Exercise 9A Page No: 518

Question 1: Draw a line segment AB of length 7 cm. Using ruler and compasses, find a point P on AB such that AP/AB = 3/5.

Solution:

Steps of Construction:

- 1. Draw a line segment AB = 7cm.
- 2. Draw a line from A making an acute angle with line segment AB.
- 3. Taking A as center draw an arc cutting at A_1 on the line. And with the same radius consider A_1 as a center and draw another arc cutting line at A_2 . Repeat the same procedure and divide the line AX from A into 8 equal parts: AA_1 , A_1A_2 , A_2A_3 , A_3A_4 , A_4A_5 , A_5A_6 , A_6A_7 and A_7A_8
- 4. Join A₈ and B by drawing a line.
- 5. Draw a parallel line to A₈B from A₃ which divides line segment AB at point P.
- 6. P is the required point such that AP/AB = 3/5.

Question 2:

(i) Draw a line segment of length 8 cm and divide it internally in the ratio 4:5.

Solution:

Steps of construction:

- 1. Draw a line segment AB = 8 cm.
- 2. Draw a ray AX making an acute angle at A with AB.
- 3. Draw another ray BY parallel to AX making an acute angle. Make sure angle must be same as considered in step 2.
- 4.Taking A as center draw an arc cutting at A_1 on the line. Taking same radius consider A_1 as a center and draw another arc cutting line at A_2 . Repeat the same procedure and divide the line AX into 4 points A1, A2, A3, A4. In such a way, AA1=A1A2=A2A3=A3A4
- 5. Similar to step 4,

Taking B as center draw an arc cutting at B1 on the line.

Taking same radius (set in step 4) consider B1 as a center and draw another arc cutting line at B2. Repeat the same procedure and divide the line BYinto 5 points in such a way that BB1 = B1B2= B2B3= B3B4 = B4B5

- 6. Join A4B5
- 7.Line A4B5 intersect AB at a point P.

Therefore, P is the point dividing the line segment AB internally in the ratio of 4:5.

(ii)Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts.

Solution:

Steps of construction:

- 1. Draw a line segment AB = 7.6 cm.
- 2. Draw a ray AX making an acute angle at A with AB.
- 3. Draw another ray BY parallel to AX making an acute angle. Make sure angle must be same as considered in step 2.
- 4. Taking A as center draw an arc cutting at A1 on the line.

 Taking same radius consider A1 as a center and draw another arc cutting line at A2.

 Repeat the same procedure and divide the line AX into 5 points A1, A2, A3, A4 and A5 In such a way, AA1 = A1A2 = A2A3 = A3A4 = A4A5
- 5. Similar to step 4,

Taking B as center draw an arc cutting at B1 on the line.

Taking same radius (set in step 4) consider B1 as a center and draw another arc cutting line at B2.

Repeat the same procedure and divide the line BY into 8 points in such a way that BB1 = B1B2 = B2B3 = B3B4 = B4B5 = B5B6 = B6B7 = B7B8

- 6. Join A5B8
- 7. Line A5B8 intersect AB at a point P in the ratio 5:8
- 8. Measurement: PB = 4.7 cm and AP = 2.9 cm

Question 3: Construct a Δ PQR, in which PQ = 6 cm, QR = 7 cm and PR = 8 cm. Then, construct another triangle whose sides are 4/5 times the corresponding sides of Δ PQR.

Solution:

Steps of construction:

- 1. Draw a line segment PQ = 6 cm.
 - 2. Draw an arc, using P as a center and radius = 8 cm
 - 3. Draw another arc, using Q as a center and radius = 7 cm
 - 4. Now, join PR and QR to get △PQR
 - 5. Draw a ray PX by making an acute angle, angle QPX
 - 6. Divide PX into 4 equal parts

$$P_1$$
, P_2 , P_3 , P_4 , P_5 such that $PP_1 = P_1P_2 = P_2P_3 = P_3P_4 = P_4P_5$

- 7. Join P5Q
- 8. Draw a line P4Q' which is parallel to P5Q
- 9. Similar to step 8, draw a line Q'R' which is parallel to QR

Therefore, $\triangle PQ'R'$ is the required triangle.

Question 4: Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another triangle whose sides are 7/5 of the corresponding sides of first triangle.

Solution:

Steps of construction:

- 1. Draw a line segment BC = 5 cm.
- 2. Draw an arc, using B as a center and radius = 6 cm
- 3. Draw another arc, using C as a center and radius = 7 cm
- 4. Now, join AC and AB to get \triangle ABC
- 5. Draw a ray BX by making an acute angle, angle CBX
- 6.

Along BX, mark off 7 points $R_1, R_2, R_3, R_4, R_5, R_6, R_7$ such that $BR_1 = R_1R_2 = R_2R_3 = R_3R_4 = = R_6R_7$

- 7. Join R5C
- 8. Draw a line R7C' which is parallel to R5C
- 9. Similar to step 8, draw a line C'A' which is parallel to CA

Therefore, $\triangle A'BC'$ is the required triangle.

Question 5: Construct a $\triangle ABC$, with BC = 7 cm, $\angle B$ = 60° and AB = 6 cm. Construct another triangle whose sides are times the corresponding sides of $\triangle ABC$.

Solution:

Steps of Construction:

1. Draw a triangle ABC with BC = 7 cm, \angle B = 60^0 and AB = 6 cm.

- 2. Draw a ray BX making an acute angle with the line BC.
- 3. Divide BX into 4 equal arcs starting from B till B4. As shown in the below image.

4. Join B4C. Also draw a line from B3 parallel to B4C passing BC at C'.

5.Draw another line from C' parallel to CA passing AB at A'.

Thus, $\triangle A'BC'$ is required triangle.

Question 6: Construct a $\triangle ABC$ in which AB = 6 cm, $\angle A = 30^{\circ}$ and $\angle B = 60^{\circ}$. Construct another $\triangle AB'C'$ similar to $\triangle ABC$ with base AB' = 8 cm.

Solution:

Construct a \triangle ABC in which AB = 6 cm, \angle A = 30°o and \angle B = 60°o. Construct another \triangle AB'C' similar to \triangle ABC with base AB' = 8 cm.

- 1. Draw a line segment AB = 6cm and extend it to B' such that AB' = 8 cm.
- 2. Make an angle of 30° from A and angle of 60° from B. The point where these extended rays meet is C.

- 3. Draw an angle of 60° from B' (Similar triangles)
- 4. Extend line AC along C such that ray passing through point B' Cut AX at C'.
- 5. AB'C' is the required triangle.

Question 7: Construct a \triangle ABC in which BC = 8 cm, \angle B = 45^0 and \angle C = 60^0. Construct another triangle similar to \triangle ABC such that its sides are 3/5 of the corresponding sides of \triangle ABC.

Solution:

Steps of Construction:

- 1. Draw a line segment BC = 8 cm.
- 2. Construct a triangle ABC based on given instructions.
- 3. Draw an arc below BC, by making an acute angle, angle CBZ
- 4. Divide BZ into 5 equal parts.

such that
$$BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5$$

- 5. Join B5C
- 6. Draw a line B3C' which is parallel to B5C and join C'A' which is parallel to CA.

Therefore, $\triangle A'BC'$ is the required triangle.

Question 8: To construct a triangle similar to $\triangle ABC$ in which BC = 4.5 cm, $\angle B$ = 45°0 and $\angle C$ = 60°0, using a scale factor of 3/7, BC will be divided in the ratio.

Solution:

BC will be divided in the ratio 3: 4. Option (a) is correct.

Question 9: Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are 1_1/2 (or 3/2) times the corresponding sides of the isosceles triangle.

Solution:

Steps of Construction:

- 1. Draw a line segment BC = 8 cm.
- 2. Draw a perpendicular bisector PQ of BC dividing BC at point M.
- 3. From QP cut off a distance MA = 4cm
- 4. Join AC and AB
- 5. Draw an arc below BC, by making an acute angle, angle CBX
- 6.

Along BX, mark off 3 points

 B_1, B_2, B_3 such that $BB_1 = B_1B_2 = B_2B_3$.

- 7. Join B2C
- 8. Join B3C'which is parallel to B2C and Join A'C' which is parallel to AC

Thus, $\triangle A'BC'$ is required triangle.

Question 10: Draw a right triangle in which sides (other than hypotenuse) are of lengths 4 cm and 3 cm. Then, construct another triangle whose sides are 5/3 times the corresponding sides of the given triangle.

Solution:

Steps to construction:

1. Draw a line segment BC = 4 cm.

- 2. Construct, angle B = 90 degrees
- 3. Cut BA at the radius of 3 cm from BQ
- 4. Join AC (we have right triangle ABC)
- 5. Draw a ray BX and make an acute below BC, i.e. angle CBX
- 6. Along BX, mark off 5 points B_1 , B_2 , B_3 , B_4 , B_5 such that $BB_1 = B_1B_2 = \dots = R_4R_5$
- 7. Join B3C
- 8. Join B5C' which is parallel to B3C and C'A' which is parallel to AC.

