CBSE Board Class 10 Maths Chapter 14- Statistics Objective Questions

Introduction to Statistics

1. Class mark of a class is obtained by using
(A) (upper limit - lower limit) / 2
(B) (upper limit + lower limit) / 2
(C) upper limit - lower limit
(D) Upper limit + lower limit

Answer: (B) (upper limit + lower limit) / 2
Solution: Class mark is the midpoint of a class interval. Therefore, its formula is given by (upper limit + lower limit) / 2
2. Look at the following table below.

Classinterval	Classmark
$0-5$	A
$5-10$	B
$10-15$	12.5
$15-20$	17.5

The value of A \& B respectively are:
(A) 3,8
(B) 2,7
(C) 3,7
(D) 2.5, 7.5

Answer: (D) 2.5, 7.5
Solution: Class mark for a class interval = (Upper-class limit + Lower-class limit)/ 2

For first class upper class limit is 5 and lower is 0 . Thus class mark for it is 2.5 using formula.

For $2^{\text {nd }}$ class upper class limit is 10 and lower limit is 5 . Thus class mark for it is 7.5 .
3. If the sum of all the frequencies is 24 , then the value of z is:

Variable (x)	1	2	3	4	5
Frequency	z	5	6	1	2

(A) 4
(B) 6
(C) 8
(D) 10

Answer: (D) 10
Solution: Here, $n=\sum \mathrm{fi}=\mathrm{z}+5+6+1+2=14+z$
Given: $\sum \mathrm{fi}=24$
$\therefore \mathrm{n}=\sum \mathrm{fi}=14+\mathrm{z}=24$
$\Rightarrow z=24-14=10$.

Mean

4. The value of $\sum n i=1 x i$ is
(A)
$\frac{\bar{x}}{2}$
(B) $2 \bar{X}$
(C) $n \bar{X}$
(D) $\frac{\bar{X}}{n}$
(D)

Answer: (C) $n \bar{X}$

$$
\bar{X}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

Solution:

Therefore, $\sum_{i=1}^{n} x_{i}=\mathrm{n} \bar{X}$
5. The mean of the following distribution is

$\mathbf{x}_{\mathbf{i}}$	10	13	16	19
$\mathbf{f}_{\mathbf{i}}$	2	5	7	6

(A) 15.2
(B) 16
(C) 15.55
(D) 15.35

Answer: (C) 15.55

Solution:

x_{i}	f_{i}	$f_{i} x_{i}$
10	2	20
13	5	65
16	7	112
19	6	114
	$\sum f_{i}=20$	$\sum f_{i} x_{i}=311$

Mean $=\frac{\sum f_{i} x_{i}}{\sum f_{i}}$
$=311 / 20$
$=15.55$
6.

x_{i}	f_{i}	$f_{i} x_{i}$
4	10	$A-\ldots \ldots \ldots$
8	11	$B-\ldots \ldots \ldots$
12	9	$C-\ldots \ldots \ldots$
16	13	$D-\ldots \ldots \ldots$
		$\sum f_{i} x_{i}=\ldots \ldots \ldots$

Find the value of $\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
(A) 208
(B) 444
(C) 88
(D) 40

Answer: (B) 444

Solution: Each term on right most column is the product of corresponding 2 terms on $1^{\text {st }} 2$ columns. $1^{\text {st }}$ column is class marks list. $2^{\text {nd }}$ column is frequencies for these columns. The $3^{\text {rd }}$ column is the product of these 2 columns.

For first row, class mark $\left(\mathrm{x}_{\mathrm{i}}\right)=4$, frequency $\left(\mathrm{f}_{\mathrm{i}}\right)=10$. Product $\left(\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)=40$. Similarly the products of other class marks can also be found.

The sum of these products $\left(\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)=40+88+108+208=444$
7. Consider the following distribution of SO2 concentration in the air (in ppm = parts per million) in 30 localities. Find the mean SO2 concentration using assumed mean method. Also find the values of A, B and C.

Class Interval	Frequency $\left(f_{i}\right)$	Class mark $\left(x_{i}\right)$	$d_{i}=x_{i}-a$
$0.00-0.04$	4	0.02	-0.08
$0.04-0.08$	9	0.06	$A \ldots \ldots \ldots$
$0.08-0.12$	9	0.10	$B \ldots \ldots$
$0.12-0.16$	2	0.14	0.04
$0.16-0.20$	4	0.18	$C \ldots \ldots \ldots$
$0.20-0.24$	2	0.22	0.12
Total	$\sum f_{i}=30$		

(A) $-0.04,0,0.04,0.5$
(B) $-0.04,0,0.04,0.6$
(C) $-0.04,0,0.04,0.2$
(D) $-0.04,0,0.04,0.098$

Answer: (D) -0.04, 0, 0.04, 0.098

Solution: The $4^{\text {th }}$ column in table shown in question is a table of values of $f^{\prime} d^{\prime}$.

$$
d_{i}=x_{i}-a
$$

The Learning App
Here
$d_{i}=$ value of' d^{\prime} for $i^{\text {th }}$ class mark-row.
$\mathrm{x}_{\mathrm{i}}=\mathrm{i}^{\text {th }}$ class mark
$\mathrm{a}=$ assumed mean value

Applying given formula for $1^{\text {st }}$ class interval (0-0.04),
$-0.08=0.02-a$
$a=0.1$

Thus $\mathrm{P}=0.1$

Applying given formula for $2^{\text {nd }}$ class interval (0.04-0.08)
$A=0.06-0.1$
$A=-0.04$

Similarly for $3^{\text {rd }}$ and $5^{\text {th }}$ classes d values are-
$B=0$
$C=0.04$

Mean $=0.098$
8. There is a grouped data distribution for which mean is to be found by step deviation method.

Class Interval	Number of Frequency $\left(f_{i}\right)$	Class mark $\left(x_{i}\right)$	$d_{i}=x_{i}-a$	$u_{i}=\frac{d_{i}}{h}$
$0-100$	40	50	-200	$D \ldots \ldots$
$100-200$	39	150	$B \ldots \ldots$	$E \ldots \ldots$
$200-300$	34	250	0	0
$300-400$	30	350	100	1
$400-500$	45	450	$C \ldots \ldots$	$F \ldots \ldots$
Total	$A=\sum f_{i}=\ldots \ldots$			

Find the value of A, B, C, D, E and F respectively.
(A) $186,-100,-200,-2,-1$ and 2
(B) $188,-100,200,-2,-1$ and 2
(C) $188,100,-200,2,-1$ and -2
(D) $186,100,-200,-2,-1$ and 2

Answer: (B) 188, -100, 200, $-2,-1$ and 2

Solution: $\sum \mathrm{f}_{\mathrm{i}}=$ sum of frequencies of each class $=40+39+34+30+45=188$

$$
d_{i}=x_{i}-a
$$

where $\mathrm{x}_{\mathrm{i}}=\mathrm{i}^{\text {th }}$ class mark
a = assumed mean

Using above formula for $1^{\text {st }}$ class ($0-100$) we get-

$$
-200=50-a
$$

$$
a=250
$$

Using above formula for $2^{\text {nd }}$ class (100-200) we get-

$$
B=150-250
$$

$$
B=-100
$$

Similarly, C $=200$.

$$
\mathrm{u}_{\mathrm{i}}=\left(\mathrm{d}_{\mathrm{i}}\right) / \mathrm{h}
$$

Here $\mathrm{h}=$ class interval $=100 . \mathrm{h}$ is constant.

For $1^{\text {st }}$ class (0-100),
$u_{i}=\left(d_{i}\right) / h=-(200 / 100)=-2$
Thus, $\mathrm{D}=-2$

Similarly $\mathrm{E}=-1, \mathrm{~F}=2$

A, B, C, D, E and F are 188, -100, 200, -2,-1 and 2 respectively.
 are respectively
(A) Class mark, frequency of the class
(B) Average frequency, class size
(C) Class size, average frequency
(D) Frequency of the class, class mark

Answer: (A) Class mark, frequency of the class
Solution: $\bar{x}=\frac{\sum f x}{\sum f}=\frac{\sum(A \times B)}{\sum A}$
Where B is the class mark.
Class mark $=1 / 2$ (upper limit of class + lower limit of class)
And A is the frequency of the class.
10. The average weight of a group of 25 men was calculated to be 78.4 kg . It was discovered later that one weight was wrongly entered as 69 kg instead of 96 kg . What is the correct average?
(A) 75.76
(B) 77.56
(C) 79.48
(B) 80.30

Answer: (C) 79.48
Solution: Total weight of 25 men $=25 \times 78.4=1960$

Due to the error in one entry, 96 has become 69
Difference $=27 \mathrm{~kg}$
\therefore Correct total $=1960+27=1987$
\therefore Correct total $=1987 / 25=79.48$

Median

11. (For an arranged data) The median is the
(A) Most common observation
(B) Middle most observation
(C) Least common observation
(D) Average of the two most common observations

Answer: (B) Middle most observation

Solution: The median is the middle most observation. If there is even number of observations, median is the average of the two middle observations. If there is odd number of observations, median is the middle observation itself.

Mode

12. The mode of the following data is:

x_{i}	10	14	18	21	25
f_{i}	10	15	7	9	9

(A) 16
(B) 14
(C) 12
(D) 10

Answer: (B) 14
Solution: The mode is the most frequent observation. Here, the mode is 14 with a frequency of 15.
13. Find the mode of the following data.

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	7	13	14	5	11

(A) Between 20 and 22.5
(B) Between 27.5 and 30
(C) Equal to 25
(D) Between 22.5 and 27.5 but not equal to 25

Answer: (A) Between 20 and 22.5

Solution:

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	7	13	14	5	11

Modal Class is $20-30$

$$
\begin{aligned}
\text { Mode } & =I+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times \mathrm{h} \\
& =20+(14-13) /(28-13-5) \times 10=21
\end{aligned}
$$

Hence, the mode will be between 20 and 22.5
15. There are lottery tickets labelled numbers from 1 to 500 . I want to find the number which is most common in the lottery tickets. What quantity do I need to use?
(A) None of the above
(B) Mode
(C) Mean
(D) Median

Answer: (B) Mode
Solution: In a distribution, mode gives the data whose frequency is highest. This means that for an ungrouped distribution the mode is the value of the data that repeats maximum number of times. For the lottery tickets I want to find the most repeated number. Mode will serve this purpose.
16. Which of the following is not a measure of central tendency?
(A) Mode
(B) Range
(C) Median
(D) Mean

Answer: (B) Range
Solution: Three measures of central tendency are mean, median, mode. Range is a measure of variability or spread of the data.

Ogives and Questions relating to the relation between mean, mode and median

17. The mode of a frequency distribution can be determined graphically from:
(A) Frequency curve
(B) Ogive
(C) Frequency polygon
(D) Histogram

Answer: (B) Ogive
Solution: The mode of a frequency distribution can be determined graphically from ogive
18. For 'more than ogive' the x-axis represents:
(A) frequency
(B) lower limits of class intervals
(C) mid-values of class-intervals
(D) upper limits of class-intervals

Answer: (B) lower limits of class intervals

Solution: For 'more than ogive' the x-axis represents lower limits of class intervals

