EXERCISE 2.1

Choose the correct answer from the given four options in the following questions:

1. If one of the zeroes of the quadratic polynomial $(k-1) x^{2}+k x+1$ is -3 , then the value of k is
(A) $4 / 3$
(B) $-4 / 3$
(C) $2 / 3$
(D) $-2 / 3$

Solution:
(A) $4 / 3$

Explanation:
According to the question,
-3 is one of the zeros of quadratic polynomial $(k-1) x^{2}+k x+1$
Substituting -3 in the given polynomial,

$$
\begin{aligned}
& (\mathrm{k}-1)(-3)^{2}+\mathrm{k}(-3)+1=0 \\
& (\mathrm{k}-1) 9+\mathrm{k}(-3)+1=0 \\
& 9 \mathrm{k}-9-3 \mathrm{k}+1=0 \\
& 6 \mathrm{k}-8=0 \\
& \mathrm{k}=8 / 6 \\
& \text { Therefore, } \mathrm{k}=4 / 3
\end{aligned}
$$

Hence, option (A) is the correct answer.
2. A quadratic polynomial, whose zeroes are -3 and 4 , is
(A) $x^{2}-x+12$
(B) $x^{2}+x+12$
(C) $\left(x^{2} / 2\right)-(x / 2)-6$
(D) $2 x^{2}+2 x-24$

Solution:
(C) $\left(x^{2} / 2\right)-(x / 2)-6$

Explanation:
Sum of zeroes, $\alpha+\beta=-3+4=1$
Product of Zeroes, $\alpha \beta=-3 \times 4-12$
Therefore, the quadratic polynomial becomes,

$$
\begin{aligned}
& x^{2}-(\text { sum of zeroes }) x+(\text { product of zeroes }) \\
& =x^{2}-(\alpha+\beta) x+(\alpha \beta) \\
& =x^{2}-(1) x+(-12) \\
& =x^{2}-x-12
\end{aligned}
$$

Hence, option (C) is the correct answer.
3. If the zeroes of the quadratic polynomial $x^{2}+(a+1) x+b$ are 2 and -3 , then
(A) $a=-7, b=-1$
(B) $a=5, b=-1$
(C) $a=2, b=-6$
(D) $a=0, b=-6$

Solution:
(D) $a=2, b=-6$

Explanation:
According to the question,

$$
x^{2}+(a+1) x+b
$$

Given that, the zeroes of the polynomial $=2$ and -3 , When $\mathrm{x}=2$

$$
\begin{aligned}
& 2^{2}+(a+1)(2)+b=0 \\
& 4+2 a+2+b=0 \\
& 6+2 a+b=0 \\
& 2 a+b=-6---(1)
\end{aligned}
$$

When $\mathrm{x}=-3$,

$$
\begin{align*}
& (-3)^{2}+(a+1)(-3)+b=0 \\
& 9-3 a-3+b=0 \\
& 6-3 a+b=0 \\
& -3 a+b=-6----(2) \tag{2}
\end{align*}
$$

Subtracting equation (2) from (1)

$$
\begin{aligned}
& 2 a+b-(-3 a+b)=-6-(-6) \\
& 2 a+b+3 a-b=-6+6 \\
& 5 a=0 \\
& a=0
\end{aligned}
$$

Substituting the value of ' a ' in equation (1), we get,

$$
\begin{aligned}
& 2 a+b=-6 \\
& 2(0)+b=-6 \\
& b=-6
\end{aligned}
$$

Hence, option (D) is the correct answer.
4. The number of polynomials having zeroes as $\mathbf{- 2}$ and 5 is
(A) 1
(B) 2
(C) 3
(D) more than 3

Solution:

(D) more than 3

Explanation:
According to the question,
The zeroes of the polynomials $=-2$ and 5
We know that the polynomial is of the form,

$$
p(x)=a x^{2}+b x+c
$$

Sum of the zeroes $=-($ coefficient of $x) \div$ coefficient of x^{2} i.e.
Sum of the zeroes $=-\mathrm{b} / \mathrm{a}$

$$
\begin{aligned}
& -2+5=-\mathrm{b} / \mathrm{a} \\
& 3=-\mathrm{b} / \mathrm{a} \\
& \mathrm{~b}=-3 \text { and } \mathrm{a}=1
\end{aligned}
$$

Product of the zeroes $=$ constant term \div coefficient of x^{2} i.e.
Product of zeroes $=\mathrm{c} / \mathrm{a}$

$$
\begin{aligned}
& (-2) 5=c / a \\
& -10=c
\end{aligned}
$$

Substituting the values of a, b and c in the polynomial $\mathrm{p}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$.
We get, $x^{2}-3 x-10$
Therefore, we can conclude that x can take any value.

Hence, option (D) is the correct answer.
5. Given that one of the zeroes of the cubic polynomial $a x^{3}+b x^{2}+c x+d$ is zero, the product of the other two zeroes is
(A) (-c/a)
(B) c / a
(C) 0
(D) $(-\mathbf{b} / \mathbf{a})$

Solution:

(B) (c/a)

Explanation:
According to the question,
We have the polynomial,

$$
a x^{3}+b x^{2}+c x+d
$$

We know that,
Sum of product of roots of a cubic equation is given by c/a
It is given that one root $=0$
Now, let the other roots be α, β
So, we get,

$$
\begin{aligned}
& \alpha \beta+\beta(0)+(0) \alpha=c / a \\
& \alpha \beta=\mathrm{c} / \mathrm{a}
\end{aligned}
$$

Hence the product of other two roots is c / a
Hence, option (B) is the correct answer

EXERCISE 2.2

1. Answer the following and justify:

(i) Can $x^{2}-1$ be the quotient on division of $x^{6}+2 x^{3}+x-1$ by a polynomial in x of degree $5 ?$

Solution:
No, $x^{2}-1$ cannot be the quotient on division of $x^{6}+2 x^{3}+x-1$ by a polynomial in x of degree 5 .
Justification:
When a degree 6 polynomial is divided by degree 5 polynomial,
The quotient will be of degree 1 .
Assume that $\left(\mathrm{x}^{2}-1\right)$ divides the degree 6 polynomial with and the quotient obtained is degree 5 polynomial (1)
According to our assumption,
$($ degree 6 polynomial $)=\left(x^{2}-1\right)($ degree 5 polynomial $)+r(x) \quad[$ Since, $(a=b q+r)]$
$=($ degree 7 polynomial $)+r(x) \quad\left[\right.$ Since, $\left(x^{2}\right.$ term $\times x^{5}$ term $=x^{7}$ term $)$]
$=($ degree 7 polynomial $)$
From the above equation, it is clear that, our assumption is contradicted.
$x^{2}-1$ cannot be the quotient on division of $x^{6}+2 x^{3}+x-1$ by a polynomial in x of degree 5 Hence Proved.
(ii) What will the quotient and remainder be on division of $a x^{2}+b x+c$ by $p x^{3}+q x^{2}+r x+s, p \neq 0$? Solution:

Degree of the polynomial $\mathrm{px}^{3}+\mathrm{qx}^{2}+\mathrm{rx}+\mathrm{s}$ is 3
Degree of the polynomial $a x^{2}+b x+c$ is 2
Here, degree of $p x^{3}+q x^{2}+r x+s$ is greater than degree of the $a x^{2}+b x+c$
Therefore, the quotient would be zero,
And the remainder would be the dividend $=a x^{2}+b x+c$.
(iii) If on division of a polynomial $p(x)$ by a polynomial $g(x)$, the quotient is zero, what is the relation between the degrees of $p(x)$ and $g(x)$?

Solution:

We know that,
$\mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$
According to the question,
$\mathrm{q}(\mathrm{x})=0$
When $\mathrm{q}(\mathrm{x})=0$, then $\mathrm{r}(\mathrm{x})$ is also $=0$
So, now when we divide $p(x)$ by $g(x)$,
Then $p(x)$ should be equal to zero
Hence, the relation between the degrees of $p(x)$ and $g(x)$ is the degree $p(x)<\operatorname{degree} g(x)$
(iv) If on division of a non-zero polynomial $p(x)$ by a polynomial $g(x)$, the remainder is zero, what is the relation between the degrees of $p(x)$ and $g(x)$?

Solution:

In order to divide $\mathrm{p}(\mathrm{x})$ by $\mathrm{g}(\mathrm{x})$

We know that,
Degree of $p(x)>$ degree of $g(x)$
or
Degree of $p(x)=$ degree of $g(x)$
Therefore, we can say that,
The relation between the degrees of $p(x)$ and $g(x)$ is degree of $\mathrm{p}(\mathrm{x}) \geq$ degree of $\mathrm{g}(\mathrm{x})$
(v) Can the quadratic polynomial $x^{2}+k x+k$ have equal zeroes for some odd integer $k>1$? Solution:

A Quadratic Equation will have equal roots if it satisfies the condition:

$$
b^{2}-4 a c=0
$$

Given equation is $x^{2}+k x+k=0$

$$
\mathrm{a}=1, \mathrm{~b}=\mathrm{k}, \mathrm{x}=\mathrm{k}
$$

Substituting in the equation we get,

$$
\mathrm{k}^{2}-4(1)(\mathrm{k})=0
$$

$\mathrm{k}^{2}-4 \mathrm{k}=0$
$\mathrm{k}(\mathrm{k}-4)=0$
$\mathrm{k}=0, \mathrm{k}=4$
But in the question, it is given that k is greater than 1 .
Hence the value of k is 4 if the equation has common roots.
Hence if the value of $k=4$, then the equation $\left(x^{2}+k x+k\right)$ will have equal roots.

EXERCISE 2.3

Find the zeroes of the following polynomials by factorisation method.

1. $4 x^{2}-3 x-1$

Solution:
$4 x^{2}-3 x-1$
Splitting the middle term, we get,
$4 x^{2}-4 x+1 x-1$
Taking the common factors out, we get,
$4 x(x-1)+1(x-1)$
On grouping, we get,
$(4 \mathrm{x}+1)(\mathrm{x}-1)$
So, the zeroes are,
$4 \mathrm{x}+1=0 \Rightarrow 4 \mathrm{x}=-1 \Rightarrow \mathrm{x}=(-1 / 4)$
$(x-1)=0 \Rightarrow x=1$
Therefore, zeroes are ($-1 / 4$) and 1
Verification:
Sum of the zeroes $=-($ coefficient of $x) \div$ coefficient of x^{2}
$\alpha+\beta=-\mathrm{b} / \mathrm{a}$
$1-1 / 4=-(-3) / 4=3 / 4$
Product of the zeroes $=$ constant term \div coefficient of x^{2}
$\alpha \beta=c / a$
$1(-1 / 4)=-1 / 4$
$-1 / 4=-1 / 4$
2. $3 x^{2}+4 x-4$

Solution:
$3 x^{2}+4 x-4$
Splitting the middle term, we get,
$3 x^{2}+6 x-2 x-4$
Taking the common factors out, we get,
$3 x(x+2)-2(x+2)$
On grouping, we get,
$(x+2)(3 x-2)$
So, the zeroes are,
$\mathrm{x}+2=0 \Rightarrow \mathrm{x}=-2$
$3 x-2=0 \Rightarrow 3 x=2 \Rightarrow x=2 / 3$
Therefore, zeroes are ($2 / 3$) and -2
Verification:
Sum of the zeroes $=-($ coefficient of $x) \div$ coefficient of x^{2}
$\alpha+\beta=-\mathrm{b} / \mathrm{a}$
$-2+(2 / 3)=-(4) / 3$
$=-4 / 3=-4 / 3$
Product of the zeroes $=$ constant term \div coefficient of x^{2}
$\alpha \beta=\mathrm{c} / \mathrm{a}$
Product of the zeroes $=(-2)(2 / 3)=-4 / 3$
3. $5 t^{2}+12 t+7$

Solution:

$$
5 t^{2}+12 t+7
$$

Splitting the middle term, we get,
$5 \mathrm{t}^{2}+5 \mathrm{t}+7 \mathrm{t}+7$
Taking the common factors out, we get,
$5 t(t+1)+7(t+1)$
On grouping, we get,
$(\mathrm{t}+1)(5 \mathrm{t}+7)$
So, the zeroes are,
$\mathrm{t}+1=0 \Rightarrow \mathrm{y}=-1$
$5 \mathrm{t}+7=0 \Rightarrow 5 \mathrm{t}=-7 \Rightarrow \mathrm{t}=-7 / 5$
Therefore, zeroes are (-7/5) and -1
Verification:
Sum of the zeroes $=-($ coefficient of $x) \div$ coefficient of x^{2}
$\alpha+\beta=-\mathrm{b} / \mathrm{a}$
$(-1)+(-7 / 5)=-(12) / 5$
$=-12 / 5=-12 / 5$
Product of the zeroes $=$ constant term \div coefficient of x^{2}
$\alpha \beta=c / a$
$(-1)(-7 / 5)=-7 / 5$
$-7 / 5=-7 / 5$
4. $t^{3}-2 t^{2}-15 t$

Solution:
$t^{3}-2 t^{2}-15 t$
Taking t common, we get,
$\mathrm{t}\left(\mathrm{t}^{2}-2 \mathrm{t}-15\right)$
Splitting the middle term of the equation $t^{2}-2 t-15$, we get, $\mathrm{t}\left(\mathrm{t}^{2}-5 \mathrm{t}+3 \mathrm{t}-15\right)$
Taking the common factors out, we get,
$t(t(t-5)+3(t-5)$
On grouping, we get, $t(t+3)(t-5)$
So, the zeroes are,
$\mathrm{t}=0$
$\mathrm{t}+3=0 \Rightarrow \mathrm{t}=-3$
$\mathrm{t}-5=0 \Rightarrow \mathrm{t}=5$
Therefore, zeroes are 0,5 and -3
Verification:
Sum of the zeroes $=-\left(\right.$ coefficient of $\left.x^{2}\right) \div$ coefficient of x^{3} $\alpha+\beta+\gamma=-\mathrm{b} / \mathrm{a}$

$$
\begin{aligned}
& (0)+(-3)+(5)=-(-2) / 1 \\
& =2=2
\end{aligned}
$$

Sum of the products of two zeroes at a time $=$ coefficient of $x \div$ coefficient of x^{3} $\alpha \beta+\beta \gamma+\alpha \gamma=\mathrm{c} / \mathrm{a}$
$(0)(-3)+(-3)(5)+(0)(5)=-15 / 1$
$=-15=-15$
Product of all the zeroes $=-($ constant term $) \div$ coefficient of x^{3}
$\alpha \beta \gamma=-\mathrm{d} / \mathrm{a}$
$(0)(-3)(5)=0$
$0=0$
5. $2 x^{2}+(7 / 2) x+3 / 4$

Solution:
$2 x^{2}+(7 / 2) x+3 / 4$
The equation can also be written as,
$8 x^{2}+14 x+3$
Splitting the middle term, we get,

$$
8 x^{2}+12 x+2 x+3
$$

Taking the common factors out, we get,
$4 x(2 x+3)+1(2 x+3)$
On grouping, we get,
$(4 \mathrm{x}+1)(2 \mathrm{x}+3)$
So, the zeroes are,
$4 \mathrm{x}+1=0 \Rightarrow \mathrm{x}=-1 / 4$
$2 x+3=0 \Rightarrow x=-3 / 2$
Therefore, zeroes are $-1 / 4$ and $-3 / 2$
Verification:
Sum of the zeroes $=-($ coefficient of $x) \div$ coefficient of x^{2}
$\alpha+\beta=-\mathrm{b} / \mathrm{a}$
$(-3 / 2)+(-1 / 4)=-(7) / 4$
$=-7 / 4=-7 / 4$
Product of the zeroes $=$ constant term \div coefficient of x^{2}
$\alpha \beta=c / a$
$(-3 / 2)(-1 / 4)=(3 / 4) / 2$
$3 / 8=3 / 8$

EXERCISE 2.4

1. For each of the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
(i) $(-8 / 3), 4 / 3$
(ii) $21 / 8,5 / 16$
(iii) $-2 \sqrt{ } 3,-9$
(iv) $(-3 /(2 \sqrt{ } 5)),-1 / 2$

Solution:

(i) Sum of the zeroes $=-8 / 3$

Product of the zeroes $=4 / 3$
$\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-($ sum of the zeroes $)+($ product of the zeroes $)$
Then, $P(x)=x^{2}-8 x / 3+4 / 3$
$P(x)=3 x^{2}-8 x+4$
Using splitting the middle term method,
$3 x^{2}-8 x+4=0$
$3 x^{2}-(6 x+2 x)+4=0$
$3 x^{2}-6 x-2 x+4=0$
$3 \mathrm{x}(\mathrm{x}-2)-2(\mathrm{x}-2)=0$
$(\mathrm{x}-2)(3 \mathrm{x}-2)=0$
$\Rightarrow \mathrm{x}=2,2 / 3$
(ii) Sum of the zeroes $=21 / 8$

Product of the zeroes $=5 / 16$
$\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-$ (sum of the zeroes) + (product of the zeroes)
Then, $P(x)=x^{2}-21 x / 8+5 / 16$
$P(x)=16 x^{2}-42 x+5$
Using splitting the middle term method,
$16 x^{2}-42 x+5=0$
$16 x^{2}-(2 x+40 x)+5=0$
$16 x^{2}-2 x-40 x+5=0$
$2 \mathrm{x}(8 \mathrm{x}-1)-5(8 \mathrm{x}-1)=0$
$(8 \mathrm{x}-1)(2 \mathrm{x}-5)=0$
$\Rightarrow \mathrm{x}=1 / 8,5 / 2$
(iii) Sum of the zeroes $=-2 \sqrt{ } 3$

Product of the zeroes $=-9$
$\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-$ (sum of the zeroes) + (product of the zeroes)
Then, $P(x)=x^{2}-2 \sqrt{3 x}-9$
Using splitting the middle term method,

$$
\begin{aligned}
& x^{2}-2 \sqrt{ } 3 x-9=0 \\
& x^{2}-(-\sqrt{3} x+3 \sqrt{3} x)-9=0 \\
& x^{2}+\sqrt{3 x}-3 \sqrt{3 x}-9=0 \\
& x(x+\sqrt{3})-3 \sqrt{3}(x+\sqrt{3})=0 \\
& (x+\sqrt{3})(x-3 \sqrt{3})=0
\end{aligned}
$$

$$
\Rightarrow x=-\sqrt{ } 3,3 \sqrt{ } 3
$$

(iv) Sum of the zeroes $=-3 / 2 \sqrt{ } 5 \mathrm{x}$

Product of the zeroes $=-1 / 2$
$\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-$ (sum of the zeroes) + (product of the zeroes)
Then, $P(x)=x^{2}-3 / 2 \sqrt{ } 5 x-1 / 2$
$P(x)=2 \sqrt{ } 5 x^{2}-3 x-\sqrt{ } 5$
Using splitting the middle term method,
$2 \sqrt{5} x^{2}-3 x-\sqrt{5}=0$
$2 \sqrt{ } 5 \mathrm{x}^{2}-(5 \mathrm{x}-2 \mathrm{x})-\sqrt{ } 5=0$
$2 \sqrt{ } 5 x^{2}-5 x+2 x-\sqrt{ } 5=0$
$\sqrt{ } 5 \mathrm{x}(2 \mathrm{x}-\sqrt{ } 5)-(2 \mathrm{x}-\sqrt{ } 5)=0$
$(2 x-\sqrt{ } 5)(\sqrt{ } 5-1)=0$
$\Rightarrow \mathrm{x}=-1 / \sqrt{ } 5, \sqrt{ } 5 / 2$
2. Given that the zeroes of the cubic polynomial $x^{3}-6 x^{2}+3 x+10$ are of the form $a, a+b, a+2 b$ for some real numbers a and b, find the values of a and b as well as the zeroes of the given polynomial.
Solution:
Given that $a, a+b, a+2 b$ are roots of given polynomial $x^{3}-6 x^{2}+3 x+10$
Sum of the roots $\quad \Rightarrow a+2 b+a+a+b=-c o e f f i c i e n t ~ o f ~ x^{2} /$ coefficient of x^{3}
$\Rightarrow 3 \mathrm{a}+3 \mathrm{~b}=-(-6) / 1=6$
$\Rightarrow 3(\mathrm{a}+\mathrm{b})=6$
$\Rightarrow a+b=2------(1) b=2-a$
Product of roots $\Rightarrow(a+2 b)(a+b) a=-$ constant/coefficient of x^{3}

$$
\Rightarrow(\mathrm{a}+\mathrm{b}+\mathrm{b})(\mathrm{a}+\mathrm{b}) \mathrm{a}=-10 / 1
$$

Substituting the value of $\mathrm{a}+\mathrm{b}=2$ in it

$$
\begin{aligned}
& \Rightarrow(2+b)(2) \mathrm{a}=-10 \\
& \Rightarrow(2+b) 2 a=-10 \\
& \Rightarrow(2+2-a) 2 a=-10 \\
& \Rightarrow(4-a) 2 a=-10 \\
& \Rightarrow 4 a-a^{2}=-5 \\
& \Rightarrow a^{2}-4 a-5=0 \\
& \Rightarrow a^{2}-5 a+a-5=0 \\
& \Rightarrow(a-5)(a+1)=0 \\
& a-5=0 \text { or } a+1=0 \\
& a=5 a=-1 \\
& a=5,-1 \text { in }(1) a+b=2
\end{aligned}
$$

When $\mathrm{a}=5,5+\mathrm{b}=2 \Rightarrow \mathrm{~b}=-3$

$$
a=-1,-1+b=2 \Rightarrow b=3
$$

\therefore If $\mathrm{a}=5$ then $\mathrm{b}=-3$
or
If $a=-1$ then $b=3$
3. Given that $\sqrt{ } 2$ is a zero of the cubic polynomial $6 x^{3}+\sqrt{ } 2 x^{2}-10 x-4 \sqrt{ } 2$, find its other two zeroes. Solution:

Given, $\sqrt{ } 2$ is one of the zero of the cubic polynomial.
Then, $(x-\sqrt{ } 2)$ is one of the factor of the given polynomial $p(x)=6 x^{3}+\sqrt{ } 2 x^{2}-10 x-4 \sqrt{ } 2$.
So, by dividing $p(x)$ by $x-\sqrt{ } 2$

$$
\begin{array}{r}
(x-\sqrt{2}) \sqrt{6 x^{3}+\sqrt{2} x^{2}-10 x-4 \sqrt{2} x+4} \\
\frac{6 x^{3}-6 \sqrt{2} x^{2}}{} \\
\frac{+}{7 \sqrt{2} x^{2}-10 x-4 \sqrt{2}} \\
\frac{7 \sqrt{2} x^{2}-14 x}{+}+ \\
\frac{4 x-4 \sqrt{2}}{0}
\end{array}
$$

By splitting the middle term,
We get,
$(x-\sqrt{2})\left(6 x^{2}+4 \sqrt{ } 2 x+3 \sqrt{ } 2 x+4\right)$
$=(x-\sqrt{2})[2 x(3 x+2 \sqrt{ } 2)+\sqrt{2}(3 x+2 \sqrt{ } 2)]$
$=(x-\sqrt{ } 2)(2 x+\sqrt{ } 2) \quad(3 x+2 \sqrt{ } 2)$
To get the zeroes of $\mathrm{p}(\mathrm{x})$,
Substitute $p(x)=0$
$(x-\sqrt{ } 2)(2 x+\sqrt{ } 2)(3 x+2 \sqrt{ } 2)=0$
$x=\sqrt{ } 2, x=-\sqrt{ } 2 / 2, x=-2 \sqrt{ } 2 / 3$
which is equal to,
$x=\sqrt{ } 2, x=-1 / \sqrt{ } 2, x=-2 \sqrt{ } 2 / 3 \quad$ [Rationalising second zero]
Hence, the other two zeroes of $p(x)$ are $-1 / \sqrt{ } 2$ and $-2 \sqrt{ } 2 / 3$

