CBSE Board Class 10 Maths Chapter 9- Applications of Trigonometry Objective Questions

Applications of Trigonometry

1. A Technician has to repair a light on a pole of height 10 m . She needs to reach a point 1 m below the top of the pole to undertake the repair work. What should be the length of the ladder that she should use which, when inclined at an angle of 60° to the ground, would enable her to reach the required position? Also, how far from the foot of the pole should she place the foot of the ladder?
(A) $\overline{6 \sqrt{3}}$
m
(B) $\frac{\sqrt{3}}{6}_{\mathrm{m}}$
(C) $\frac{1}{\sqrt{3}} \mathrm{~m}$
(D) $6 \sqrt{3} \mathrm{~m}$

Answer: (D) $6 \sqrt{3} \quad \mathrm{~m}$
Solution: The given situation is represented by the figure below

$\mathrm{DB}-\mathrm{DC}=\mathrm{CB}$
$\Rightarrow B C=9 m \sin 60^{\circ}=B C A C \Rightarrow A C=B C \sin 60^{\circ}=$

$$
9 \sqrt{32}=18 \sqrt{3}=6 \sqrt{3} m
$$

\therefore height of ladder should be $6 \sqrt{3}$
2. A statue, 2 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal.
(A) $2(\sqrt{3}+1)$
(B) $2(\sqrt{3}-1)$
(C) $\frac{1}{2(\sqrt{3})}$
(D) $\frac{\sqrt{3}+1}{2}$

Answer: (B) $\quad 2(\sqrt{3}-1)$

Solution:

$C D=2 m$
Let $B C=x$
$A B=x$ (using $\tan 45 \circ$)
In $\triangle A B D$

$$
\mathrm{BD}=\mathrm{AB} \quad \sqrt{3}=x \sqrt{3}
$$

We know $C D=B D-B C=2 m$

$$
\Rightarrow \quad x(\sqrt{3}-1)
$$

$$
\Rightarrow \mathrm{x}=2(\sqrt{3}-1) \quad, \text { which is height. }
$$

3. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 60 m high, find the height of the building.
(A) 30 m
(B) 40 m
(C) 20 m
(D) 10 m

Answer: (C) 20m

Solution:

The given situation can be represented by figure above

$$
\begin{aligned}
& \therefore \tan 60^{\circ}=D C / B C \Rightarrow B C=D C / \tan 60^{\circ}=60 / \sqrt{3}=20^{\sqrt{3}} \mathrm{~m} \\
& \tan 30^{\circ}=A B / B C \\
& \Rightarrow A B=B C \times \tan 30^{\circ}=20^{\sqrt{3}} \times(1 / \sqrt{3})=20 \mathrm{~m}
\end{aligned}
$$

Thus, height of building is 20 m
4. A TV tower stands vertically on a bank of a canal, with a height of $10 \sqrt{3} \mathrm{~m}$. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the distance between the opposite bank of the canal and the point with 30° angle of elevation.
(A) 30 m
(B) 20 m
(C) 45 m
(D) 35 m

Answer: (B) 20m

Solution:

The above figure represents the situation given in the question

$$
\begin{align*}
& \tan 60^{\circ}=\mathrm{AB} / \mathrm{BC} \\
& \Rightarrow \mathrm{AB}=\mathrm{BC} \tan 60^{\circ}=B C \sqrt{3} \tag{1}\\
& \Rightarrow \mathrm{BC}=\mathrm{AB} / \tan 60^{\circ}=\mathrm{AB} / \tan 60^{\circ} \\
& \tan 30^{\circ}=\mathrm{AB} / \mathrm{BD}=\mathrm{AB} /(\mathrm{CD}+\mathrm{BC}) \\
& \Rightarrow \mathrm{DC}+\mathrm{BC}=\mathrm{AB} / \tan 30^{\circ}=\mathrm{AB} \\
& \sqrt{3} \\
& \Rightarrow\left(\sqrt{3}+\frac{1}{\sqrt{3}}\right) \\
& \mathrm{CC}=\mathrm{AB}
\end{align*}
$$

$\Rightarrow D C=20 \mathrm{~m}$, which is the required distance.
5. As observed from the top of a 150 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.
(A) $150(\sqrt{3}+1)$
(B) $150(\sqrt{3}-1)$
(C) $\frac{150}{(\sqrt{3}-1)}$
(D) $\frac{150}{(\sqrt{3}+1)}$

Answer: (B)

$$
150(\sqrt{3}-1)
$$

Solution:

Here Lighthouse $B C=150 \mathrm{~m}$
In $\triangle B D C$,
$B D=B C=150 m\left(\right.$ using $\left.\tan 45^{\circ}\right)$
In $\triangle A B C$,
$A B=B C^{\sqrt{3}}$ (using tan 30°)
$A B=150^{\sqrt{3}}$

Hence distance $A D=150(\sqrt{3}-1)$
6. An observer $\sqrt{3} \mathrm{~m}$ tall is 3 m away from the pole $2 \sqrt{3}$ high. What is the angle of elevation of the top?
(A) 60°
(B) 30°
(C) 45°
(D) 90°

Answer: (B) 30°

Solution:

Concept: 1 Mark
Application: 1 Mark

Height of the pole that is above man's height $=2 \sqrt{3}-\sqrt{3}=\sqrt{3} \mathrm{~m}$
Hence, $\mathrm{AB}=\sqrt{3} m$
$\mathrm{BC}=3 \mathrm{~m}$

$$
\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}
$$

Hence, $\tan C=A B / B C=$
$\Rightarrow C$, angle of elevation $=30^{\circ}$

Introduction

7. The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. Find the height of the tower.

$$
10+\sqrt{3}
$$

(A)
(B) $10-\sqrt{3}$
(C) $10 \sqrt{3}$
(D)

$$
\frac{10}{\sqrt{3}}
$$

Answer: (C)

$$
10 \sqrt{3}
$$

Solution: In $\triangle A B C$, taking tangent of $\angle C$, we have,

Hence, the height of the tower is $10 \sqrt{3}$ metres
8. An observer 1.5 m tall is 28.5 m away from a tower. The angle of elevation of the top of the tower from her eyes is 45°. What is the height of the tower?
(A) 20 m
(B) 10 m
(C) 40 m
(D) 30 m

Answer: (D) 30m

Solution: Let $A B$ be the tower of height h and $C D$ be the observer of height 1.5 m at a distance of 28.5 m from the tower $A B$.

In $\triangle A E D$, we have
$\tan 45^{\circ}=\mathrm{h} / 28.5$
$\Rightarrow 1=\mathrm{h} / 28.5$
$\Rightarrow h=28.5 \mathrm{~m}$
$\therefore \mathrm{h}=\mathrm{AE}+\mathrm{BE}=\mathrm{AE}+\mathrm{DC}$
$=(28.5+1.5) \mathrm{m}=30 \mathrm{~m}$

Height of tower $=\mathrm{h}+1.5$
$=28.5+1.5$

The Learning App
$=30 \mathrm{~m}$
Hence, the height of the tower is 30 m .
9. An electrician has to repair an electric fault on a pole of height 4 m . He needs to reach a point 1.3 m below the top of the pole to undertake the repair work. What should be the length of the ladder that he should use which when inclined at an angle of 60° to the horizontal would enable him to reach the required position?
(A)

$$
\frac{9 \sqrt{3}}{5}
$$

$$
\begin{equation*}
\frac{9 \times 5}{\sqrt{3}} \tag{B}
\end{equation*}
$$

(C) $\frac{9}{\sqrt{3}}$
$\frac{\sqrt{3}}{5}$
(D)

Answer: (A)

$$
\frac{9 \sqrt{3}}{5}
$$

Solution: Let $A C$ be the electric pole of height 4 m . Let B be a point 1.3 m below the top A of the pole AC.

Then, $B C=A C-A B=(4-1.3) m=2.7 m$
Let BD be the ladder inclined at an angle of 60° to the horizontal.

In $\triangle B C D$, we have
$\sin 60^{\circ}=2.7 / L$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{2.7}{L} \quad[\because B C=2.7 m]$
$\frac{\sqrt{3}}{2}=\frac{2.7}{L}$
$L=\frac{2}{\sqrt{3}} \frac{(27)}{10}$
$=\frac{2^{1}\left(27^{9}\right)}{3(10)} \sqrt{3}$
$=1.8 \sqrt{3} \mathrm{~m}$
or $\frac{9}{5} \sqrt{3} m$
$\Rightarrow B D=\frac{2 \times 2.7}{\sqrt{3}} m=\frac{5.4}{\sqrt{3}} m=\frac{5.4 \times \sqrt{3}}{3} m$
$\Rightarrow B D=(1.8) \sqrt{3} m=\frac{9}{5} \sqrt{3} m$

Hence, the length of the ladder should be

$$
\frac{9 \sqrt{3}}{5}
$$

m.
10. A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole if the angle made by the rope with the ground level is 30°.
(A) 10 m
(B) 15 m
(C) 20 m
(D) 35 m

Answer: (A) 10m

Solution: Let $A B$ be the vertical pole and $C A$ be the 20 m long rope such that its one end is tied from the top of the vertical pole $A B$ and the other end C is tied to a point C on the ground.

In $\triangle A B C$, we have
$\sin 30^{\circ}=h / 20$
$\Rightarrow 1 / 2=\mathrm{h} / 20$
$\Rightarrow \mathrm{h}=10 \mathrm{~m}$

Hence, the height of the pole is 10 m .

Heights and Distances

11. An observer 2.25 m tall is 42.75 m away from a chimney. The angle of elevation of the top of the chimney from her eyes is 45°. What is the height of the chimney?
(A) 40 m
(B) 50 m
(C) 45 m
(D) 35 m

Answer: (C) 45m

Solution:

The given situation is represented by the figure above:

In triangle $A B E$,
$\tan 45^{\circ}=\mathrm{AB} / \mathrm{EB}$

Also, $\mathrm{EB}=\mathrm{DC}$
$\therefore \tan 45^{\circ}=A B / D C$
$\Rightarrow A B=D C \times \tan 45^{\circ}$
$\Rightarrow A B=1 \times 42.75$

Hence, the height of the chimney $=A C=A B+B C$
We can observe that $B C=E D$.
Thus, $\mathrm{AC}=\mathrm{AB}+\mathrm{ED}$

$$
\begin{aligned}
& =42.75+2.25 \\
& =45 \mathrm{~m} .
\end{aligned}
$$

The Learning App
12. A tower stands vertically on the ground. From a point on the ground, which is 30 m away from the foot of the tower, the angle of elevation of the top of the tower is found to be 30°. Find the height of the tower.
(A) 10 m
(B) $10 \sqrt{3} \mathrm{~m}$
(C) $30^{\sqrt{3}} \mathrm{~m}$
(D) 30 m

Answer: (B) $\quad 10 \sqrt{3} \mathrm{~m}$
Solution: The given situation can be represented by the Δ below

Now, $\tan 30^{\circ}=A B / B C$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{A B}{30}$
$\Rightarrow 10 \sqrt{3}=A B$
\therefore Height of tower is $10 \sqrt{3}$
m.
13. The angles of depression of the top and the bottom of a 10 m tall building from the top of a multi-storeyed building are 30° and 45°, respectively. Find the height of the multistoreyed building.
(A) 5 m
(B) $5(\sqrt{3}+3) m$
(C) 15 m
(D) 10 m

Answer: (B)

$$
5(\sqrt{3}+3) m
$$

Solution:

The above figure represents the situation aptly

$$
\begin{align*}
& \angle C B E=\angle B E F \text { and } \angle D A E=\angle A E F^{\circ} \text { (alternate angles) } \\
& \tan (\angle E A D)=\tan 45^{\circ}=\frac{E D}{A D}=\frac{E C+C D}{A D} \\
& \Rightarrow A D \times \tan 45^{\circ}=E C+C D \ldots \ldots(1) \tag{1}\\
& \text { and } \tan (\angle E B C)=\tan 30^{\circ}=\frac{E C}{C B} \\
& \Rightarrow C B \times \tan 30^{\circ}=E C \ldots \ldots(2) \tag{2}\\
& \text { Subtracting eq(2) from }(1) \\
& \Rightarrow A D \times \tan 45^{\circ}-C B \times \tan 30^{\circ}=C D \\
& \Rightarrow A D\left(\tan 45^{\circ}-\tan 30^{\circ}\right)=C D \quad(\because A D=C B) \\
& \Rightarrow A D\left(1-\frac{1}{\sqrt{3}}\right)=10 \\
& \Rightarrow A D=5(3+\sqrt{3}) m \\
& \Rightarrow E D=A D\left(\tan 45^{\circ}=1\right)
\end{align*}
$$

$E D$ is the height of the building.
14. A contractor plans to install two slides for the children to play in a park. For the children below the age of 5 years, she prefers to have a slide whose top is at a height of 2 m and is inclined at an angle of 30° to the ground. What should be the length of the slide?
(A) 4
(B) 2
(C) 1.5
(D) 3

Answer: (A) 4

Solution: The given situation can be represented by the figure below

In right-angled triangle $A B C$, $\sin \angle A B C=A C / A B=1 / 2$
$\Rightarrow \sin 30^{\circ}=2 / A B \Rightarrow A B=2 /(1 / 2)$

$$
\Rightarrow A B=4 m
$$

\therefore Length of the slide is 4 m .
15. A kite is flying at a height of 30 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.
(A) $20 \sqrt{3} \mathrm{~m}$
(B) 30 m
(C) $30 \sqrt{3} \mathrm{~m}$
(D) 60 m

Answer: (A) $20 \sqrt{3}$
Solution: The situation can be represented by the figure below:

In the given right-angled triangle:
$\sin (\angle A C B)=A B / A C$
$\Rightarrow \sin 60^{\circ}=A B / A C$
$\Rightarrow A C=A B / \sin 60^{\circ}=\frac{30}{\frac{\sqrt{3}}{2}}=\frac{60}{\sqrt{3}}=20 \sqrt{3}$
\therefore Length of the string is $20 \sqrt{3}$
m
16. A vertical pole of 30 m is fixed on a tower. From a point on the level ground, the angles of elevation of the top and bottom of the pole is 60° and 45°. Find the height of the tower.
(A) 20
$15(\sqrt{3}+1)$
(B)
(C) $15(\sqrt{3}-1)$
(D) 15

Answer: (B)

Solution:

The situation can be represented by the figure above

$$
\begin{align*}
& \tan 60^{\circ}=\frac{A C}{C D}=\frac{A B+\dot{B} C}{C D} \\
& \Rightarrow(C D) \tan 60^{\circ}=A B+B C \ldots \ldots(1) \tag{1}\\
& \tan 45^{\circ}=\frac{B C}{C D} \\
& \Rightarrow(C D) \tan 45^{\circ}=B C \ldots \ldots(2) \tag{2}\\
& \text { Dividing eq(1) by }(2) \\
& \frac{\tan 60^{\circ}}{\tan 45^{\circ}}=\frac{A B+B C}{B C} \Rightarrow B C=\frac{A B}{(\sqrt{3}-1)}=15(\sqrt{3}+1) m
\end{align*}
$$

17. The value of $\tan A+\sin A=M$ and $\tan A-\sin A=N$.

The value of $\left(\mathrm{M}^{2}-\mathrm{N}^{2}\right) /(\mathrm{MN})^{0.5}$
(A) 4
(B) 3
(C) 2
(D) 1

Answer: (A) 4
Solution: $\mathrm{M}^{2}-\mathrm{N}^{2}=(\operatorname{Tan} \mathrm{A}+\operatorname{Sin} \mathrm{A}+\operatorname{Tan} \mathrm{A}-\operatorname{Sin} \mathrm{A})(\operatorname{Tan} \mathrm{A}+\operatorname{Sin} \mathrm{A}-\operatorname{Tan} \mathrm{A}+\operatorname{Sin} \mathrm{A})$

$$
\mathrm{M}^{2}-\mathrm{N}^{2}=4 \tan \mathrm{~A} \sin \mathrm{~A}
$$

$$
\text { and }(\mathrm{MN})^{0.5}=\left(\tan ^{2} A-\sin ^{2} A\right)^{0.5}
$$

$(M N)^{0.5}=\sin A\left[\left(\frac{1}{\cos ^{2} A}\right)-1\right]^{0.5}$
$(M N)^{0.5}=\tan \mathrm{A} \sin \mathrm{A}$
Therefore, $\frac{\left(m^{2}-n^{2}\right)}{(m n)^{0.5}}=4$
18. Two towers A and B are standing at some distance apart. From the top of tower A, the angle of depression of the foot of tower B is found to be 30°. From the top of tower B, the angle of depression of the foot of tower A is found to be 60°. If the height of tower B is ' h ' m then the height of tower A in terms of ' h ' is \qquad m
(A) $h / 2 \mathrm{~m}$
(B) $h / 3 m$
(C) $\sqrt{3} h$
(D) $\frac{h}{\sqrt{3}} m$

Answer: (B) h/3 m

Solution:

Let the height of tower A be $=A B=H$.
And the height of tower $B=C D=h$

In triangle ABC
$\tan 30^{\circ}=\mathrm{AB} / \mathrm{AC}=\mathrm{H} / \mathrm{AC}$ 1

In triangle ADC

Divide 1 by 2
We get $\tan 30^{\circ} / \tan 60^{\circ}=H / h$
$H=h / 3$
19. A 1.5 m tall boy is standing at some distance from a 31.5 m tall building. If he walks ' d ' m towards the building the angle of elevation of the top of the building changes

$$
\sqrt{3}=1.73
$$

from 30° to 60°. Find the length d. (Take
(A) 30.15 m
(B) 38.33 m
(C) 22.91 m
(D) 34.55 m

Answer: (D) 34.55m

Solution:

The above figure represents the situation given in question

$$
\begin{aligned}
& A A^{\prime}=B B^{\prime}=C C^{\prime}=1.5 \\
& \tan \left(\angle D B^{\prime} C^{\prime}\right)=\frac{D C^{\prime}}{B^{\prime} C^{\prime}} \\
& \text { and } D C^{\prime}=D C-C C^{\prime}=31.5-1.5=30 \mathrm{~m} \\
& \therefore \tan 60^{\circ}=\frac{30}{B^{\prime} C^{\prime}} \\
& \Rightarrow B^{\prime} C^{\prime}=\frac{30}{\tan 60^{\circ}}=\frac{30}{\sqrt{3}} \ldots \ldots \text { (1) }
\end{aligned}
$$

Similarly,

$$
\begin{align*}
& \tan 30^{\circ}=\frac{D C^{\prime}}{A^{\prime} C^{\prime}}=\frac{D C^{\prime}}{A^{\prime} B^{\prime}+B^{\prime} C^{\prime}} \\
& \Rightarrow A^{\prime} B^{\prime}+B^{\prime} C^{\prime}=\frac{D C^{\prime}}{\tan 30^{\circ}}=30 \sqrt{3} \tag{2}
\end{align*}
$$

Subtracting eq (1) from (2)

$$
A^{\prime} B^{\prime}=30 \sqrt{3}-\frac{30}{\sqrt{3}}=30\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right)=34.55 \mathrm{~m}
$$

\therefore distance moved by boy is 34.55 m
20. The angles of depression of two objects from the top of a 100 m hill lying to its east are found to be 45° and 30°. Find the distance between the two objects. (Take, $\sqrt{3}=1.732$
(A) 200 m
(B) 150 m
(C) 107.5 m
(D) 73.2 m

Answer: (D) 73.2 m
Solution: Let C and D be the objects and CD be the distance between the objects.

The Learning App

$$
\begin{aligned}
& \text { In } \triangle A B C, \tan 45^{\circ}=A B / A C \\
& A B=A C=100 \mathrm{~m}
\end{aligned}
$$

In $\triangle A B D, \tan 30^{\circ}=A B / A D$

$$
\begin{aligned}
& A D \times \frac{1}{\sqrt{3}}=100 \\
& A D=100 \times \sqrt{3}=173.2 \mathrm{~m} \\
& C D=A D-A C=173.2-100=73.2 \text { metres }
\end{aligned}
$$

