CHEMISTRY #### **PAPER-I** #### 1. Atomic Structure: Heisenberg's uncertainty principle Schrodinger wave equation (time independent); Interpretation of wave function, particle in one- dimensional box, quantum numbers, hydrogen atom wave functions; Shapes of s, p and d orbitals. #### 2. Chemical bonding: Ionic bond, characteristics of ionic compounds, lattice energy, Born-Haber cycle; covalent bond and its general characteristics, polarities of bonds in molecules and their dipole moments; Valence bond theory, concept of resonance and resonance energy; Molecular orbital theory (LCAO method); bonding H2 +, H2 He2 + to Ne2, NO, CO, HF, CN-, Comparison of valence bond and molecular orbital theories, bond order, bond strength and bond length. 3. **Solid State**: Crystal systems; Designation of crystal faces, lattice structures and unit cell; Bragg's law; X-ray diffraction by crystals; Close packing, radius ratio rules, calculation of some limiting radius ratio values; Structures of NaCl, ZnS, CsCl, CaF2; Stoichiometric and nonstoichiometric defects, impurity defects, semi-conductors. # 4. The Gaseous State and Transport Phenomenon: Equation of state for real gases, intermolecular interactions, and critical phenomena and liquefaction of gases; Maxwell's distribution of speeds, intermolecular collisions, collisions on the wall and effusion; Thermal conductivity and viscosity of ideal gases. ### 5. **Liquid State**: Kelvin equation; Surface tension and surface enercy, wetting and contact angle, interfacial tension and capillary action. ### 6. **Thermodynamics:** Work, heat and internal energy; first law of thermodynamics. Second law of thermodynamics; entropy as a state function, entropy changes in various processes, entropy-reversibility and irreversibility, Free energy functions; Thermodynamic equation of state; Maxwell relations; Temperature, volume and pressure dependence of U, H, A, G, Cp and Cv, and; J-T effect and inversion temperature; criteria for equilibrium, relation between equilibrium constant and thermodynamic quantities; Nernst heat theorem, introductory idea of third law of thermodynamics. # 7. Phase Equilibria and Solutions: Clausius-Clapeyron equation; phase diagram for a pure substance; phase equilibria in binary systems, partially miscible liquids—upper and lower critical solution temperatures; partial molar quantities, their significance and determination; excess thermodynamic functions and their determination. # 8. **Electrochemistry**: Debye-Huckel theory of strong electrolytes and Debye-Huckel limiting Law for various equilibrium and transport properties. Galvanic cells, concentration cells; electrochemical series, measurement of e.m.f. of cells and its applications fuel cells and batteries. Processes at electrodes; double layer at the interface; rate of charge transfer, current density; overpotential; electroanalytical techniques: amperometry, ion selective electrodes and their use. # 9. Chemical Kinetics: Differential and integral rate equations for zeroth, first, second and fractional order reactions; Rate equations involving reverse, parallel, consecutive and chain reactions; Branching chain and explosions; effect of temperature and pressure on rate constant. Study of fast reactions by stop-flow and relaxation methods. Collisions and transition state theories. # 10. **Photochemistry:** Absorption of light; decay of excited state by different routes; photochemical reactions between hydrogen and halogens and their quantum yields. ### 11. Surface Phenomena and Catalysis: Adsorption from gases and solutions on solid adsorbents; Langmuir and B.E.T. adsorption isotherms; determination of surface area, characteristics and mechanism of reaction on heterogeneous catalysts. # 12. **Bio-inorganic Chemistry:** Metal ions in biological systems and their role in ion-transport across the membranes (molecular mechanism), oxygen-uptake proteins, cytochromes and ferrodoxins. ### 13. **Coordination Chemistry**: - (i) Bonding in transition of metal complexes. Valence bond theory, crystal field theory and its modifications; applications of theories in the explanation of magnetism and elctronic spectra of metal complexes. - (ii) Isomerism in coordination compounds; IUPAC nomenclature of coordination compounds; stereochemistry of complexes with 4 and 6 coordination numbers; chelate effect and polynuclear complexes; trans effect and its theories; kinetics of substitution reactions in square-planar complexes; thermodynamic and kinetic stability of complexes. - (iii) EAN rule, Synthesis structure and reactivity of metal carbonyls; carboxylate anions, carbonyl hydrides and metal nitrosyl compounds. - (iv) Complexes with aromatic systems, synthesis, structure and bonding in metal olefin complexes, alkyne complexes and cyclopentadienyl complexes; coordinative unsaturation, oxidative addition reactions, insertion reactions, fluxional molecules and their characterization; Compounds with metal—metal bonds and metal atom clusters. ## 14. Main Group Chemistry: Boranes, borazines, phosphazenes and cyclic phosphazene, silicates and silicones, Interhalogen compounds; Sulphur—nitrogen compounds, noble gas compounds. # 15. General Chemistry of 'f' Block Element: Lanthanides and actinides: separation, oxidation states, magnetic and spectral properties; lanthanide contraction. #### PAPER-II # 1. Delocalised Covalent Bonding : Aromaticity, anti-aromaticity; annulenes, azulenes, tropolones, fulvenes, sydnones. - 2. (i) **Reaction mechanisms**: General methods (both kinetic and non-kinetic) of study of mechanisms or organic reactions: isotopies, mathod cross-over experiment, intermediate trapping, stereochemistry; energy of activation; thermodynamic control and kinetic control of reactions. - (ii) **Reactive intermediates**: Generation, geometry, stability and reactions of carboniumions and carbanions, free radicals, carbenes, benzynes and nitrenes. - (iii) **Substitution reactions**:—SN 1, SN 2, and SN i, mechanisms; neighbouring group participation; electrophilic and nucleophilic reactions of aromatic compounds including heterocyclic compounds—pyrrole, furan, thiophene and indole. - (iv) **Elimination reactions**:—E1, E2 and E1cb mechanisms; orientation in E2 reactions—Saytzeff and Hoffmann; pyrolytic *syn* elimination—acetate pyrolysis, Chugaev and Cope eliminations. - (v) **Addition reactions**:—Electrophilic addition to C=C and C C; nucleophilic addition to C=O, C N, conjugated olefins and carbonyls. - (vi) **Reactions and Rearrangements**:—(a) Pinacol-pinacolone, Hoffmann, Beckmann, Baeyer-Villiger, Favorskii, Fries, Claisen, Cope, Stevens and Wagner—Meerwein rearrangements. - (b) Aldol condensation, Claisen condensation, Dieckmann, Perkin, Knoevenagel, Witting, Clemmensen, Wolff-Kishner, Cannizzaro and von Richter reactions; Stobbe, benzoin and acyloin condensations; Fischer indole synthesis, Skraup synthesis, Bischler-Napieralski, Sandmeyer, Reimer-Tiemann and Reformatsky reactions. - 3. **Pericyclic reactions :—**Classification and examples; Woodward-Hoffmann rules—electrocyclic reactions, cycloaddition reactions [2+2 and 4+2] and sigmatropic shifts [1, 3; 3, 3 and 1, 5], FMO approach. - **4.** (i) **Preparation and Properties of Polymers:** Organic polymerspolyethylene, polystyrene, polyvinyl chloride, teflon, nylon, terylene, synthetic and natural rubber. - (ii) Biopolymers: Structure of proteins, DNA and RNA. # 5. Synthetic Uses of Reagents: OsO4, HlO4, CrO3, Pb(OAc)4, SeO2, NBS, B2H6, Na-Liquid NH3, LiAIH4, NaBH4, <u>n</u>-BuLi, MCPBA. **6. Photochemistry:**—Photochemical reactions of simple organic compounds, excited and ground states, singlet and triplet states, Norrish-Type I and Type II reactions. # 7. Spectroscopy: Principle and applications in structure elucidation: - (i) **Rotational**—Diatomic molecules; isotopic substitution and rotational constants. - (ii) **Vibrational**—Diatomic molecules, linear triatomic molecules, specific frequencies of functional groups in polyatomic molecules. - (iii) **Electronic**—Singlet and triplet states. *n* and transitions; application to conjugated double bonds and conjugated carbonyls Woodward-Fieser rules; Charge transfer spectra. - (iv) **Nuclear Magnetic Resonance (1HNMR):** Basic principle; chemical shift and spinspin interaction and coupling constants. - (v) **Mass Spectrometry:**—Parent peak, base peak, metastable peak, McLafferty rearrangement.