

Exercise 9.1

Page No: 9.9

Question 1: In a $\triangle ABC$, if $\angle A = 55^{\circ}$, $\angle B = 40^{\circ}$, find $\angle C$.

Solution:

Given: $\angle A = 55^{\circ}$, $\angle B = 40^{\circ}$

We know, sum of all angles of a triangle is 180⁰

 $\angle A + \angle B + \angle C = 180^{\circ}$

 $55^{\circ} + 40^{\circ} + \angle C = 180^{\circ}$

 $95^{\circ} + \angle C = 180^{\circ}$

 $\angle C = 180^{\circ} - 95^{\circ}$

∠C = 85⁰

Question 2: If the angles of a triangle are in the ratio 1:2:3, determine three angles.

Solution:

Angles of a triangle are in the ratio 1:2:3 (Given)

Let the angles be x, 2x, 3x

Sum of all angles of triangles = 180°

 $x + 2x + 3x = 180^{\circ}$

 $6x = 180^{\circ}$

 $x = 180^{0}/6$

 $x = 30^{0}$

Answer: $x = 30^{0}$

 $2x = 2(30)^0 = 60^0$

 $3x = 3(30)^{0} = 90^{0}$

Question 3: The angles of a triangle are $(x - 40)^{\circ}$, $(x - 20)^{\circ}$ and $(1/2 x - 10)^{\circ}$. Find the value of x.

Solution:

The angles of a triangle are $(x - 40)^{0}$, $(x - 20)^{0}$ and $(1/2 x - 10)^{0}$

Sum of all angles of triangle = 180°

 $(x - 40)^{0}$ + $(x - 20)^{0}$ + $(1/2 x - 10)^{0}$ = 180⁰

 $5/2 x - 70^0 = 1800$

 $5/2 x = 180^{\circ} + 70^{\circ}$

 $5x = 2(250)^{0}$

$$x = 500^{0}/5$$

$$x = 100^{0}$$

Question 4: The angles of a triangle are arranged in ascending order of magnitude. If the difference between two consecutive angles is 10⁰, find the three angles.

Solution:

The difference between two consecutive angles is 10⁰ (given)

Let x, $x + 10^{\circ}$, $x + 20^{\circ}$ be the consecutive angles

 $x + x + 10^{0} + x + 20^{0} = 180^{0}$

 $3x + 30^0 = 180^0$

 $3x = 180^{\circ} - 30^{\circ}$

 $3x = 150^{\circ}$

or $x = 50^{\circ}$

Again, x + $10^{\circ} = 50^{\circ} + 10^{\circ} = 60^{\circ}$ x+ $20^{\circ} = 50^{\circ} + 20^{\circ} = 70^{\circ}$

Answer: Three angles are 50⁰,60⁰ and 70⁰.

Question 5: Two angles of a triangle are equal and the third angle is greater than each of those angles by 30°. Determine all the angles of the triangle.

Solution:

Two angles of a triangle are equal and the third angle is greater than each of those angles by 30° . (Given)

Let x, x, $x + 30^{\circ}$ be the angles of a triangle.

Sum of all angles in a triangle = 180°

 $x + x + x + 30^0 = 180^0$

 $3x + 30^0 = 180^0$

 $3x = 150^{0}$

or x = 50⁰

And $x + 30^{\circ} = 50^{\circ} + 30^{\circ} = 80^{\circ}$

Answer: Three angles are 50° , 50° and 80° .

Question 6: If one angle of a triangle is equal to the sum of the other two, show that the triangle is a right angle triangle.

Solution:

One angle of a triangle is equal to the sum of the other two angles (given)

To Prove: One of the angles is 90⁰

Let x, y and z are three angles of a triangle, where

z = x + y ...(1)

Sum of all angles of a triangle = 180°

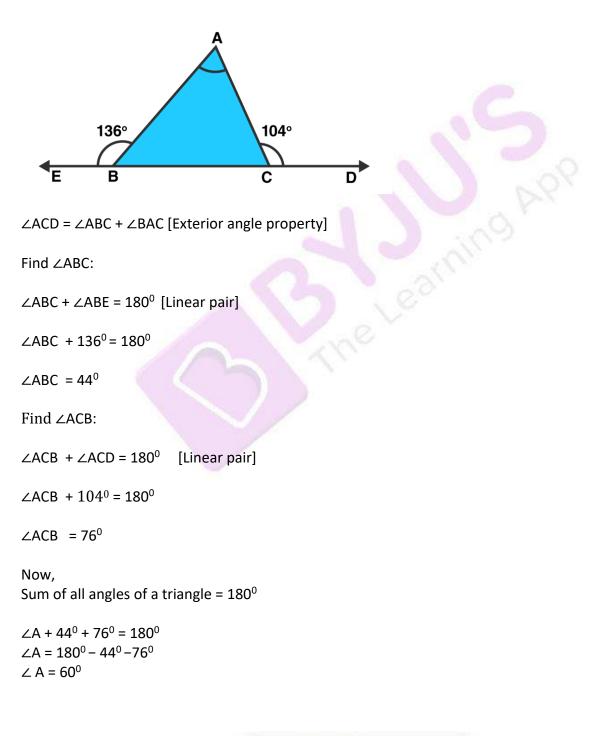
 $x + y + z = 180^{0}$

 $z + z = 180^{\circ}$ (Using equation (1))

2z = 180⁰ z = 90⁰ (Proved)

Therefore, triangle is a right angled triangle.

Brie Leanning Apy



Exercise 9.2

Page No: 9.18

Question 1: The exterior angles, obtained on producing the base of a triangle both ways are 104[°] and 136[°]. Find all the angles of the triangle.

Solution:

Answer: Angles of a triangle are $\angle A = 60^{\circ}$, $\angle B = 44^{\circ}$ and $\angle C = 76^{\circ}$

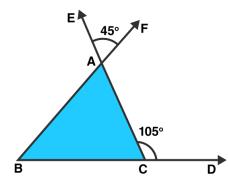
Question 2: In a $\triangle ABC$, the internal bisectors of $\angle B$ and $\angle C$ meet at P and the external bisectors of $\angle B$ and $\angle C$ meet at Q. Prove that $\angle BPC + \angle BQC = 180^{\circ}$.

Solution:

In triangle ABC,

BP and CP are internal bisector of $\angle B$ and $\angle C$ respectively => External $\angle B$ = 180° - $\angle B$

BQ and CQ are external bisector of $\angle B$ and $\angle C$ respectively. => External $\angle C$ = 180° - $\angle C$

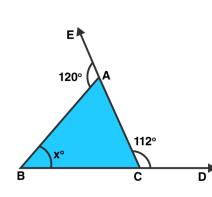

In triangle BPC, \angle BPC + 1/2 \angle B + 1/2 \angle C = 1800

 $\angle BPC = 180^{\circ} - (\angle B + \angle C) \dots (1)$

In triangle BQC, $\angle BQC + 1/2(180^{\circ} - \angle B) + 1/2(180^{\circ} - \angle C) = 180^{\circ}$ $\angle BQC + 180^{\circ} - (\angle B + \angle C) = 180^{\circ}$ $\angle BPC + \angle BQC = 180^{\circ}$ [Using (1)]

Hence Proved.

Question 3: In figure, the sides BC, CA and AB of a \triangle ABC have been produced to D, E and F respectively. If \triangle ACD = 105° and \triangle EAF = 45°, find all the angles of the \triangle ABC.

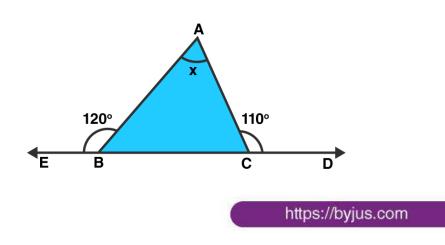


Solution:

(i)

- $\angle BAC = \angle EAF = 45^{\circ}$ [Vertically opposite angles]
- $\angle ACD = 180^{\circ} 105^{\circ} = 75^{\circ}$ [Linear pair]
- $\angle ABC = 105^{\circ} 45^{\circ} = 60^{\circ}$ [Exterior angle property]

Question 4: Compute the value of x in each of the following figures:


Solution:

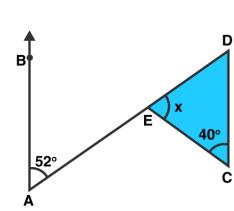
 $\angle BAC = 180^{\circ} - 120^{\circ} = 60^{\circ}$ [Linear pair] $\angle ACB = 180^{\circ} - 112^{\circ} = 68^{\circ}$ [Linear pair]

Sum of all angles of a triangle = 180°

 $x = 180^{\circ} - \angle BAC - \angle ACB$ = 180^{\extrm{0}} - 60^{\extrm{0}} - 68^{\extrm{0}} = 52^{\extrm{0}} Answer: x = 52^{\extrm{0}}

(ii)

Solution:


 $\angle ABC = 180^{\circ} - 120^{\circ} = 60^{\circ}$ [Linear pair] $\angle ACB = 180^{\circ} - 110^{\circ} = 70^{\circ}$ [Linear pair]

Sum of all angles of a triangle = 180°

 $x = \angle BAC = 180^{\circ} - \angle ABC - \angle ACB$ = 1800 - 60^{\circ} - 70^{\circ} = 50^{\circ}

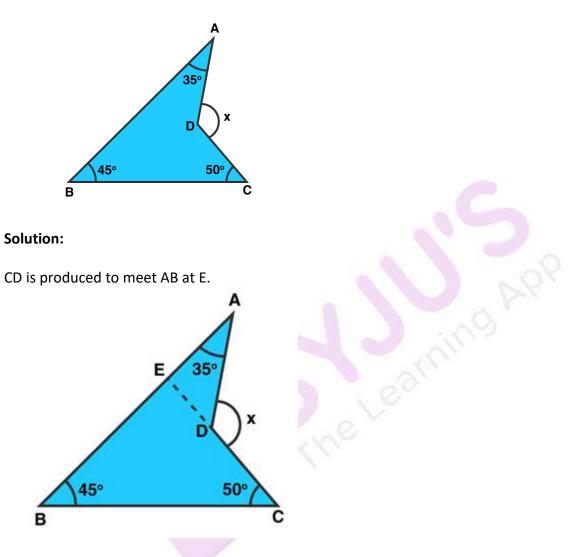
Answer: $x = 50^{\circ}$

(iii)

Solution:

 $\angle BAE = \angle EDC = 52^{\circ}$ [Alternate angles]

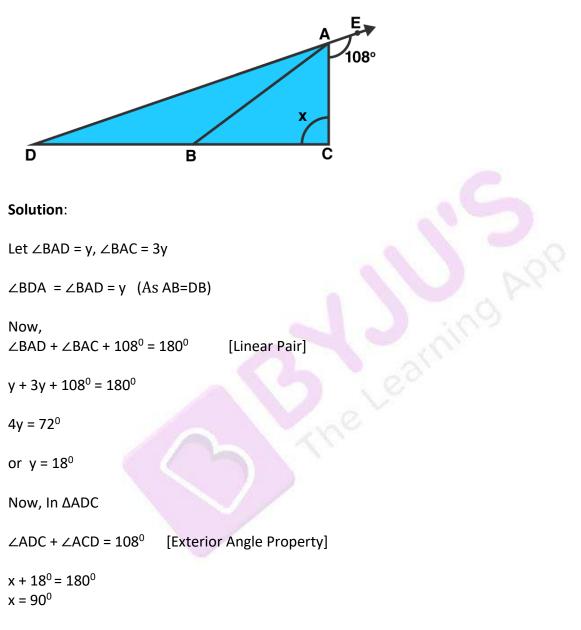
Sum of all angles of a triangle = 180°


 $x = 180^{\circ} - 40^{\circ} - 52^{\circ} = 180^{\circ} - 92^{\circ} = 88^{\circ}$

Answer: $x = 88^{\circ}$

RD Sharma Solutions for Class 9 Maths Chapter 9 Triangle and its Angles

(iv)



- $\angle BEC = 180^{\circ} 45^{\circ} 50^{\circ} = 85^{\circ}$ [Sum of all angles of a triangle = 180°]
- $\angle AEC = 180^{\circ} 85^{\circ} = 95^{\circ}$ [Linear Pair]
- Now, $x = 95^{\circ} + 35^{\circ} = 130^{\circ}$ [Exterior angle Property]

Answer: $x = 130^{\circ}$

Question 5: In figure, AB divides \angle DAC in the ratio 1 : 3 and AB = DB. Determine the value of x.

Answer: $x = 90^{\circ}$

Exercise VSAQs

Page No: 9.21

Question 1: Define a triangle.

Solution: Triangle is a three-sided polygon that consists of three edges and three vertices. The most important property of a triangle is that the sum of the internal angles of a triangle is equal to 180 degrees.

Question 2: Write the sum of the angles of an obtuse triangle.

Solution: The sum of angles of obtuse triangle = 180°.

Question 3: In $\triangle ABC$, if $\angle B = 60^{\circ}$, $\angle C = 80^{\circ}$ and the bisectors of angles $\angle ABC$ and $\angle ACB$ meet at point O, then find the measure of $\angle BOC$.

Solution: $\angle B = 60^{\circ}, \angle C = 80^{\circ}$ (given)

As per question: $\angle OBC = 60^{\circ}/2 = 30^{\circ}$ and

 $\angle OCB = 80^{0}/2 = 40^{0}$

In triangle BOC,

 $\angle OBC + \angle OCB + \angle BOC = 180^{0}$

[Sum of angles of a triangle = 180°]

 $30^{0} + 40^{0} + \angle BOC = 180^{0}$

 $\angle BOC = 110^{0}$

Question 4: If the angles of a triangle are in the ratio 2:1:3, then find the measure of smallest angle. Solution:

Let angles of a triangles are 2x, x and 3x, where x is the smallest angle. To find: measure of x. As, Sum of angles of a triangle = 180° $2x + x + 3x = 180^{\circ}$ $6x = 180^{\circ}$

x = 30⁰. Answer

Question 5: If the angles A, B and C of \triangle ABC satisfy the relation B - A = C - B, then find the measure of \angle B. Solution: Sum of angles of a triangle = 180° A + B + C = 180° ...(1)

- B A = C B ...(Given)
- 2B = C + A ...(2)
- $(1) => 2B + B = 180^{\circ}$
- $3B = 180^{\circ}$

Or B = 60°

