

Exercise 8.1

Page No: 8.7

Question 1: Write the complement of each of the following angles:

(i)20°

(ii)35°

(iii)90°

(iv) 77⁰

 $(v)30^{0}$

Solution:

(i) The sum of an angle and its complement = 90° Therefore, the complement of $20^{\circ} = 90^{\circ} - 20^{\circ} = 70^{\circ}$

(ii) The sum of an angle and its complement = 90° Therefore, the complement of $35^{\circ} = 90^{\circ} - 35^{\circ} = 55$

(iii) The sum of an angle and its complement = 90° Therefore, the complement of $90^{\circ} = 90^{\circ} - 90^{\circ} = 0^{\circ}$

(iv) The sum of an angle and its complement = 90° Therefore, the complement of $77^{\circ} = 90^{\circ} - 77^{\circ} = 13^{\circ}$

(v) The sum of an angle and its complement = 90° Therefore, the complement of $30^{\circ} = 90^{\circ} - 30^{\circ} = 60^{\circ}$

Question 2 : Write the supplement of each of the following angles:

(i) 54⁰

(ii) 132⁰

(iii) 138⁰

Solution:

(i) The sum of an angle and its supplement = 180° . Therefore supplement of angle $54^{\circ} = 180^{\circ} - 54^{\circ} = 126^{\circ}$

(ii) The sum of an angle and its supplement = 180° . Therefore supplement of angle $132^{\circ} = 180^{\circ} - 132^{\circ} = 48^{\circ}$

(iii) The sum of an angle and its supplement = 180° . Therefore supplement of angle $138^{\circ} = 180^{\circ} - 138^{\circ} = 42^{\circ}$

Question 3: If an angle is 28⁰ less than its complement, find its measure? Solution:

Let the measure of any angle is 'a 'degrees Thus, its complement will be $(90 - a)^0$ So, the required angle = Complement of a - 28a = (90 - a) - 282a = 62a = 31

Hence, the angle measured is 31°.

Question 4: If an angle is 30° more than one half of its complement, find the measure of the angle? Solution:

Let an angle measured by 'a 'in degrees Thus, its complement will be (90 - a) ⁰

Required Angle = 30° + complement/2

$$a = 30^{0} + (90 - a)^{0} / 2$$

$$a + a/2 = 30^{0} + 45^{0}$$

$$3a/2 = 75^{\circ}$$

$$a = 50^{\circ}$$

Therefore, the measure of required angle is 50°.

Question 5: Two supplementary angles are in the ratio 4:5. Find the angles? Solution:

Two supplementary angles are in the ratio 4:5. Let us say, the angles are 4a and 5a (in degrees) Since angle are supplementary angles; Which implies, $4a + 5a = 180^{\circ}$ $9a = 180^{\circ}$ $a = 20^{\circ}$

Therefore,
$$4a = 4 (20) = 80^{\circ}$$
 and $5(a) = 5 (20) = 100^{\circ}$

Hence, required angles are 80° and 100°.

Question 6: Two supplementary angles differ by 48°. Find the angles?

Solution: Given: Two supplementary angles differ by 48°.

Consider a^0 be one angle then its supplementary angle will be equal to $(180 - a)^0$

According to the question;

$$(180 - a) - x = 48$$

$$(180 - 48) = 2a$$

$$132 = 2a$$

$$132/2 = a$$

Or
$$a = 66^{\circ}$$

Therefore, $180 - a = 114^{\circ}$

Hence, the two angles are 66° and 114°.

Question 7: An angle is equal to 8 times its complement. Determine its measure?

Solution: Given: Required angle = 8 times of its complement

Consider a^0 be one angle then its complementary angle will be equal to $(90 - a)^0$

According to the question;

a = 8 times of its complement

$$a = 8 (90 - a)$$

$$a = 720 - 8a$$

$$a + 8a = 720$$

$$a = 80$$

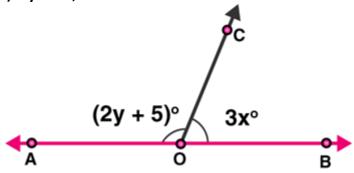
Therefore, the required angle is 80°.

Exercise 8.2

Page No: 8.13

Question 1: In the below Fig. OA and OB are opposite rays:

- (i) If $x = 25^{\circ}$, what is the value of y?
- (ii) If $y = 35^{\circ}$, what is the value of x?



Solution:

(i) Given: x = 25

From figure: ∠AOC and ∠BOC form a linear pair

Which implies, $\angle AOC + \angle BOC = 180^{\circ}$

From the figure, $\angle AOC = 2y + 5$ and $\angle BOC = 3x$

 $\angle AOC + \angle BOC = 180^{\circ}$

(2y + 5) + 3x = 180

(2y + 5) + 3(25) = 180

2y + 5 + 75 = 180

2y + 80 = 180

2y = 100

y = 100/2 = 50

Therefore, $y = 50^{\circ}$ Answer!!

(ii) Given: $y = 35^{\circ}$

From figure: $\angle AOC + \angle BOC = 180^{\circ}$ (Linear pair angles)

(2y + 5) + 3x = 180

(2(35) + 5) + 3x = 180

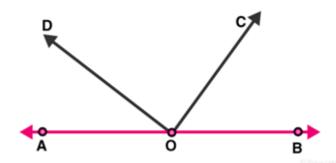
75 + 3x = 180

3x = 105

x = 35

Therefore, $x = 35^{\circ}$

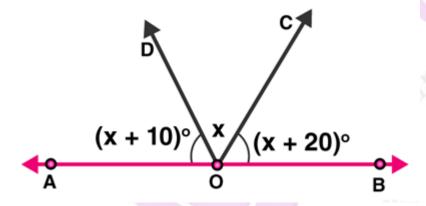
Question 2: In the below figure, write all pairs of adjacent angles and all the linear pairs.



Solution: From figure, pairs of adjacent angles are : $(\angle AOC, \angle COB)$; $(\angle AOD, \angle BOD)$; $(\angle AOD, \angle COD)$; $(\angle BOC, \angle COD)$

And Linear pair of angles are (\angle AOD, \angle BOD) and (\angle AOC, \angle BOC). [As \angle AOD + \angle BOD = 180 $^{\circ}$ and \angle AOC+ \angle BOC = 180 $^{\circ}$.]

Question 3: In the given figure, find x. Further find ∠BOC, ∠COD and ∠AOD.



Solution:

From figure, \angle AOD and \angle BOD form a linear pair, Therefore, \angle AOD+ \angle BOD = 180°

Also, $\angle AOD + \angle BOC + \angle COD = 180^{\circ}$

Given: $\angle AOD = (x+10)^0$, $\angle COD = x^0$ and $\angle BOC = (x+20)^0$

(x + 10) + x + (x + 20) = 180

3x + 30 = 180

3x = 180 - 30

x = 150/3

 $x = 50^{\circ}$

Now,

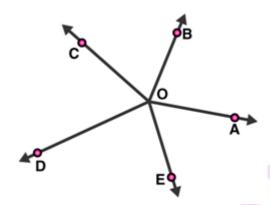
 $\angle AOD=(x+10) = 50 + 10 = 60$

 \angle COD = x = 50

 $\angle BOC = (x+20) = 50 + 20 = 70$

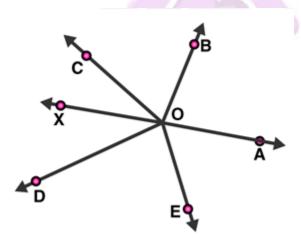
Hence, $\angle AOD=60^{\circ}$, $\angle COD=50^{\circ}$ and $\angle BOC=70^{\circ}$

Question 4: In figure, rays OA, OB, OC, OD and OE have the common end point 0. Show that \$\triangle AOB+\$\triangle BOC+\$\triangle COD+\$\triangle DOE+\$\triangle EOA=360°.



Solution:

Given: Rays OA, OB, OC, OD and OE have the common endpoint O. Draw an opposite ray OX to ray OA, which make a straight line AX.



From figure:

∠AOB and ∠BOX are linear pair angles, therefore,

 $\angle AOB + \angle BOX = 180^{\circ}$

Or, $\angle AOB + \angle BOC + \angle COX = 180^{\circ}$ ————(1)

Also,

∠AOE and ∠EOX are linear pair angles, therefore,

∠AOE+∠EOX =180°

Or,
$$\angle AOE + \angle DOE + \angle DOX = 180^{\circ}$$
 ——(2)

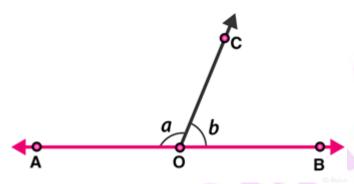
By adding equations, (1) and (2), we get;

$$\angle AOB + \angle BOC + \angle COF + \angle AOE + \angle DOF + \angle DOE = 180^{\circ} + 180^{\circ}$$

$$\angle AOB + \angle BOC + \angle COD + \angle DOE + \angle EOA = 360^{\circ}$$

Hence Proved.

Question 5 : In figure, \angle AOC and \angle BOC form a linear pair. If a – 2b = 30°, find a and b?



Solution:

Given: ∠AOC and ∠BOC form a linear pair.

$$=> a + b = 180^{0}$$
(1)

$$a - 2b = 30^0$$
 ...(2) (given)

On subtracting equation (2) from (1), we get

$$a + b - a + 2b = 180 - 30$$

$$3b = 150$$

$$b = 150/3$$

$$b = 50^{\circ}$$

Since,
$$a - 2b = 30^{\circ}$$

$$a - 2(50) = 30$$

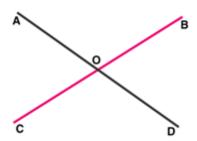
$$a = 30 + 100$$

$$a = 130^{0}$$

Therefore, the values of a and b are 130° and 50° respectively.

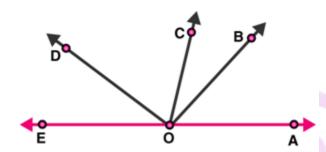
Question 6: How many pairs of adjacent angles are formed when two lines intersect at a point? **Solution**: Four pairs of adjacent angles are formed when two lines intersect each other at a single point.

For example, Let two lines AB and CD intersect at point O.



The 4 pair of adjacent angles are : $(\angle AOD, \angle DOB), (\angle DOB, \angle BOC), (\angle COA, \angle AOD)$ and $(\angle BOC, \angle COA)$.

Question 7: How many pairs of adjacent angles, in all, can you name in figure given?



Solution: Number of Pairs of adjacent angles, from the figure, are :

∠EOC and ∠DOC

∠EOD and ∠DOB

∠DOC and ∠COB

∠EOD and ∠DOA

∠DOC and ∠COA

∠BOC and ∠BOA

∠BOA and ∠BOD

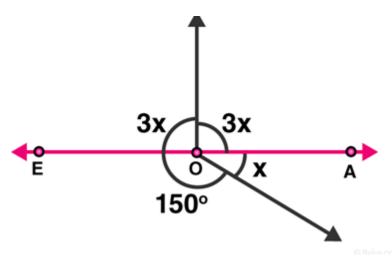
∠BOA and ∠BOE

∠EOC and ∠COA

∠EOC and ∠COB

Hence, there are 10 pairs of adjacent angles.

Question 8: In figure, determine the value of x.



Solution:

The sum of all the angles around a point O is equal to 360°.

Therefore,

$$3x + 3x + 150 + x = 360^{\circ}$$

$$7x = 360^{\circ} - 150^{\circ}$$

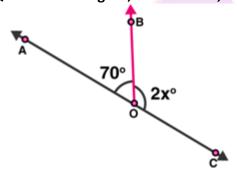
$$7x = 210^{0}$$

$$x = 210/7$$

$$x = 30^{0}$$

Hence, the value of x is 30°.

Question 9: In figure, AOC is a line, find x.



Solution:

From the figure, ∠AOB and ∠BOC are linear pairs,

$$70 + 2x = 180$$

$$2x = 180 - 70$$

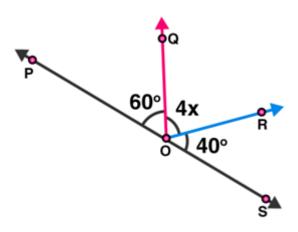
$$2x = 110$$

$$x = 110/2$$

$$x = 55$$

Therefore, the value of x is 55° .

Question 10: In figure, POS is a line, find x.



Solution:

From figure, \angle POQ and \angle QOS are linear pairs.

Therefore,

 \angle POQ + \angle QOS=180 $^{\circ}$

 \angle POQ + \angle QOR+ \angle SOR=180 $^{\circ}$

 $60^0 + 4x + 40^0 = 180^0$

 $4x = 180^{\circ} - 100^{\circ}$

 $4x = 80^{0}$

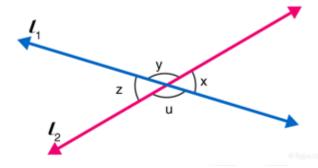
 $x = 20^{0}$

Hence, the value of x is 20° .

Exercise 8.3

Page No: 8.19

Question 1: In figure, lines l_1 , and l_2 intersect at O, forming angles as shown in the figure. If x = 45. Find the values of y, z and u.



Solution:

Given: $x = 45^{\circ}$

Since vertically opposite angles are equal, therefore $z = x = 45^{\circ}$

z and u are angles that are a linear pair, therefore, $z + u = 180^{\circ}$

Solve,
$$z + u = 180^{\circ}$$
, for u

$$u = 180^0 - z$$

$$u = 180^{0} - 45$$

$$u = 135^{0}$$

Again, x and y angles are a linear pair.

$$x + y = 180^{\circ}$$

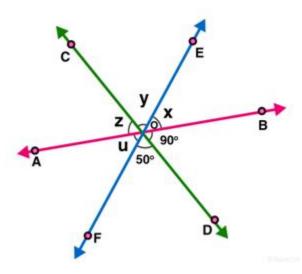
$$y = 180^0 - x$$

$$y = 180^{\circ} - 45^{\circ}$$

$$y = 135^{0}$$

Hence, remaining angles are $y = 135^{\circ}$, $u = 135^{\circ}$ and $z = 45^{\circ}$.

Question 2: In figure, three coplanar lines intersect at a point O, forming angles as shown in the figure. Find the values of x, y, z and u.



Solution:

 $(\angle BOD, z)$; $(\angle DOF, y)$ are pair of vertically opposite angles.

So,
$$\angle BOD = z = 90^{\circ}$$

$$\angle DOF = y = 50^{\circ}$$

[Vertically opposite angles are equal.]

Now, x + y + z = 180 [Linear pair]

[AB is a straight line]

$$x + y + z = 180$$

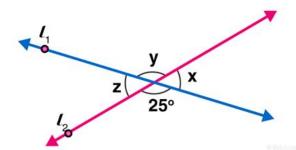
$$x + 50 + 90 = 180$$

$$x = 180 - 140$$

$$x = 40$$

Hence values of x, y, z and u are 40° , 50° , 90° and 40° respectively.

Question 3: In figure, find the values of x, y and z.



Solution:

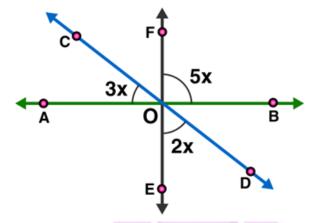
From figure,

y = 25° [Vertically opposite angles are equal] Now $\angle x + \angle y = 180^{\circ}$ [Linear pair of angles]

x = 180 - 25x = 155

Also, z = x = 155 [Vertically opposite angles] Answer: $y = 25^0$ and $z = 155^0$

Question 4: In figure, find the value of x.



Solution:

 $\angle AOE = \angle BOF = 5x$ [Vertically opposite angles]

 \angle COA+ \angle AOE+ \angle EOD = 180 0 [Linear pair]

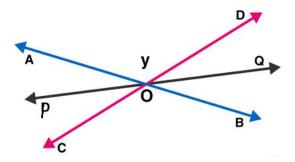
3x + 5x + 2x = 180 10x = 180x = 180/10

x = 18

The value of $x = 18^0$

Question 5: Prove that bisectors of a pair of vertically opposite angles are in the same straight line.

Solution:



Lines AB and CD intersect at point O, such that

 $\angle AOC = \angle BOD$ (vertically angles) ...(1)

Also OP is the bisector of AOC and OQ is the bisector of BOD

To Prove: POQ is a straight line.

OP is the bisector of $\angle AOC$:

 $\angle AOP = \angle COP \dots (2)$

OQ is the bisector of ∠BOD:

 $\angle BOQ = \angle QOD ...(3)$

NOW,

Sum of the angles around a point is 360°.

$$\angle AOC + \angle BOD + \angle AOP + \angle COP + \angle BOQ + \angle QOD = 360^{\circ}$$

$$\angle BOQ + \angle QOD + \angle DOA + \angle AOP + \angle POC + \angle COB = 360^{\circ}$$

$$2\angle QOD + 2\angle DOA + 2\angle AOP = 360^{\circ}$$
 (Using (1), (2) and (3))

$$\angle$$
QOD + \angle DOA + \angle AOP = 180°
POQ = 180°

Which shows that, the bisectors of pair of vertically opposite angles are on the same straight line.

Hence Proved.

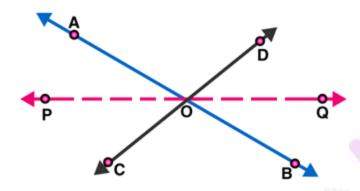
Question 6: If two straight lines intersect each other, prove that the ray opposite to the bisector of one of the angles thus formed bisects the vertically opposite angle.

Solution: Given AB and CD are straight lines which intersect at O.

OP is the bisector of \angle AOC.

To Prove : OQ is the bisector of ∠BOD

Proof:



AB, CD and PQ are straight lines which intersect in O.

Vertically opposite angles: ∠ AOP = ∠ BOQ

Vertically opposite angles: $\angle COP = \angle DOQ$

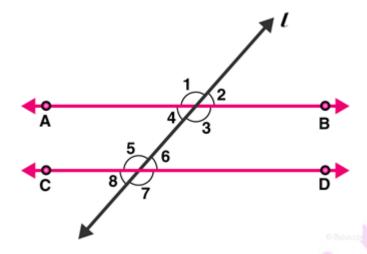
OP is the bisector of \angle AOC : \angle AOP = \angle COP

Therefore, $\angle BOQ = \angle DOQ$ Hence, OQ is the bisector of $\angle BOD$.

Exercise 8.4

Page No: 8.38

Question 1: In figure, AB, CD and $\angle 1$ and $\angle 2$ are in the ratio 3 : 2. Determine all angles from 1 to 8.



Solution:

Let $\angle 1 = 3x$ and $\angle 2 = 2x$

From figure: ∠1 and ∠2 are linear pair of angles

Therefore, $\angle 1 + \angle 2 = 180$

$$3x + 2x = 180$$

$$5x = 180$$

$$x = 180 / 5$$

$$=> x = 36$$

So,
$$\angle 1 = 3x = 108^{\circ}$$
 and $\angle 2 = 2x = 72^{\circ}$

As we know, vertically opposite angles are equal.

Pairs of vertically opposite angles are:

$$(\angle 1 = \angle 3)$$
; $(\angle 2 = \angle 4)$; $(\angle 5, \angle 7)$ and $(\angle 6, \angle 8)$

$$\angle 2 = \angle 4 = 72^{\circ}$$

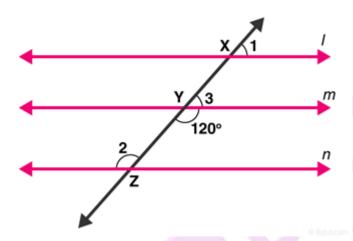
We also know, if a transversal intersects any parallel lines, then the corresponding angles are equal

$$\angle 1 = \angle 5 = \angle 7 = 108^{\circ}$$

$$\angle 2 = \angle 6 = \angle 8 = 72^{\circ}$$

Answer: $\angle 1 = 108^{\circ}$, $\angle 2 = 72^{\circ}$, $\angle 3 = 108^{\circ}$, $\angle 4 = 72^{\circ}$, $\angle 5 = 108^{\circ}$, $\angle 6 = 72^{\circ}$, $\angle 7 = 108^{\circ}$ and $\angle 8 = 72^{\circ}$

Question 2: In figure, I, m and n are parallel lines intersected by transversal p at X, Y and Z respectively. Find $\angle 1$, $\angle 2$ and $\angle 3$.



Solution: From figure:

$$\angle 3 + \angle Y = 180^{\circ}$$
 [Linear pair angles theorem]

Line I is parallel to line m,

$$\angle 1 = \angle 3$$
 [Corresponding angles]

∠1 = 60°

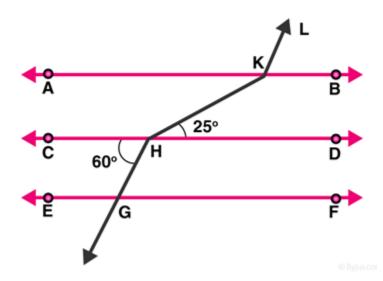
Also, line m is parallel to line n,

$$\angle 2 = \angle Y$$
 [Alternate interior angles are equal]

∠2 = 120°

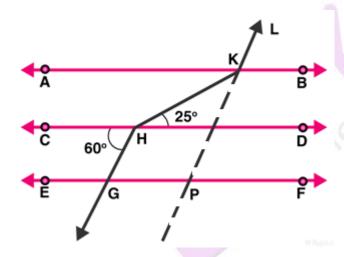
Answer: $\angle 1 = 60^{\circ}$, $\angle 2 = 120^{\circ}$ and $\angle 3 = 60^{\circ}$.

Question 3: In figure, AB || CD || EF and GH || KL. Find ∠HKL.



Solution:

Extend LK to meet line GF at point P.



From figure, CD || GF, so, alternate angles are equal.

$$\angle$$
CHG = \angle HGP = 60°

 \angle HGP = \angle KPF = 60° [Corresponding angles of parallel lines are equal]

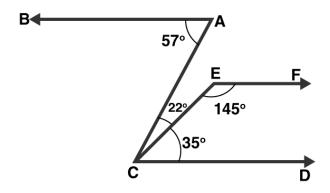
Hence, \angle KPG = 180 - 60 = 120°

=> ∠GPK = ∠AKL= 120° [Corresponding angles of parallel lines are equal]

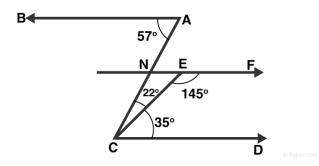
 \angle AKH = \angle KHD = 25° [alternate angles of parallel lines]

Therefore, \angle HKL = \angle AKH + \angle AKL = 25 + 120 = 145°

Question 4: In figure, show that AB || EF.



Solution: Produce EF to intersect AC at point N.



From figure, \angle BAC = 57° and \angle ACD = 22°+35° = 57°

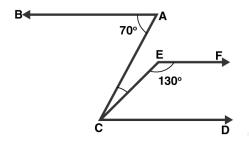
Alternative angles of parallel lines are equal => BA || EF(1)

Sum of Co-interior angles of parallel lines is 180° EF $| \ |$ CD \angle DCE + \angle CEF = 35 + 145 = 180° ...(2) From (1) and (2) AB $| \ |$ EF

[Since, Lines parallel to the same line are parallel to each other]

Hence Proved.

Question 5 : In figure, if AB | | CD and CD | | EF, find ∠ACE.



Solution:

Given: CD || EF

$$\angle$$
 FEC + \angle ECD = 180°

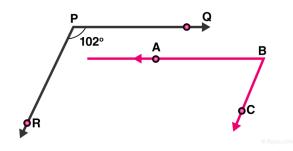
[Sum of co-interior angles is supplementary to each other]

Also, BA || CD

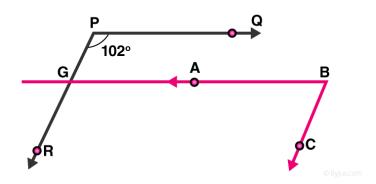
[Alternative angles of parallel lines are equal]

$$=> \angle ACE = 70^{\circ} - 50^{\circ} = 20^{\circ}$$

Question 6: In figure, PQ | AB and PR | BC. If ∠QPR = 102°, determine ∠ABC. Give reasons.



Solution: Extend line AB to meet line PR at point G.



Given: PQ | | AB,

 $\angle QPR = \angle BGR = 102^{\circ}$

[Corresponding angles of parallel lines are equal]

And PR || BC,

∠RGB+ ∠CBG =180°

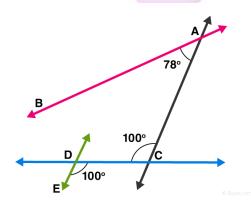
[Corresponding angles are supplementary]

$$\angle$$
CBG = 180° - 102° = 78°

Since, \angle CBG = \angle ABC

=>∠ABC = 78°

Question 7 : In figure, state which lines are parallel and why?



Solution:

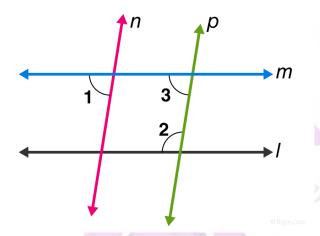
We know, If a transversal intersects two lines such that a pair of alternate interior angles are equal, then the two lines are parallel

From figure:

Lines DE and AC are intersected by a transversal DC such that the pair of alternate angles are equal.

So, DE | | AC

Question 8: In figure, if $| \cdot | \cdot | \cdot |$ p and $\angle 1 = 85^{\circ}$, find $\angle 2$.



Solution:

Given: ∠1 = 85°

As we know, when a line cuts the parallel lines, the pair of alternate interior angles are equal.

Again, co-interior angles are supplementary, so

$$\angle 2 + \angle 3 = 180^{\circ}$$

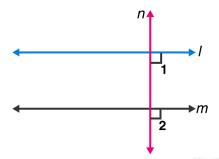
$$\angle 2 = 180^{\circ} - 85^{\circ}$$

Question 9: If two straight lines are perpendicular to the same line, prove that they are parallel to each other.

Solution:

Let lines I and m are perpendicular to n, then

∠1= ∠2=90°



Since, lines I and m cut by a transversal line n and the corresponding angles are equal, which shows that, line I is parallel to line m.

Question 10: Prove that if the two arms of an angle are perpendicular to the two arms of another angle, then the angles are either equal or supplementary.

Solution: Let the angles be ∠ACB and ∠ABD

Let AC perpendicular to AB, and CD is perpendicular to BD.

To Prove : ∠ACD = ∠ABD OR ∠ACD + ∠ABD =180°

Proof:

In a quadrilateral,

$$\angle A+ \angle C+ \angle D+ \angle B=360^{\circ}$$

[Sum of angles of quadrilateral is 360°]

Therefore,
$$\angle ACD + \angle ABD = 180^{\circ}$$

And $\angle ABD = \angle ACD = 90^{\circ}$

Hence, angles are equal as well as supplementary.

Exercise VSAQs

Page No: 8.42

Question 1: Define complementary angles.

Solution: When the sum of two angles is 90 degrees, then the angles are known as complementary angles.

Question 2: Define supplementary angles.

Solution: When the sum of two angles is 180°, then the angles are known as supplementary angles.

Question 3: Define adjacent angles.

Solution: Two angles are Adjacent when they have a common side and a common vertex.

Question 4: The complement of an acute angle is _____.

Solution: An acute angle

Question 5: The supplement of an acute angle is _____.

Solution: An obtuse angle

Question 6: The supplement of a right angle is _____.

Solution: A right angle