

Exercise 7C

Page No: 413

Question 1: $\triangle ABC \sim \triangle DEF$ and their areas are respectively 64 cm² and 121 cm². If EF = 15.4 cm, find BC.

Solution:

Area of $\triangle ABC = 64 \text{ cm}^2$ and area of $\triangle DEF = 121 \text{ cm}^2$ EF = 15.4 cm $\frac{\text{area of } \triangle ABC}{\text{area of } \triangle DEF} = \frac{BC^2}{EF^2}$ $\frac{64}{121} = \frac{BC^2}{(15.4)^2}$ $\left(\frac{8}{11}\right)^2 = \left(\frac{BC}{15.4}\right)^2$ $\frac{8}{11} = \frac{BC}{15.4}$ $BC = \frac{8 \times 15.4}{11} = 11.2$ BC = 11.2 cm

Question 2: The areas of two similar triangles ABC and PQR are in the ratio 9 : 16. If BC = 4.5 cm, find the length of QR.

Solution:

The areas of two similar triangles ABC and PQR are in the ratio 9 : 16. BC = 4.5 cm

 $\frac{\text{area }\Delta ABC}{\text{area }\Delta PQR} = \frac{(BC)^2}{(EF)^2} = \frac{9}{16}$

$$\frac{\text{area } \Delta ABC}{\text{area } \Delta PQR} = \frac{BC^2}{QR^2}$$
$$\frac{9}{16} = \frac{(4.5)^2}{QR^2}$$
$$\left(\frac{3}{4}\right)^2 = \left(\frac{4.5}{QR}\right)^2$$
$$\frac{3}{4} = \frac{4.5}{QR}$$

QR = 6 cm

Question 3: $\triangle ABC \sim \triangle PQR$ and ar ($\triangle ABC$) = 4ar ($\triangle PQR$). If BC = 12 cm, find QR.

Solution:

 $\Delta ABC \sim \Delta PQR$ ar (ΔABC) = 4ar (ΔPQR)

 $\frac{\text{area }\Delta ABC}{\text{area }\Delta PQR} = \frac{4}{1}$

 $\frac{\text{area} (\Delta ABC)}{\text{area} (\Delta PQR)} = \frac{BC^2}{QR^2}$

$$\frac{4}{1} = \frac{BC^2}{QR^2} \Rightarrow \left(\frac{2}{1}\right)^2 = \left(\frac{12}{QR}\right)^2$$

$$\frac{2}{1} = \frac{12}{QR} \Rightarrow QR = \frac{12 \times 1}{2} = 6$$

QR = 6 cm

Question 4: The areas of two similar triangles are 169 cm² and 121 cm² respectively. If the longest side of the larger triangle is 26 cm, find the longest side of the smaller triangle.

Solution:

Areas of two similar triangles are 169 cm^2 and 121 cm^2 (given) Longest side of largest triangle = 26 cm

https://byjus.com

Let longest side of smallest triangle is x cm

 $\frac{\text{Area of largest triangle}}{\text{area of smallest triangle}} = \frac{(\text{longest side of longest} \Delta)}{\text{longest side of smallest} \Delta}$

$$\frac{169}{121} = \frac{(26)^2}{x^2}$$
$$\left(\frac{13}{11}\right)^2 = \left(\frac{26}{x}\right)^2$$
$$\frac{13}{11} = \frac{26}{x}$$

$$x = \frac{11 \times 26}{13} = 22$$

Longest side of smallest triangle is 22 cm

Question 5: $\triangle ABC \sim \triangle DEF$ and their areas are respectively 100 cm² and 49 cm². If the altitude of $\triangle ABC$ is 5 cm, find the corresponding altitude of $\triangle DEF$.

Solution:

Area of $\triangle ABC = 100 \text{ cm}^2$ area of $\triangle DEF = 49 \text{ cm}^2$ Altitude of $\triangle ABC$ is 5 cm

AL \perp BC and DM \perp EF

Let DM = x cm

area of $\triangle ABC$	AL^2
area of ∆DEF	$\overline{DM^2}$

$$\frac{100}{49} = \frac{(5)^2}{(x)^2}$$
$$\left(\frac{10}{7}\right)^2 = \left(\frac{5}{x}\right)^2$$
$$\frac{10}{7} = \frac{5}{x}$$
Or x = 3.5

Altitude of smaller triangle is 3.5 cm

Question 6: The corresponding altitudes of two similar triangles are 6 cm and 9 cm respectively. Find the ratio of their areas.

Solution:

Corresponding altitudes of two similar triangles are 6 cm and 9 cm (given)

We know that the areas of two similar triangles are in the ratio of the squares of their corresponding altitudes.

Ratio in the areas of two similar triangles = $(6)^2$: $(9)^2$ = 36 : 81 = 4 : 9

Question 7: The areas of two similar triangles are 81 cm² and 49 cm² respectively. If the altitude of the first triangle is 6.3 cm, find the corresponding altitude of the other.

Solution: Areas of two similar triangles are 81 cm² and 49 cm² Altitude of the first triangle = 6.3 cm Let altitude of second triangle = x cm

Area of $\triangle ABC = 81 \text{ cm}^2$ and area of $\triangle DEF = 49 \text{ cm}^2$

Altitude AL = 6 - 3 cm

Let altitude DM = x cm

https://byjus.com

$$\frac{\text{area of } \Delta ABC}{\text{area of } \Delta DEF} = \frac{AL^2}{DM^2}$$
$$\frac{81}{49} = \frac{(6.3)^2}{x^2}$$
$$\left(\frac{9}{7}\right)^2 = \left(\frac{6.3}{x}\right)^2$$
$$\frac{9}{7} = \frac{6.3}{x}$$
$$x = 4.9$$

Altitude of second triangle is 4.9 cm

Question 8: The areas of two similar triangles are 100 cm² and 64 cm² respectively. If a median of the smaller triangle is 5.6 cm, find the corresponding median of the other.

Solution:

Areas of two similar triangles are 100 cm² and 64 cm²

Median DM of Δ DEF = 5.6 cm Let median AL of Δ ABC = x

 $\frac{\text{area of } \Delta \text{ABC}}{\text{area of } \Delta \text{DEF}} = \frac{\text{AL}^2}{\text{DM}^2}$

$$\frac{100}{64} = \frac{x^2}{(5.6)^2}$$
$$\left(\frac{10}{8}\right)^2 = \left(\frac{x}{5.6}\right)^2$$
$$\frac{10}{8} = \frac{x}{5.6}$$

$$x = 7$$

Corresponding median of the other triangle is 7 cm.

Question 9: In the given figure, ABC is a triangle and PQ is a straight line meeting AB in P and AC in Q. If AP = 1 cm, PB = 3cm, AQ = 1.5 cm, QC = 4.5 cm, prove that area of Δ APQ is 1/16 of the area of Δ ABC.

Solution:

In \triangle ABC, PQ is a line which meets AB in P and AC in Q. Given: AP = 1 cm, PB = 3 cm, AQ = 1.5 cm QC = 4.5 cm

Now, AP/PB = 1/3 and AQ/QC = 1.5/4.5 = 1/3

=> AP/PB = AQ/QC

From figure: AB = AP + PB = 1+3 = 4 cmAC = AQ + QC = 1.5 + 4.5 = 6 cm

In $\triangle APQ$ and $\triangle ABC$,

AP/AB = AQ/AC

angle A (common) Δ APQ and Δ ABC are similar triangles. Now,

 $\frac{\text{area of } (\Delta APQ)}{\text{area of } (\Delta ABC)} = \frac{AP^2}{AB^2} = \frac{(1)^2}{(4)^2} = \frac{1}{16}$

Which implies, area of $\triangle APQ = 1/16$ of the area of $\triangle ABC$ Hence Proved.

Question 10: In the given figure, DE || BC. If DE = 3 cm, BC = 6 cm and ar (ΔADE) = 15 cm², find the area of ΔABC .

Solution:

DE || BC DE = 3 cm, BC = 6 cm area (Δ ADE) = 15 cm²

Now, In \triangle ABC DE ||BC. Therefore triangles, \triangle ADE and \triangle ABC are similar. $\frac{\text{area of } (\triangle ADE)}{\text{area of } (\triangle ABC)} = \frac{DE^2}{BC^2}$ $\frac{15}{\text{Area of } \triangle ABC} = \frac{(3)^2}{(6)^2} = \frac{9}{36}$

Area of
$$\triangle ABC = \frac{15 \times 36}{9} = 60$$

Area of \triangle ABC is 60 cm².