}$
(C) $13 \mathrm{~cm}, 27 \mathrm{~cm}, 30 \mathrm{~cm}$
(D) $2 \mathrm{~cm}, 17 \mathrm{~cm}, 9 \mathrm{~cm}$

Answer: (B) 24 cm, 10 cm, 26 cm

Solution: Pythagorean triplets are those set of numbers which satisfy the Pythagoras theorem.

Considering the options given to us -
$8^{2} \neq 4^{2}+6^{2}$
$17^{2} \neq 2^{2}+9^{2}$
$26^{2}=24^{2}+10^{2}$
$30^{2} \neq 27^{2}+13^{2}$

Therefore, 24, 10 and 26 are Pythagorean triplets.

Trigonometric Identities

5. If $\sec \theta+\tan \theta=x$, then $\tan \theta$ is:
(A) $\left(x^{2}-1\right) / 2 x$
(B) $\left(x^{2}+1\right) / 2 x$
(C) $\left(x^{2}-1\right) / x$
(D) $\left(x^{2}+1\right) / x$

Answer: (A) ($x^{2}-1$) / $2 x$
Solution: We know that, $\sec ^{2} \theta-\tan ^{2} \theta=1$

Therefore, $(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=1$
Since, $(\sec \theta+\tan \theta)=x$

Thus, $(\sec \theta-\tan \theta)=1 / x$
Solving both equations
We get $\tan \theta=\left(x^{2}-1\right) / 2 x$
6. If $\mathrm{p} \cot \theta=\sqrt{q^{2}-p^{2}}$ then the value of $\sin \theta$ is \qquad . (θ being an acute angle)
(A) $q / 3 p$
(B) $q / 2 p$
(C) p / q
(D) 0

Answer: (C) p/q

Given, $\mathrm{p} \cot \theta=\sqrt{q^{2}-p^{2}}$
$\therefore \cot \theta=\left(\sqrt{q^{2}-p^{2}} \quad\right) / 2$
Using the identity, $\operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta$

$$
\begin{aligned}
& =1+\frac{\sqrt{q^{2}-p^{2}}}{p^{2}} \\
& =q^{2} / p^{2} \\
& \text { Hence, } \operatorname{cosec} \theta=q / p \\
& \therefore \sin \theta=\mathrm{p} / \mathrm{q}
\end{aligned}
$$

7. If $\sin A=8 / 17$, find the value of $\sec A \cos A+\operatorname{cosec} A \cos A$.
(A) $23 / 8$
(B) $15 / 8$
(C) $8 / 15$
(D) $6 / 23$

Answer: (A) 23/8
Solution: $\sin A=8 / 17$
$\operatorname{cosec} A=17 / 8$

$$
\begin{aligned}
& \cos A=\sqrt{1-\sin ^{2} A} \\
& =\sqrt{1-\frac{64}{289}}=\sqrt{\frac{225}{289}} \\
& =15 / 17
\end{aligned}
$$

$\sec A=17 / 15$
$\sec A \cos A+\operatorname{cosec} A \cos A=(17 / 15) *(15 / 17)+(17 / 15) *(15 / 17)$
$=1+(15 / 8)$
$=23 / 8$

The Learning App
8. $\left(\sin A-2 \sin ^{3} \mathrm{~A}\right) /\left(2 \cos ^{3} \mathrm{~A}-\cos \mathrm{A}\right)=$
(A) $\tan \mathrm{A}$
(B) $\cot \mathrm{A}$
(C) $\sec A$
(D) 1

Answer: (A) $\tan \mathrm{A}$
Solutions: $\left(\sin A-2 \sin ^{3} \mathrm{~A}\right) /\left(2 \cos ^{3} \mathrm{~A}-\cos \mathrm{A}\right)=\left(\sin \mathrm{A}\left(1-2 \sin ^{2} \mathrm{~A}\right)\right) /\left(\cos \mathrm{A}\left(2 \cos ^{2} \mathrm{~A}-1\right)\right)$

$$
\begin{aligned}
& =\left(\sin A\left(\sin ^{2} A+\cos ^{2} A-2 \sin ^{2} A\right)\right) /\left(\cos A\left(2 \cos ^{2} A-\left(\sin ^{2} A+\cos ^{2} A\right)\right)\right. \\
& =\left(\sin A\left(\cos ^{2} A-\sin ^{2} A\right)\right) /\left(\cos A\left(\cos ^{2} A-\sin ^{2} A\right)\right) \\
& =\tan A
\end{aligned}
$$

Trigonometric Ratios

9. $(\cos A / \cot A)+\sin A=$ \qquad
(A) $\cot \mathrm{A}$
(B) $2 \sin A$
(C) $2 \cos A$
(D) $\sec A$

Answer: (B) $2 \sin A$
Solution: $(\cos A / \cot A)+\sin A$

$$
\begin{aligned}
& =\cos A /(\cos A / \sin A)+\sin A \\
& =\sin A+\sin A \\
& =2 \sin A
\end{aligned}
$$

10. If $5 \tan \theta=4$, then value of $(5 \sin \theta-4 \cos \theta) /(5 \sin \theta+4 \cos \theta)$ is:
(A) $1 / 6$
(B) $5 / 6$
(C) 0
(D) $5 / 3$

Answer: (C) 0
Solution: Divide both numerator and denominator by $\cos \theta$ and solve

$$
(5 \sin \theta-4 \cos \theta) /(5 \sin \theta+4 \cos \theta)
$$

$$
\begin{aligned}
& =\frac{\frac{(5 \sin \theta-4 \cos \theta)}{\cos \theta}}{\frac{(5 \sin \theta+4 \cos \theta)}{\cos \theta}} \\
& =\frac{5 \tan \theta-4}{5 \tan \theta+4} \\
& =\frac{4-4}{4+4} \\
& =0
\end{aligned}
$$

11. In $\triangle P Q R, P Q=12 \mathrm{~cm}$ and $P R=13 \mathrm{~cm} . \angle Q=90^{\circ}$ Find $\tan P-\cot R$
(A) $-(119 / 60)$
(B) 119/60
(C) 0
(D) 1

Answer: (C) 0

Solution:

Given that in $\triangle P Q R, P Q=12 \mathrm{~cm}$ and $P R=13 \mathrm{~cm}$.

Now, from Pythagoras theorem, $P Q Q^{2}+Q^{2}=P R^{2}$
$\Rightarrow Q R^{2}=P R^{2}-P Q^{2}$
$\Rightarrow Q R^{2}=13^{2}-12^{2}$
$\Rightarrow Q R^{2}=169-144=25$
$\Rightarrow Q R=\sqrt{25}=5 \mathrm{~cm}$
Now, $\tan \mathrm{P}=$ opposite side/ adjacent side $=\mathrm{QR} / \mathrm{PQ}=5 / 12$
$\cot \mathrm{R}=$ adjacent side/ opposite side $=Q R / P Q=5 / 12$
$\therefore \tan P-\cot R=(5 / 12)-(5 / 12)=0$
12. If $\tan \theta=(x \sin \phi) /(1-x \cos \phi)$ and, $\tan \phi=(y \sin \theta) /(1-y \cos \theta)$ then $x / y=$
(A) $\sin \theta /(1-\cos \phi)$
(B) $\sin \theta /(1-\cos \theta)$
(C) $\sin \theta / \sin \phi$
(D) $\sin \phi / \sin \theta$

Answer: (C) $\sin \theta / \sin \phi$
Solution: We have, $\tan \theta=(x \sin \phi) /(1-x \cos \phi)$

$$
\begin{aligned}
& \Rightarrow(1-x \cos \phi) /(x \sin \phi)=1 / \tan \theta \Rightarrow(1 / x \sin \phi)-\cot \phi=\cot \theta \\
& \Rightarrow 1 / x \sin \phi==\cot \theta+\cot \phi
\end{aligned}
$$

$$
\text { and } \tan \phi=y \sin \theta /(1-y \cos \theta) \Rightarrow(1-y \cos \theta) / y \sin \theta=1 / \tan \phi
$$

$$
\Rightarrow(1 / y \sin \theta)-\cot \theta=\cot \phi \Rightarrow(1 / y \sin \theta)=\cot \phi+\cot \theta
$$

$$
\Rightarrow(1 / y \sin \theta)=(1 / x \sin \phi) \Rightarrow x / y=\sin \theta / \sin \phi
$$

Trigonometric Ratios of Complementary Angles

13. The value of $\tan 1^{\circ} \times \tan 2^{\circ} \times \tan 3^{\circ} \times \ldots . . . \times \tan 89^{\circ}$ is :
(A) $1 / 2$
(B) 2
(C) 1
(D) 0

The Learning App

Answer: (C) 1

Solution: $\tan \theta \cot \theta=1$,

```
\(\tan (90-\theta)=\cot \theta\)
and \(\tan 45^{\circ}=1\)
Given: \(\tan 1^{\circ} \cdot \tan 2^{\circ}, \tan 3^{\circ}\).......tan \(88^{\circ} . \tan 89^{\circ}\)
\(=\left(\tan 1^{\circ} \cdot \tan 89^{\circ}\right),\left(\tan 2^{\circ} \cdot \tan 88^{\circ}\right) \ldots . .\left(\tan 44^{\circ} . \tan 46^{\circ}\right)\left(\tan 45^{\circ}\right)\)
\(=\left[\left(\tan 1^{\circ} \cdot \tan \left(90^{\circ}-1^{\circ}\right)\right] \cdot\left[\left(\tan 2^{\circ} \cdot \tan \left(90^{\circ}-2^{\circ}\right)\right] . . . . . . . . .\left[\left(\tan 44^{\circ} \cdot \tan \left(90^{\circ}-44^{\circ}\right)\right] \cdot 1\right.\right.\right.\)
\(=\left(\tan 1^{\circ} \cdot \cot 1^{\circ}\right) \cdot\left(\tan 2^{\circ} \cdot \cot 2^{\circ}\right) \ldots \ldots . .\left(\tan 44^{\circ} \cdot \cot 44^{\circ}\right)\)
= 1
```

14. If $\tan 2 A=\cot \left(A-18^{\circ}\right)$, then value of A is:
(A) 27°
(B) 24°
(C) 36°
(D) 18°

Answer: (C) 36°
Solution: Given, $\tan 2 \mathrm{~A}=\cot \left(\mathrm{A}-18^{\circ}\right)$
$\Rightarrow \tan 2 \mathrm{~A}=\tan \left(90-\left(\mathrm{A}-18^{\circ}\right)\right.$
$\Rightarrow \tan 2 \mathrm{~A}=\tan \left(108^{\circ}-\mathrm{A}\right)$
$\Rightarrow 2 \mathrm{~A}=108^{\circ}-\mathrm{A}$
$\Rightarrow 3 \mathrm{~A}=108^{\circ}$
$\Rightarrow A=36^{\circ}$

The Learning App
15. If $\tan 4 \theta=\cot \left(\theta-10^{\circ}\right)$, where 4θ and $\left(\theta-10^{\circ}\right)$ are acute angles then the value of θ in degrees is
(A) 16°
(B) 20°
(C) 32°
(D) 40°

Answer: (B) 20°
Solution: Given, $\tan 4 \theta=\cot \left(\theta-10^{\circ}\right)$
This can be written as
$\cot \left(90^{\circ}-4 \theta\right)=\cot \left(\theta-10^{\circ}\right)----(i)$
$\left(\because \operatorname{Tan} \theta=\operatorname{Cot}\left(90^{\circ}-\theta\right)\right)$
Hence, from (i) we have
$\Rightarrow 90^{\circ}-4 \theta=\theta-10^{\circ}$
$\Rightarrow 5 \theta=100^{\circ}$
$\Rightarrow \theta=20^{\circ}$
16. In the given triangle right angled at B, which pair of angles are complementary?

(A) None of these
(B) C and A
(C) A and B
(D) B and C

Answer: (B) C and A
Solution: Two angles are said to be complementary, if their sum is 90°. The triangle is right angled at B. With angle sum property of the triangle, $\angle A+\angle B+\angle C=180^{\circ}$
$\angle A+\angle C=90^{\circ}$, Hence angle A and C are complementary.

Trigonometric Ratios of Specific Angles

17. Which of the following is correct for some θ, such that $0^{\circ} \leq \theta<90^{\circ}$
(A) $1 / \cos \theta<1$
(B) $\sec \theta=0$
(C) $1 / \sec \theta<1$
(D) $1 / \sec \theta>1$

Answer: (C) $1 / \sec \theta<1$
Solution: $1 / \sec \theta=\cos \theta$. And value of $\cos \theta$ ranges from 0 to 1
18. The value $\cot ^{2} 30^{\circ}-2 \cos ^{2} 60^{\circ}-3 / 4 \sec ^{2} 45^{\circ}-4 \sin ^{2} 30^{\circ}$ is
(A) 2
(B) -1
(C) 1
(D) 0

Answer: (D) 0
Solution: $\cot ^{2} 30^{\circ}-2 \cos ^{2} 60^{\circ}-3 / 4\left(\sec ^{2} 45^{\circ}\right)-4 \sin ^{2} 30^{\circ}$

$$
\begin{aligned}
& \left.=(\sqrt{3})^{2}-2\left(\frac{1}{2}\right)^{2}-\frac{3}{4}(\sqrt{2})^{2}-4\left(\frac{1}{2}\right)^{2}\right) \\
& =3-(1 / 2)-(3 / 2)-1=0
\end{aligned}
$$

$0^{\circ}<A+B \leq 90^{\circ}$,
Find A and B.
(A) $25^{\circ}, 35^{\circ}$
(B) $30^{\circ}, 30^{\circ}$
(C) $45^{\circ}, 15^{\circ}$
(D) $10^{\circ}, 50^{\circ}$

Answer: (C) $45^{\circ}, 15^{\circ}$
Solution: If $A+B$ lies in this range $0^{\circ}<A+B \leq 90^{\circ}$
$\operatorname{cosec}(A+B)=\frac{\frac{2}{\sqrt{3}}}{}$ only when $A+B=60^{\circ}$.
$\sec (A-B)=\frac{2}{\sqrt{3}}$ only when $A-B=30^{\circ}$

By Solving equation 1 and equation 2
$A=45^{\circ}$ and $B=15^{\circ}$
20. $\cos 1^{\circ} \times \cos 2^{\circ} \times \cos 3^{\circ} \times \ldots \times \cos 180^{\circ}$ is equal to:
(A) 0
(B) 1
(C) $1 / 2$
(D) -1

Answer: (A) 0
Solution: Since $\cos 90^{\circ}=0$
The given expression
$\cos 1^{\circ} \times \cos 2^{\circ} \times \cos 3^{\circ} \times \ldots \times \cos 90^{\circ} \times \ldots \times \cos 180^{\circ}$
reduces to zero as it contains $\cos 90^{\circ}$ which is equal to 0

BYJU'S
The Learning App

