
Exercise 8.2

Page No: 8.13

Question 1: In the below Fig. OA and OB are opposite rays:

- (i) If $x = 25^{\circ}$, what is the value of y?
- (ii) If $y = 35^{\circ}$, what is the value of x?

Solution:

(i) Given: x = 25

From figure: ∠AOC and ∠BOC form a linear pair

Which implies, $\angle AOC + \angle BOC = 180^{\circ}$

From the figure, $\angle AOC = 2y + 5$ and $\angle BOC = 3x$

 $\angle AOC + \angle BOC = 180^{\circ}$

(2y + 5) + 3x = 180

(2y + 5) + 3(25) = 180

2y + 5 + 75 = 180

2y + 80 = 180

2y = 100

y = 100/2 = 50

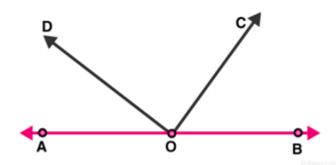
Therefore, $y = 50^{\circ}$ Answer!!

(ii) Given: $y = 35^{\circ}$

From figure: $\angle AOC + \angle BOC = 180^{\circ}$ (Linear pair angles)

(2y + 5) + 3x = 180

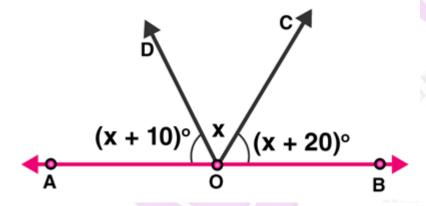
(2(35) + 5) + 3x = 180


75 + 3x = 180

3x = 105

x = 35

Therefore, $x = 35^{\circ}$


Question 2: In the below figure, write all pairs of adjacent angles and all the linear pairs.

Solution: From figure, pairs of adjacent angles are : $(\angle AOC, \angle COB)$; $(\angle AOD, \angle BOD)$; $(\angle AOD, \angle COD)$; $(\angle BOC, \angle COD)$

And Linear pair of angles are (\angle AOD, \angle BOD) and (\angle AOC, \angle BOC). [As \angle AOD + \angle BOD = 180 $^{\circ}$ and \angle AOC+ \angle BOC = 180 $^{\circ}$.]

Question 3: In the given figure, find x. Further find ∠BOC, ∠COD and ∠AOD.

Solution:

From figure, \angle AOD and \angle BOD form a linear pair, Therefore, \angle AOD+ \angle BOD = 180°

Also, $\angle AOD + \angle BOC + \angle COD = 180^{\circ}$

Given: $\angle AOD = (x+10)^0$, $\angle COD = x^0$ and $\angle BOC = (x+20)^0$

(x + 10) + x + (x + 20) = 180

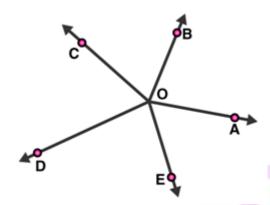
3x + 30 = 180

3x = 180 - 30

x = 150/3

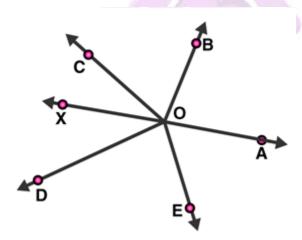
 $x = 50^{0}$

Now,


 $\angle AOD=(x+10) = 50 + 10 = 60$

 \angle COD = x = 50

 $\angle BOC = (x+20) = 50 + 20 = 70$


Hence, $\angle AOD=60^{\circ}$, $\angle COD=50^{\circ}$ and $\angle BOC=70^{\circ}$

Question 4: In figure, rays OA, OB, OC, OD and OE have the common end point 0. Show that \$\triangle AOB+\$\triangle BOC+\$\triangle COD+\$\triangle DOE+\$\triangle EOA=360°.

Solution:

Given: Rays OA, OB, OC, OD and OE have the common endpoint O. Draw an opposite ray OX to ray OA, which make a straight line AX.

From figure:

∠AOB and ∠BOX are linear pair angles, therefore,

 $\angle AOB + \angle BOX = 180^{\circ}$

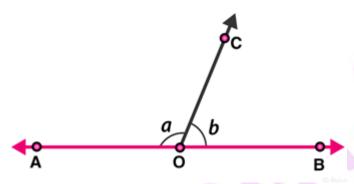
Or, $\angle AOB + \angle BOC + \angle COX = 180^{\circ}$ ————(1)

Also,

∠AOE and ∠EOX are linear pair angles, therefore,

∠AOE+∠EOX =180°

Or,
$$\angle AOE + \angle DOE + \angle DOX = 180^{\circ}$$
 ——(2)


By adding equations, (1) and (2), we get;

$$\angle AOB + \angle BOC + \angle COF + \angle AOE + \angle DOF + \angle DOE = 180^{\circ} + 180^{\circ}$$

$$\angle AOB + \angle BOC + \angle COD + \angle DOE + \angle EOA = 360^{\circ}$$

Hence Proved.

Question 5 : In figure, \angle AOC and \angle BOC form a linear pair. If a – 2b = 30°, find a and b?

Solution:

Given: ∠AOC and ∠BOC form a linear pair.

$$=> a + b = 180^{0}$$
(1)

$$a - 2b = 30^0$$
 ...(2) (given)

On subtracting equation (2) from (1), we get

$$a + b - a + 2b = 180 - 30$$

3b = 150

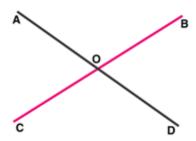
b = 150/3

 $b = 50^{\circ}$

Since, $a - 2b = 30^{\circ}$

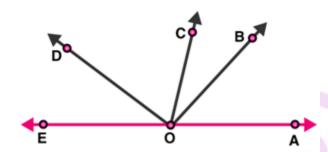
a - 2(50) = 30

a = 30 + 100


 $a = 130^{0}$

Therefore, the values of a and b are 130° and 50° respectively.

Question 6: How many pairs of adjacent angles are formed when two lines intersect at a point? Solution: Four pairs of adjacent angles are formed when two lines intersect each other at a single point.



For example, Let two lines AB and CD intersect at point O.

The 4 pair of adjacent angles are : $(\angle AOD, \angle DOB), (\angle DOB, \angle BOC), (\angle COA, \angle AOD)$ and $(\angle BOC, \angle COA)$.

Question 7: How many pairs of adjacent angles, in all, can you name in figure given?

Solution: Number of Pairs of adjacent angles, from the figure, are :

∠EOC and ∠DOC

∠EOD and ∠DOB

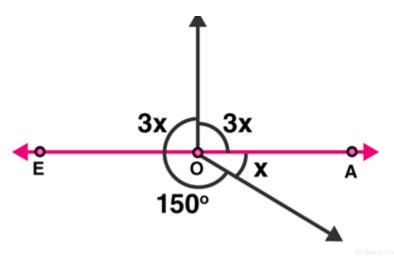
∠DOC and ∠COB

∠EOD and ∠DOA

∠DOC and ∠COA

∠BOC and ∠BOA

∠BOA and ∠BOD


∠BOA and ∠BOE

∠EOC and ∠COA

∠EOC and ∠COB

Hence, there are 10 pairs of adjacent angles.

Question 8: In figure, determine the value of x.

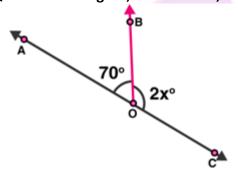
Solution:

The sum of all the angles around a point O is equal to 360°.

Therefore,

$$3x + 3x + 150 + x = 360^{\circ}$$

$$7x = 360^{\circ} - 150^{\circ}$$


$$7x = 210^{0}$$

$$x = 210/7$$

$$x = 30^{0}$$

Hence, the value of x is 30°.

Question 9: In figure, AOC is a line, find x.

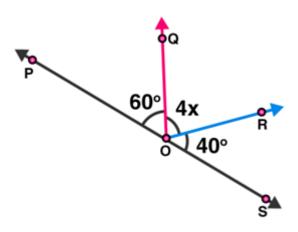
Solution:

From the figure, ∠AOB and ∠BOC are linear pairs,

$$70 + 2x = 180$$

$$2x = 180 - 70$$

$$2x = 110$$


$$x = 110/2$$

$$x = 55$$

Therefore, the value of x is 55° .

Question 10: In figure, POS is a line, find x.

Solution:

From figure, \angle POQ and \angle QOS are linear pairs.

Therefore,

 \angle POQ + \angle QOS=180 $^{\circ}$

 \angle POQ + \angle QOR+ \angle SOR=180 $^{\circ}$

 $60^0 + 4x + 40^0 = 180^0$

 $4x = 180^{\circ} - 100^{\circ}$

 $4x = 80^{0}$

 $x = 20^{0}$

Hence, the value of x is 20° .