EXERCISE 6.1

1. In figure, if $\angle B A C=90^{\circ}$ and $A D \perp B C$. Then,
(a) $\mathbf{B D} . \mathrm{CD}=\mathrm{BZC}^{2}$
(b) AB.AC $=\mathrm{BC}^{2}$
(c) $\mathrm{BD} . \mathrm{CD}=\mathrm{AD}^{2}$
(d) AB.AC $=\mathrm{AD}^{2}$

Solution:
c) $\mathrm{BD} . \mathrm{CD}=\mathrm{AD}^{2}$

Explanation:

From $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$,
According to the question, we have,
$\angle \mathrm{D}=\angle \mathrm{D}=90^{\circ}(\because \mathrm{AD} \perp \mathrm{BC})$
$\angle \mathrm{DBA}=\angle \mathrm{DAC}$ [each angle $=90^{\circ}-\angle \mathrm{C}$]
Using AAA similarity criteria,
$\triangle \mathrm{ADB} \sim \triangle \mathrm{ADC}$
$\mathrm{BD} / \mathrm{AD}=\mathrm{AD} / \mathrm{CD}$
$\mathrm{BD} \cdot \mathrm{CD}=\mathrm{AD}^{2}$
2. If the lengths of the diagonals of rhombus are 16 cm and 12 cm . Then, the length of the sides of the rhombus is
(a) 9 cm
(b) 10 cm
(c) 8 cm
(d) 20 cm

Solution:
(b) 10 cm

Explanation:

We know that, A rhombus is a simple quadrilateral whose four sides are of same length and diagonals are perpendicular bisector of each other.
According to the question, we get,

According to the question,
$\mathrm{AC}=16 \mathrm{~cm}$ and $\mathrm{BD}=12 \mathrm{~cm}$
$\angle \mathrm{AOB}=90^{\circ}$
$\because \mathrm{AC}$ and BD bisects each other
$A O=1 / 2 A C$ and $B O=1 / 2 B D$
Then, we get,
$\mathrm{AO}=8 \mathrm{~cm}$ and $\mathrm{BO}=6 \mathrm{~cm}$
Now, in right angled $\triangle \mathrm{AOB}$,
Using the Pythagoras theorem,
We have,
$\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{OB}^{2}$
$\mathrm{AB}^{2}=8^{2}+6^{2}=64+36=100$
$\therefore \mathrm{AB}=\sqrt{ } 100=10 \mathrm{~cm}$
We know that the four sides of a rhombus are equal.
Therefore, we get, one side of rhombus $=10 \mathrm{~cm}$.
3. If $\triangle A B C \sim \triangle E D F$ and $\triangle A B C$ is not similar to $\triangle D E F$, then which of the following is not true?
(a) $\mathbf{B C} \cdot \mathbf{E F}=\mathbf{A C} \cdot \mathbf{F D}$
(b) $\mathbf{A B} \cdot \mathbf{E F}=\mathbf{A C} \cdot \mathrm{DE}$
(c) $\mathbf{B C} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathbf{E F}$
(d) $\mathbf{B C} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathrm{FD}$

Solution:
(c) $\mathbf{B C} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathbf{E F}$

Explanation:
We know that,
If sides of one triangle are proportional to the side of the other triangle, and the corresponding angles are also equal, then the triangles are similar by SSS similarity.

So, $\triangle \mathrm{ABC} \sim \Delta \mathrm{EDF}$
Using similarity property,
$\mathrm{AB} / \mathrm{ED}=\mathrm{BC} / \mathrm{DF}=\mathrm{AC} / \mathrm{EF}$
Taking $\mathrm{AB} / \mathrm{ED}=\mathrm{BC} / \mathrm{DF}$, we get

$$
\begin{aligned}
& \mathrm{AB} / \mathrm{ED}=\mathrm{BC} / \mathrm{DF} \\
& \mathrm{AB} \cdot \mathrm{DF}=\mathrm{ED} \cdot \mathrm{BC}
\end{aligned}
$$

So, option (d) BC $\cdot \mathrm{DE}=\mathrm{AB} \cdot \mathrm{FD}$ is true
Taking $\mathrm{BC} / \mathrm{DF}=\mathrm{AC} / \mathrm{EF}$, we get
$\mathrm{BC} / \mathrm{DF}=\mathrm{AC} / \mathrm{EF}$
$\Rightarrow \mathrm{BC} . \mathrm{EF}=\mathrm{AC} . \mathrm{DF}$
So, option (a) BC $\cdot \mathrm{EF}=\mathrm{AC} \cdot \mathrm{FD}$ is true
Taking $\mathrm{AB} / \mathrm{ED}=\mathrm{AC} / \mathrm{EF}$, we get,
AB/ED = AC/EF
$\mathrm{AB} \cdot \mathrm{EF}=\mathrm{ED} \cdot \mathrm{AC}$
So, option (b) $\mathrm{AB} \cdot \mathrm{EF}=\mathrm{AC} \cdot \mathrm{DE}$ is true.
4. If in two $\Delta P Q R, A B / Q R=B C / P R=C A / P Q$, then
(a) \triangle PQR $\sim \triangle C A B$
(b) $\triangle \mathrm{PQR} \sim \Delta \mathrm{ABC}$
(c) \triangle CBA $\sim \Delta$ PQR
(d) $\triangle \mathrm{BCA} \sim \Delta \mathrm{PQR}$

Solution:
(a) \triangle PQR~ \triangle CAB

Explanation:

From $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$, we have, $\mathrm{AB} / \mathrm{QR}=\mathrm{BC} / \mathrm{PR}=\mathrm{CA} / \mathrm{PQ}$
If sides of one triangle are proportional to the side of the other triangle, and their corresponding angles are also equal, then both the triangles are similar by SSS similarity.
Therefore, we have,
$\Delta \mathrm{PQR} \sim \Delta \mathrm{CAB}$
5. In figure, two line segments $A C$ and $B D$ intersect each other at the point P such that $P A=6 \mathrm{~cm}$, $\mathrm{PB}=\mathbf{3 \mathrm { cm }}, \mathrm{PC}=\mathbf{2 . 5 \mathrm { cm }}, \mathrm{PD}=5 \mathrm{~cm}, \angle \mathrm{APB}=50^{\circ}$ and $\angle \mathrm{CDP}=30^{\circ}$. Then, $\angle \mathrm{PBA}$ is equal to
(a) 50°
(b) 30°
(c) 60°
(d) 100°

Solution:

(d) 100°

Explanation:
From $\triangle \mathrm{APB}$ and $\triangle \mathrm{CPD}$,
$\angle \mathrm{APB}=\angle \mathrm{CPD}=50^{\circ}$ (since they are vertically opposite angles)
$\mathrm{AP} / \mathrm{PD}=6 / 5 \ldots$ (i)
Also, $\mathrm{BP} / \mathrm{CP}=3 / 2.5$
Or $\mathrm{BP} / \mathrm{CP}=6 / 5 \ldots$ (ii)
From equations (i) and (ii),
We get,
$\mathrm{AP} / \mathrm{PD}=\mathrm{BP} / \mathrm{CP}$
So, $\triangle \mathrm{APB} \sim \triangle \mathrm{DPC}$ [using SAS similarity criterion]
$\therefore \angle \mathrm{A}=\angle \mathrm{D}=30^{\circ}$ [since, corresponding angles of similar triangles]
Since, Sum of angles of a triangle $=180^{\circ}$,
In $\triangle \mathrm{APB}$,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{APB}=180^{\circ}$
So, $30^{\circ}+\angle \mathrm{B}+50^{\circ}=180^{\circ}$
Then, $\angle \mathrm{B}=180^{\circ}-\left(50^{\circ}+30^{\circ}\right)$
$\angle \mathrm{B}=180-80^{\circ}=100^{\circ}$
Therefore, $\angle \mathrm{PBA}=100^{\circ}$

EXERCISE 6.2

1. Is the triangle with sides $25 \mathrm{~cm}, 5 \mathrm{~cm}$ and 24 cm a right triangle? Give reason for your answer. Solution:

False
According to the question,
Let us assume that,
$\mathrm{A}=25 \mathrm{~cm}$
$\mathrm{~B}=5 \mathrm{~cm}$
$\mathrm{C}=24 \mathrm{~cm}$

Now, Using Pythagoras Theorem,
We have,
$\mathrm{A}^{2}=\mathrm{B}^{2}+\mathrm{C}^{2}$
$B^{2}+C^{2}=(5)^{2}+(24)^{2}$
$\mathrm{B}^{2}+\mathrm{C}^{2}=25+576$
$B^{2}+C^{2}=601$
$\mathrm{A}^{2}=600$
$600 \neq 601$
$A^{2} \neq B^{2}+C^{2}$
Since the sides does not satisfy the property of Pythagoras theorem, triangle with sides 25 cm , 5 cm and 24 cm is not a right triangle.
2. It is given that $\triangle D E F \sim \triangle R P Q$. Is it true to say that $\angle D=\angle R$ and $\angle F=\angle P$? Why?

Solution:
False
We know that,
Corresponding angles are equal in similar triangles.
So, we get,
$\angle D=\angle R$
$\angle \mathrm{E}=\angle \mathrm{P}$
$\angle \mathrm{F}=\angle \mathrm{Q}$
3. A and B are respectively the points on the sides $P Q$ and $P R$ of a $\triangle P Q R$ such that $P Q=12.5 \mathrm{~cm}$, $P A=5 \mathrm{~cm}, B R=6 \mathrm{~cm}$ and $P B=4 \mathrm{~cm}$. Is $A B \| Q R$? Give reason for your answer.
Solution:
True
According to the question,

$\mathrm{PQ}=12.5 \mathrm{~cm}$
$\mathrm{PA}=5 \mathrm{~cm}$
$\mathrm{BR}=6 \mathrm{~cm}$
$\mathrm{PB}=4 \mathrm{~cm}$
Then,
$\mathrm{QA}=\mathrm{QP}-\mathrm{PA}=12.5-5=7.5 \mathrm{~cm}$
So,
$\mathrm{PA} / \mathrm{AQ}=5 / 7.5=50 / 75=2 / 3$
$\mathrm{PB} / \mathrm{BR}=4 / 6=2 / 3 \ldots$ (ii)
Form Equations (i) and (ii).
PA/AQ $=\mathrm{PB} / \mathrm{BR}$
We know that, if a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side.
Therefore,
AB || QR.
4. In figure, $B D$ and $C E$ intersect each other at the point P. Is $\triangle P B C \sim \triangle P D E$? Why?

Solution:

True

In $\triangle \mathrm{PBC}$ and $\triangle \mathrm{PDE}$,
$\angle \mathrm{BPC}=\angle \mathrm{EPD}$ [vertically opposite angles]
$\mathrm{PB} / \mathrm{PD}=5 / 10=1 / 2 \ldots$ (i)
$\mathrm{PC} / \mathrm{PE}=6 / 12=1 / 2 \ldots$ (ii)
From equation (i) and (ii),
We get,

$$
\mathrm{PB} / \mathrm{PD}=\mathrm{PC} / \mathrm{PE}
$$

Since, $\angle \mathrm{BPC}$ of $\triangle \mathrm{PBC}=\angle \mathrm{EPD}$ of $\triangle \mathrm{PDE}$ and the sides including these.
Then, by SAS similarity criteria
$\triangle \mathrm{PBC} \sim \Delta \mathrm{PDE}$
5. In $\triangle P Q R$ and $\triangle M S T, \angle P=55^{\circ}, \angle Q=25^{\circ}, \angle M=100^{\circ}$ and $\angle S=25^{\circ}$. Is $\Delta Q P R \sim \Delta T S M$? Why?

Solution:

We know that,
Sum of the three angles of a triangle $=180^{\circ}$.

Then, from $\triangle \mathrm{PQR}$,
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$
$55^{\circ}+25^{\circ}+\angle \mathrm{R}=180^{\circ}$
So, we get,
$\angle \mathrm{R}=180^{\circ}-\left(55^{\circ}+25^{\circ}\right)=180^{\circ}-80^{\circ}=100^{\circ}$
Similarly, from \triangle TSM,
$\angle \mathrm{T}+\angle \mathrm{S}+\angle \mathrm{M}=180^{\circ}$
$\angle \mathrm{T}+\angle 25^{\circ}+100^{\circ}=180^{\circ}$
So, we get,
$\angle \mathrm{T}=180^{\circ}-\left(\angle 25^{\circ}+100^{\circ}\right)$
$\angle \mathrm{T}=180^{\circ}-125^{\circ}=55^{\circ}$
In $\triangle \mathrm{PQR}$ and $\triangle \mathrm{TSM}$,
We have,
$\angle \mathrm{P}=\angle \mathrm{T}$,
$\angle \mathrm{Q}=\angle \mathrm{S}$
$\angle \mathrm{R}=\angle \mathrm{M}$
Hence, $\triangle \mathrm{PQR} \sim \Delta \mathrm{TSM}$
Since, all corresponding angles are equal,
$\Delta \mathrm{QPR}$ is similar to $\Delta \mathrm{TSM}$,
6. Is the following statement true? Why?
"Two quadrilaterals are similar, if their corresponding angles are equal".
Solution:
False
Two quadrilaterals cannot be similar, if only their corresponding angles are equal

EXERCISE 6.3

1. In a $\triangle P Q R, P R^{2}-P Q Q^{2}=Q R^{2}$ and M is a point on side $P R$ such that $Q M \perp P R$.

Prove that $\mathbf{Q M}^{2}=\mathbf{P M} \times \mathbf{M R}$.

Solution:

According to the question,

In $\triangle \mathrm{PQR}$,
$\mathrm{PR}^{2}=\mathrm{QR}^{2}$ and $\mathrm{QM} \perp \mathrm{PR}$
Using Pythagoras theorem, we have,
$\mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}$
$\triangle \mathrm{PQR}$ is right angled triangle at Q .
From $\triangle \mathrm{QMR}$ and $\triangle \mathrm{PMQ}$, we have,
$\angle \mathrm{M}=\angle \mathrm{M}$
$\angle \mathrm{MQR}=\angle \mathrm{QPM}\left[=90^{\circ}-\angle \mathrm{R}\right]$
So, using the AAA similarity criteria,
We have,
$\Delta \mathrm{QMR} \sim \Delta \mathrm{PMQ}$
Also, we know that,
Area of triangles $=1 / 2 \times$ base \times height
So, by property of area of similar triangles,

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle \mathrm{QMR})}{\operatorname{ar}(\mathrm{PMQ})}=\frac{(\mathrm{QM})^{2}}{(\mathrm{PM})^{2}} \\
& \frac{\operatorname{ar}(\Delta \mathrm{QMR})}{\operatorname{ar}(\mathrm{PMQ})}=\frac{\frac{1}{2} \times \mathrm{RM} \times \mathrm{QM}}{\frac{1}{2} \times \mathrm{PM} \times \mathrm{QM}}
\end{aligned}
$$

$$
\frac{\operatorname{ar}(\Delta \mathrm{QMR})}{\operatorname{ar}(\mathrm{PMQ})}=\frac{(\mathrm{QM})^{2}}{(\mathrm{PM})^{2}}
$$

$\mathrm{QM}^{2}=\mathrm{PM} \times \mathrm{RM}$
Hence proved.
2. Find the value of x for which $D E \| A B$ in given figure.

Solution:

According to the question,
DE \| AB
Using basic proportionality theorem,
$\mathrm{CD} / \mathrm{AD}=\mathrm{CE} / \mathrm{BE}$
\therefore If a line is drawn parallel to one side of a triangle such that it intersects the other sides at distinct points, then, the other two sides are divided in the same ratio.
Hence, we can conclude that, the line drawn is equal to the third side of the triangle.

$$
\begin{aligned}
& \frac{x+3}{3 x+19}=\frac{x}{3 x+4} \\
& (x+3)(3 x+4)=x(3 x+19) \\
& 3 x^{2}+4 x+9 x+12=3 x^{2}+19 x \\
& 19 x-13 x=12 \\
& 6 x=12 \\
& \therefore x=12 / 6=2
\end{aligned}
$$

3. In figure, if $\angle 1=\angle 2$ and $\Delta N S Q=\Delta M T R$, then prove that $\triangle P T S \sim \Delta P R Q$.

Solution:

According to the question,
$\Delta \mathrm{NSQ} \cong \Delta \mathrm{MTR}$
$\angle 1=\angle 2$
Since,
$\Delta \mathrm{NSQ}=\Delta \mathrm{MTR}$
So,
SQ = TR
Also,
$\angle 1=\angle 2 \Rightarrow \mathrm{PT}=\mathrm{PS}$
[Since, sides opposite to equal angles are also equal]
From Equation (i) and (ii).
PS/SQ = PT/TR
$\Rightarrow \mathrm{ST} \| \mathrm{QR}$
By converse of basic proportionality theorem, If a line is drawn parallel to one side of a triangle
to intersect the other sides in distinct points, the other two sides are divided in the same ratio.
$\therefore \angle 1=\mathrm{PQR}$
And
$\angle 2=\angle \mathrm{PRQ}$
In $\triangle \mathrm{PTS}$ and $\triangle \mathrm{PRQ}$.
$\angle \mathrm{P}=\angle \mathrm{P}$ [Common angles]
$\angle 1=\angle \mathrm{PQR}$ (proved)
$\angle 2=\angle \mathrm{PRQ}$ (proved)
$\therefore \triangle \mathrm{PTS}-\triangle \mathrm{PRQ}$
[By AAA similarity criteria]
Hence proved.
4. Diagonals of a trapezium $P Q R S$ intersect each other at the point $0, P Q \| R S$ and $P Q=3 R S$.

Find the ratio of the areas of \triangle POQ and Δ ROS.
Solution:

According to the question,
$P Q R S$ is a trapezium in which $P Q \| R S$ and $P Q=3 R S$
$\mathrm{PQ} / \mathrm{RS}=3 / 1=3$.

In $\triangle \mathrm{POQ}$ and $\triangle \mathrm{ROS}$, $\angle \mathrm{SOR}=\angle \mathrm{QOP}$ [vertically opposite angles]
$\angle \mathrm{SRP}=\angle \mathrm{RPQ}$ [alternate angles]
$\therefore \triangle \mathrm{POQ} \sim \triangle \mathrm{ROS}$ [by AAA similarity criterion]
By property of area of similar triangle,

$$
\begin{aligned}
& \frac{\operatorname{Ar}(\triangle \mathrm{POQ})}{\operatorname{ar}(\mathrm{SOR})}=\frac{(\mathrm{PQ})^{2}}{(\mathrm{RS})^{2}}=\left(\frac{\mathrm{PQ}}{\mathrm{RS}}\right)^{2}=\left(\frac{3}{1}\right)^{2} \\
& \Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{POQ})}{\operatorname{ar}(\mathrm{SOR})}=\frac{9}{1}
\end{aligned}
$$

Therefore, the required ratio $=9: 1$.
5. In figure, if $\mathrm{AB}|\mid \mathrm{DC}$ and AC, PQ intersect each other at the point O . Prove that $\mathrm{OA} . \mathrm{CQ}=$ 0C.AP.

Fig. 6.10

Solution:

According to the question,
$A C$ and $P Q$ intersect each other at the point O and $A B \| D C$.
From $\triangle \mathrm{AOP}$ and $\triangle \mathrm{COQ}$,
$\angle \mathrm{AOP}=\angle \mathrm{COQ}$ [Since they are vertically opposite angles]
$\angle \mathrm{APO}=\angle \mathrm{CQO}$ [since, $\mathrm{AB} \| \mathrm{DC}$ and PQ is transversal, the angles are alternate angles]
$\therefore \triangle \mathrm{AOP} \sim \Delta \mathrm{COQ}$ [using AAA similarity criterion]
Then, since, corresponding sides are proportional
We have,
$\mathrm{OA} / \mathrm{OC}=\mathrm{AP} / \mathrm{CQ}$
$\mathrm{OA} \times \mathrm{CQ}=\mathrm{OC} \times \mathrm{AP}$
Hence Proved.

6. Find the altitude of an equilateral triangle of side 8 cm .

Solution:

Let ABC be an equilateral triangle of side 8 cm
$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=8 \mathrm{~cm}$. (all sides of an equilateral triangle is equal)

Draw altitude AD which is perpendicular to BC .
Then, D is the mid-point of $B C$.
$\therefore \mathrm{BD}=\mathrm{CD}=1 / 2$
$B C=8 / 2=4 \mathrm{~cm}$
Now, by Pythagoras theorem
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
$\Rightarrow(8)^{2}=\mathrm{AD}^{2}+(4)^{2}$
$\Rightarrow 64=\mathrm{AD}^{2}+16$
$\Rightarrow A D=\sqrt{ } 48=4 \sqrt{ } 3 \mathrm{~cm}$.
Hence, altitude of an equilateral triangle is $4 \sqrt{ } 3 \mathrm{~cm}$.
7. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6, \mathrm{EF}=9 \mathrm{~cm}$ and $\mathrm{FD}=12 \mathrm{~cm}$, then find the perimeter of $\triangle \mathrm{ABC}$.
Solution:
According to the question,
$A B=4 \mathrm{~cm}$,

$$
\begin{aligned}
& \mathrm{DE}=6 \mathrm{~cm} \\
& \mathrm{EF}=9 \mathrm{~cm} \\
& \mathrm{FD}=12 \mathrm{~cm}
\end{aligned}
$$

Also,
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
We have,

$$
\frac{\mathrm{AB}}{\mathrm{ED}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}
$$

$$
\frac{4}{6}=\frac{B C}{9}=\frac{\mathrm{AC}}{12}
$$

By taking first two terms, we have

$$
\begin{aligned}
& \frac{4}{6}=\frac{\mathrm{BC}}{9} \\
& \mathrm{BC}=\frac{(4 \times 9)}{6}=6 \mathrm{~cm}
\end{aligned}
$$

And by taking last two terms, we have,

$$
\begin{aligned}
& \frac{\mathrm{BC}}{9}=\frac{\mathrm{AC}}{12} \\
& \frac{6}{9}=\frac{\mathrm{AC}}{12} \\
& \mathrm{AC}=\frac{6 \times 12}{9}=8 \mathrm{~cm}
\end{aligned}
$$

Now,

$$
\text { Perimeter of } \triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{AC}
$$

$$
=4+6+8=18 \mathrm{~cm}
$$

Thus, the perimeter of the triangle is 18 cm .

EXERCISE 6.4

1. In Fig. 6.16, if $\angle A=\angle C, A B=6 \mathrm{~cm}, B P=15 \mathrm{~cm}, A P=12 \mathrm{~cm}$ and $C P=4 \mathrm{~cm}$, then find the lengths of $P D$ and CD.

Solution:

According to the question,
$\angle \mathrm{A}=\angle \mathrm{C}$,
$\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BP}=15 \mathrm{~cm}$,
$\mathrm{AP}=12 \mathrm{~cm}$
$\mathrm{CP}=4 \mathrm{~cm}$
From $\triangle \mathrm{APB}$ and $\triangle \mathrm{CPD}$,
$\angle \mathrm{A}=\angle \mathrm{C}$
$\angle \mathrm{APB}=\angle \mathrm{CPD}$ [vertically opposite angles]
\therefore By AAA similarity criteria,
$\triangle \mathrm{APD} \sim \Delta \mathrm{CPD}$
Using basic proportionality theorem,
$\frac{A P}{C P}=\frac{P B}{P D}=\frac{A B}{C D}$
$\frac{12}{4}=\frac{15}{\mathrm{PD}}=\frac{6}{\mathrm{CD}}$
Considering $\mathrm{AP} / \mathrm{CP}=\mathrm{PB} / \mathrm{PD}$, we get,
$\frac{12}{4}=\frac{15}{\mathrm{PD}}$
$\mathrm{PD}=\frac{15 \times 4}{12}=\frac{60}{12}=5 \mathrm{~cm}$
Considering, $\mathrm{AP} / \mathrm{CP}=\mathrm{AB} / \mathrm{CD}$
$\mathrm{CD}=\frac{(6 \times 4)}{12}=2 \mathrm{~cm}$
Therefore,
Length of PD $=5 \mathrm{~cm}$

Length of $\mathrm{CD}=2 \mathrm{~cm}$
2. It is given that $\Delta \mathrm{ABC} \sim \Delta \mathrm{EDF}$ such that $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm}, \mathrm{DF}=15 \mathrm{~cm}$ and $\mathrm{DE}=\mathbf{1 2} \mathrm{cm}$. Find the lengths of the remaining sides of the triangles.
Solution:

According to the question, $\triangle \mathrm{ABC} \sim \triangle \mathrm{EDF}$
From property of similar triangle,
We know that, corresponding sides of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EDF}$ are in the same ratio.
$\mathrm{AB} / \mathrm{ED}=\mathrm{AC} / \mathrm{EF}=\mathrm{BC} / \mathrm{DF}$
According to the question,
$\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm}$
$\mathrm{DF}=15 \mathrm{~cm}$ and $\mathrm{DE}=12 \mathrm{~cm}$
Substituting these values in Equation (i), we get,

$$
\frac{5}{12}=\frac{7}{\mathrm{EF}}=\frac{\mathrm{BC}}{15}
$$

On taking $5 / 12=7 / \mathrm{EF}$, we get,

$$
\frac{5}{12}=\frac{7}{\mathrm{EF}}
$$

$$
\mathrm{EF}=\frac{12 \times 7}{5}=16.8 \mathrm{~cm}
$$

On taking $5 / 12=B C / 15$, we get,

$$
\begin{aligned}
& \frac{5}{12}=\frac{\mathrm{BC}}{15} \\
& \mathrm{BC}=\frac{5 \times 15}{12}=6.25 \mathrm{~cm}
\end{aligned}
$$

Hence, lengths of the remaining sides of the triangles are $\mathrm{EF}=16.8 \mathrm{~cm}$ and $\mathrm{BC}=6.25 \mathrm{~cm}$
3. Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides, then the two sides are divided in the same ratio.
Solution:

Let a $\triangle \mathrm{ABC}$ in which a line DE parallel to BC intersects AB at D and AC at E .
To prove DE divides the two sides in the same ratio.
AD/DB = AE/EC

Construction:
Join BE, CD
Draw $\mathrm{EF} \perp \mathrm{AB}$ and $\mathrm{DG} \perp \mathrm{AC}$.
We know that,
Area of triangle $=1 / 2 \times$ base \times height
Then,
$\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{BDE})}=\frac{\frac{1}{2} \times \mathrm{AD} \times \mathrm{EF}}{\frac{1}{2} \times \mathrm{DB} \times \mathrm{EF}}$
$\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{BDE})}=\frac{\mathrm{AD}}{\mathrm{DB}}$
$\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{DEC})}=\frac{\frac{1}{2} \times \mathrm{AE} \times \mathrm{GD}}{\frac{1}{2} \times \mathrm{EC} \times \mathrm{GD}}$
$\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{DEC})}=\frac{\mathrm{AE}}{\mathrm{EC}}$
Since,
$\triangle \mathrm{BDE}$ and $\triangle \mathrm{DEC}$ lie between the same parallel DE and BC and are on the same base DE .
We have,
area $(\triangle \mathrm{BDE})=\operatorname{area}(\triangle \mathrm{DEC}) \ldots$...(iii)
From Equation (i), (ii) and (iii),
We get,
$\mathrm{AD} / \mathrm{DB}=\mathrm{AE} / \mathrm{EC}$
Hence proved.
4. In Fig 6.17, if PQRS is a parallelogram and $A B \| P S$, then prove that $O C \| S R$.

Fig. 6.17

Solution:

According to the question, PQRS is a parallelogram,
Therefore, $\mathrm{PQ} \| \mathrm{SR}$ and $\mathrm{PS} \| \mathrm{QR}$.
Also given, $\mathrm{AB}|\mid \mathrm{PS}$.

To prove:

> OC \| SR

From $\triangle \mathrm{OPS}$ and OAB , PS $\|$ AB
$\angle \mathrm{POS}=\angle \mathrm{AOB}$ [common angle]
$\angle \mathrm{OSP}=\angle \mathrm{OBA}$ [corresponding angles]
$\Delta \mathrm{OPS} \sim \Delta \mathrm{OAB}$ [by AAA similarity criteria]
Then,
Using basic proportionality theorem,
We get,
$\mathrm{PS} / \mathrm{AB}=\mathrm{OS} / \mathrm{OB}$
From $\triangle \mathrm{CQR}$ and $\triangle \mathrm{CAB}$,
QR || PS || AB
$\angle \mathrm{QCR}=\angle \mathrm{ACB}$ [common angle]
$\angle \mathrm{CRQ}=\angle \mathrm{CBA}$ [corresponding angles]
$\Delta \mathrm{CQR} \sim \Delta \mathrm{CAB}$
Then, by basic proportionality theorem

$$
\begin{align*}
& \frac{\mathrm{QR}}{\mathrm{AB}}=\frac{\mathrm{CR}}{\mathrm{CB}} \\
& \frac{\mathrm{PC}}{\mathrm{AB}}=\frac{\mathrm{CR}}{\mathrm{CB}} \tag{ii}
\end{align*}
$$

$[\mathrm{PS} \cong \mathrm{QR}$ Since, PQRS is a parallelogram, $]$
From Equation (i) and (ii),

$$
\begin{aligned}
& \frac{\mathrm{OS}}{\mathrm{OB}}=\frac{\mathrm{CR}}{\mathrm{CB}} \\
& \frac{\mathrm{OB}}{\mathrm{OS}}=\frac{\mathrm{CB}}{\mathrm{CR}}
\end{aligned}
$$

Subtracting 1 from L.H.S and R.H.S, we get,

$$
\begin{aligned}
& \frac{\mathrm{OB}}{\mathrm{OS}}-1=\frac{\mathrm{CB}}{\mathrm{CR}}-1 \\
& \frac{\mathrm{OB}-\mathrm{OS}}{\mathrm{OS}}=\frac{(\mathrm{CB}-\mathrm{CR})}{\mathrm{CR}}
\end{aligned}
$$

$$
\frac{\mathrm{BS}}{\mathrm{OS}}=\frac{\mathrm{BR}}{\mathrm{CR}}
$$

SR || OC [By converse of basic proportionality theorem]
Hence proved.
5. A 5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on the wall.

Solution:

Let the length of the ladder $=\mathrm{AC}=5 \mathrm{~m}$
Let the height of the wall on which ladder is placed $=B C=4 \mathrm{~m}$.

From right angled $\triangle \mathrm{EBD}$,
Using the Pythagoras Theorem,
$\mathrm{ED}^{2}=\mathrm{EB}^{2}+\mathrm{BD}^{2}$
$(5)^{2}=(\mathrm{EB})^{2}+(14)^{2}[\mathrm{BD}=1.4]$
$25=(\mathrm{EB})^{2}+1.96$
$(\mathrm{EB})^{2}=25-1.96=23.04$
$E B=\sqrt{ } 23.04=4.8$
Now, we have,
$\mathrm{EC}=\mathrm{EB}-\mathrm{BC}=4.8-4=0.8$
Hence, the top of the ladder would slide upwards on the wall by a distance of 0.8 m .
6. For going to a city B from city A, there is a route via city C such that $A C \perp C B, A C=2 \times 2 \mathrm{~km}$ and $C B=2(x+7) \mathrm{km}$. It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A after the construction of the highway.
Solution:
According to the question,
$\mathrm{AC} \perp \mathrm{CB}$,
$\mathrm{AC}=2 \mathrm{x} \mathrm{km}$,
$\mathrm{CB}=2(\mathrm{x}+7) \mathrm{km}$ and $\mathrm{AB}=26 \mathrm{~km}$
Thus, we get $\triangle \mathrm{ACB}$ right angled at C .
Now, from $\Delta \mathrm{ACB}$,
Using Pythagoras Theorem,
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}$
$\Rightarrow(26)^{2}=(2 \mathrm{x})^{2}+\{2(\mathrm{x}+7)\}^{2}$
$\Rightarrow 676=4 \mathrm{x}^{2}+4\left(\mathrm{x}^{2}+196+14 \mathrm{x}\right)$
$\Rightarrow 676=4 \mathrm{x}^{2}+4 \mathrm{x}^{2}+196+56 \mathrm{x}$
$\Rightarrow 676=8^{2}+56 \mathrm{x}+196$
$\Rightarrow 8 \mathrm{x}^{2}+56 \mathrm{x}-480=0$

Dividing the equation by 8 , we get,

$$
\begin{aligned}
& \mathrm{x}^{2}+7 \mathrm{x}-60=0 \\
& \mathrm{x}^{2}+12 \mathrm{x}-5 \mathrm{x}-60=0 \\
& \mathrm{x}(\mathrm{x}+12)-5(\mathrm{x}+12)=0 \\
& (\mathrm{x}+12)(\mathrm{x}-5)=0 \\
& \therefore \mathrm{x}=-12 \text { or } \mathrm{x}=5
\end{aligned}
$$

Since the distance can't be negative, we neglect $x=-12$
$\therefore \mathrm{x}=5$
Now,
$\mathrm{AC}=2 \mathrm{x}=10 \mathrm{~km}$
$\mathrm{BC}=2(\mathrm{x}+7)=2(5+7)=24 \mathrm{~km}$
Thus, the distance covered to city B from city A via city $C=A C+B C$

$$
\begin{aligned}
\mathrm{AC}+\mathrm{BC} & =10+24 \\
& =34 \mathrm{~km}
\end{aligned}
$$

Distance covered to city B from city A after the highway was constructed $=\mathrm{BA}=26 \mathrm{~km}$ Therefore, the distance saved $=34-26=8 \mathrm{~km}$.
7. A flag pole 18 m high casts a shadow 9.6 m long. Find the distance of the top of the pole from the far end of the shadow.

Solution:

Let $\mathrm{MN}=18 \mathrm{~m}$ be the flag pole and its shadow be $\mathrm{LM}=9.6 \mathrm{~m}$.
The distance of the top of the pole, N from the far end, L of the shadow is LN . In right angled $\Delta \mathrm{LMN}$,
$\mathrm{LN}^{2}=\mathrm{LM}^{2}+\mathrm{MN}^{2}$ [by Pythagoras theorem]
$\Rightarrow \mathrm{LN}^{2}=(9.6)^{2}+(18)^{2}$
$\Rightarrow \mathrm{LN}^{2}=9.216+324$

$$
\Rightarrow \mathrm{LN}^{2}=416.16
$$

$\therefore \mathrm{LN}=\sqrt{ } 416.16=20.4 \mathrm{~m}$
Hence, the required distance is 20.4 m

