CBSE Class 10 Maths Question Paper

CLASS X MATHS - 2012

General Instructions:

1. All questions are compulsory.
2. The question paper consists of 34 questions divided into four sections A, B, C and D.
3. Section A contains 10 questions of 1 mark each, which are multiple choices type Questions, Section B contains 8 questions of 2 marks each, Section C contains 10 questions of 3 marks each, Section D contains 6 questions of 4 marks each.
4. There is no overall choice in the paper. However, internal choice is provided in one question of 2 marks, 3 questions of 3 marks each and two questions of 4 marks each.
5. Use of calculators is not permitted.

Q1. The length of shadow of a tower on the plane ground is $\sqrt{3}$ times the height of the tower. The angle of elevation of sun is :
A. 45°
B. 30°
C. 60°
D. 90°

Q2.If the area of a circle is equal to sum of the areas of two circles of diameters 10 cm and 24 cm , then the diameter of the larger circle (in cm) is :
A. 34
B. 26
C. 17
D. 14

Q3. If the radius of the base of a right circular cylinder is halved, keeping the height the same, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is:
A. $1: 2$
B. $2: 1$
C. $1: 4$
D. $4: 1$

Q4. Two dice are thrown together. The probability of getting the same number on both dice is:
A. $1 / 2$
B. $1 / 3$
C. $1 / 6$
D. $1 / 12$

Q5. The coordinates of the point P dividing the line segment joining the points $A(1,3)$ and $B(4,6)$ in the ratio 2 : 1
A. $(2,4)$
B. $(3,5)$
C. $(4,2)$
D. $(5,3)$

Q6.If the coordinates of one end of a diameter of a circle are $(2,3)$ and the coordinates of its centre are $(-2,5)$, then the coordinates of the other end of the diameter are :
A. $(-6,7)$
B. $(6,-7)$
C. $(6,7)$
D. $(-6,-7)$

Q7.The sum of first 20 odd natural numbers is:
A. 100
B. 210
C. 400
D. 420

Q8. If 1 is a root of the equations $a y^{2}+a y+3=0$ and $y^{2}+y+b=0$ then ab equals :
A. 3
B. $-\frac{7}{2}$
C. 6
D. -3

Q9.In Fig. 1, the sides $A B, B C$ and $C A$ of a triangle $A B C$, touch a circle at P, Q and R respectively. If $P A=4$ $\mathrm{cm}, B P=3 \mathrm{~cm}$ and $A C=11 \mathrm{~cm}$, then the length of $B C$ (in cm$)$ is :

A. 11
B. 10
C. 14
D. 15

Q10. In Fig 2, a circle touches the side DF of \triangle EDF at H and touches ED and EF produced at K and M respectively. If $\mathrm{EK}=9 \mathrm{~cm}$, then the perimeter of $\triangle E D F$ (in cm) is:

A. 18
B. 13.5
C. 12
D. 9

Q11. If a point $A(0,2)$ is equidistant from the points $B(3, p)$ and $C(p, 5)$, then find the value of p.
Q12. A number is selected at random from first 50 natural numbers. Find the probability that it is a multiple of 3 and 4 .

Q13. The volume of a hemisphere is $2425 \frac{1}{2} \mathrm{~cm}^{3}$. Find its curved surface area. [Use $=\frac{22}{7}$]
Q14.Tangents PA and PB are drawn from an external point P to two concentric circles with centre O and radii 8 cm and 5 cm respectively, as shown in Fig.3. If $A P=15 \mathrm{~cm}$, then find the length of $B P$.

Q15. In Fig.4, an isosceles triangle $A B C$, with $A B=A C$, circumscribes a circle. Prove that the point of contact P bisects the base $B C$.

OR

In Fig.5, the chord $A B$ of the larger of the two concentric circles, with centre 0 , touches the smaller circle at C. Prove that $A C=C B$.

Q16. In Fig.6, OABC is a square of side 7 cm . IF OAPC is a quadrant of a circle with centre 0 , then find the area of the shaded regions. [Use $=\frac{22}{7}$]

Q17. Find the sum of all three digit natural numbers, which are multiples of 7 .
Q18. Find the value(s) of k so that the quadratic equation $3 x^{2}-2 k x+12=0$ has equal roots.
Q19. A point P divides the line segment joining the points $A(3,-5)$ and $B(-4,8)$ such that $\frac{A P}{P B}=\frac{K}{1}$. If P lies on the line $x+y=0$, then fine the value of K.

Q20. If the vertices of a triangle are $(1,-3),(4, p)$ and $(-9,7)$ and its area is 15 sq.units, find the value(s) of p.

Q21. Prove that the parallelogram circumscribing a circle is a rhombus.

OR

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Q22. From a solid cylinder of height 7 ncm and base diameter 12 cm , a conical cavity of same height and same base diameter is hollowed out. Find the total surface area of the remaining solid. [Use $=\frac{22}{7}$]

OR

A cylindrical bucket, 32 cm high and with radius of base 18 cm , is filled with sand. This bucket is emptied on the ground and a conical heap of sand is formed. If the height of the conical heap is 24 cm , then find the radius and slant height of the heap.

Q23. In Fig. 7, $P Q$ and $A B$ are respectively the arcs of two concentric circles of radii 7 cm and 3.5 cm and centre O. If $\angle \mathrm{POQ}=30^{\circ}$, then find the area of the shaded region. [Use $=\frac{22}{7}$]

Q24.Solve for $\quad x: 4 x^{2}-4 a x+\left(a^{2}-b^{2}\right)=0$

OR

Solve for $x: 3 x^{2}-2 \sqrt{6 x}+2=0$

Q25. A kite is flying at a height of 45 m above the ground. The string attached to the kite is temporarily tide to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string assuming that there is no slack in the string.

Q26. Draw a triangle ABC with side $\mathrm{BC}=6 \mathrm{~cm}, \angle \mathrm{C}=30^{\circ}$ and $\angle \mathrm{A}=105^{\circ}$. Then construct another triangle whose sides are $\frac{2}{3}$ times the corresponding Side of $A B C$.

Q27.The $16^{\text {th }}$ term of an AP is 1 more than twice its $8^{\text {th }}$ term. If the $12^{\text {th }}$ term of the $A P$ is 47 , then find its $\mathrm{n}^{\text {th }}$ term.

Q28. A card is drawn from a well shuffled deck of 52 cards. Find the probability of getting (i) a king of red colour (ii) a face and (iii) the queen of diamonds.

Q29. A bucket is in the form of a frustum of a cone and it can hold 28.49 litres of water. If the radii of its circular ends are 28 cm and 21 cm , find the height of the bucket. [Use $=\frac{22}{7}$]

Q30. The angle of elevation of the top of a hill at the foot of a tower is 60° and the angle of depression from the top of the tower to the foot of the hill is 30°. If the tower is 50 m high, find the height of the hill.

Q31. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
OR
A quadrilateral $A B C D$ is drawn to circumscribe a circle. Prove that $A B+C D=A D+B C$.

Q32.A shopkeeper buys some books for Rs. 80. If he had bought 4 more books for the same amount, each book would have cost Rs 1 less. Find the number of books he bought.
OR
The sum of two numbers is 9 and the sum of their reciprocals is $\frac{1}{2}$. Find the numbers

Q33. Sum of first 20 terms of an AP is -240 , and its first term is 7 . Find its $24^{\text {th }}$ term.

Q34. A solid is in the shape of a cone standing on a hemisphere with both their radii being equal to 7 cm and the height of the cone is equal to its diameter. Find the volume of the solid. [Use $=\frac{22}{7}$]

