Q. No.	Expected Answer / Value Points	Marks	Total Marks
1.	When dipole is (i) parallel to field (ii) antiparallel to the field (or correct fig of two cases.)	1/2+1/2	1
2.	$\boldsymbol{\gamma}$-Rays.	1	1
3.	Line A.	1	1
4.	Electric flux $\phi=\frac{q}{\varepsilon_{0}}$	1	1
5.	1.45.	1	1
6.	$r \propto n^{2} \therefore \frac{r_{1}}{r_{2}}=4: 1$ (award $1 / 2$ mark if student write only formula)	1	1
7.	$R_{\text {effective }}=2 R$.	1	1
8.	(i) refraction should take place from denser to rarer medium (ii) angle of incidence should be greater than the critical angle.	$1 / 2+1 / 2$	1
9.	Function of repeater 2 A repeater, picks up the signal from the transmitter, amplifies and retransmits it to the receiver sometimes with a change in carrier frequency. Repeaters are used to extend the range of a communication system	2	2
10.	Two characteristics of material Reason (i) (a) High Coercivity (b) High Retentivity.(c) high permeability. (any two) (ii) Because of high permeability and low retentivity. OR (i) Diamagnetic material	$1 / 2+1 / 2$ $1 / 2+1 / 2$ $1 / 2$	2

	Two uses of any one of these.	$1 / 2+1 / 2$	2
14.	Formula Substitution and calculation 1 1 $1 / f=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$ $\frac{1}{12}=(\mu-1)\left(\frac{1}{10}-\frac{1}{-15}\right) \Rightarrow \mu=1.5$	$\begin{aligned} & 1 \\ & 1 / 2+1 / 2 \end{aligned}$	2
15.	Formula 1 Calculation of wavelength $1 / 2$ Name of the part of spectrum $1 / 2$$\begin{aligned} & \lambda=\frac{h}{\sqrt{2 m e V}} \text { or } \lambda=\frac{12.27}{\sqrt{V}} A^{0} \\ & \lambda=\frac{12.27}{\sqrt{100}} A^{0}=1.227 A^{0} \end{aligned}$ This wavelength corresponds to the \mathbf{X} rays.	1 $1 / 2$ $1 / 2$	2
16.	$\)\begin{tabular}{l} \text { Reaction } \\ \text { Calculation of energy released } \end{tabular}$$X^{240} \rightarrow Y^{110}+Z^{130}+Q$Energy released per nucleon $=8.5 \mathrm{MeV}-7.6 \mathrm{MeV}=0.9 \mathrm{MeV}$Therefore energy released $=0.9 \times 240=216 \mathrm{MeV}$Alternatively:Energy released $=[240 \times 8.5-7.6(110+130)] \mathrm{MeV}=216 \mathrm{MeV}$		2

	(iii) Energy stored $E=\frac{1}{2} C V^{2}$, As capacitance becomes K times \& potential difference becomes $1 / \mathrm{K}$ times therefore energy stored becomes $1 / \mathrm{K}$ times. Alternatively: Energy stored $=\mathrm{Q}^{2} / 2 \mathrm{C}$. As capacitance increases by a factor K , the energy stored will decrease by the same factor.	$1 / 2+1 / 2$	3
20.	Working principle $1 / 2$ Circuit diagram 1 Determination of internal resistance $1^{1 / 2}$		
	Working principle: When constant current flows through a wire of uniform cross section then potential difference across the wire is directly proportional to the length. $V \propto l$ With key K_{2} open, balance is obtained at length $l_{1}\left(\mathrm{AN}_{1}\right)$. Then, $\varepsilon=\varphi l_{1}(\varphi=$ potential gradient $)$ When key K_{2} is closed, the cell sends a current (I) through the resistance box (R). If V is the terminal potential difference of the cell and balance is obtained at length $l_{2}\left(\mathrm{AN}_{2}\right)$, $\begin{aligned} & V=\varphi l_{2} \\ & \varepsilon / V=l_{1} / l_{2} \\ & \text { But } \frac{\varepsilon}{V}=\frac{I(R+r)}{I R}=\left(1+\frac{r}{R}\right) \\ & \therefore\left(1+\frac{r}{R}\right)=\frac{l_{1}}{l_{2}} \\ & \Rightarrow r=\frac{\left(l_{1}-l_{2}\right)}{l_{2}} R \end{aligned}$	1/2	3
21.	Expression for magnetic moment 1 Reason 1 Expression 1		

(for students using the corrected current direction)

Torque: The magnetic field due to the long current carrying wire is perpendicular to the plane of paper. Hence the force acting on each of the four sides is in the plane of the paper and the net torque is zero.
Alternatively
\vec{m} is perpendicular to the plane of paper and \vec{B} is perpendicular to the plane of paper. Hence $\vec{\tau}=\vec{m} \times \vec{B}=0$
Force:
Force on upper horizontal side $=\frac{I l \mu_{0} I_{1}}{2 \pi l}=\frac{I \mu_{0} I_{1}}{2 \pi}$ (attractive)

Frrce on lower horizontal side $=\frac{I l \mu_{0} I_{1}}{2 \pi(2 l)}=\frac{I \mu_{0} I_{1}}{4 \pi}$ (repulsive)
The direction of these forces being opposite to each other therefore net force $=\frac{\mu_{0} I_{1} I}{4 \pi}($ attractive $)$
(the net force on the two vertical sides is zero)

(for students using the given current direction)

Torque: The magnetic field due to the long current carrying wire is perpendicular to the plane of paper. Hence the force acting on each of the four sides is in the plane of the paper and the net torque is zero.
Alternatively
\vec{m} is perpendicular to the plane of paper and \vec{B} is perpendicular to the plane of paper. Hence $\vec{\tau}=\vec{m} \times \vec{B}=0$

Force: Award this mark irrespective of result obtained or calculation done by the students.
22.

Drawing of equipotential surface	1
Expression of potential energy	2

(a) Equipotential surfaces for a system of two identical positive charges:

i) Definition	$1 / 2$
SI unit	$1 / 2$
ii) Graph	1
iii) Values for D	$1 / 2+1 / 2$

(i) The total decay rate (of a sample)at the given instant i.e. the number of radionuclides disintegrating per unit time is called the activity of that sample.
The SI unit for activity is becquerel (Bq).
(ii) Graph:
25.

Diagram
Calculation of magnetic field (i) inside (ii) outside $11 / 2+1$

(a) Consider the case $r<a$. The Amperian loop is a circle labelled 1.

For this loop, taking the radius of the circle to be $r, L=2 \pi r$
Now the current enclosed $I_{e}=I\left(\frac{\pi r^{2}}{\pi a^{2}}\right)=\frac{I r^{2}}{a^{2}}$
Using Ampere's law,
$B(2 \pi r)=\frac{\mu_{0} I r^{2}}{a^{2}} \Rightarrow B=\frac{\mu_{0} I r}{2 \pi a^{2}}$
(b) Consider the case $r>a$. The Amperian loop, labelled 2, is a circle concentric with the cross-section. For this loop, $L=2 \pi r$ $I e=$ Current enclosed by the loop $=I$
$B(2 \pi r)=\mu_{0} I$

BBYJU'S	$\Rightarrow B=\frac{\mu_{0} I}{2 \pi r}$ OR Principle: Torque acts on a current carrying coil suspended in magnetic field. ($\tau=N I A B \sin \theta$) Two reasons: (i) Galvanometer is a very sensitive device, it gives a full-scale deflection for a current of the order of a few $\mu \mathrm{A}$. (ii) For measuring currents, the galvanometer has to be connected in series, and as it has a finite resistance, this will change the value of the current in the circuit. Two factors: The current sensitivity of a moving coil galvanometer can be increased by (i) increasing the number of turns (ii) increasing area of the loop (iii) increasing magnetic field (iv) decreasing the torsional constant of the suspension wire. (Any two)	$1 / 2$ 1 $1 / 2+1 / 2$ $1 / 2+1 / 2$	3
26.	Space wave propagation 1 Two examples $1 / 2+1 / 2$ Calculation of maximum distance 1 When waves travel in space in a straight line from the transmitting antenna to the receiving antenna, this mode of propagation is called the space wave propagation. Examples: Television broadcast, microwave links, satellite communication (any two) $d=\sqrt{2 h R}=\sqrt{2 \times 80 \times 6.4 \times 10^{6}}=32 \mathrm{~km}$	1 $\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$	3
27.	Determination of values of R and S $1 \frac{1}{2}+1^{1 / 2}$$\begin{aligned} & \frac{R}{S}=\frac{40}{60}=\frac{2}{3} \\ & \frac{R(12+S)}{12 S}=\frac{50}{50}=1 \end{aligned}$	$1 / 2$ $11 / 2$	

\begin{tabular}{|c|c|c|}
\hline \& \(\Rightarrow R=4 \Omega \quad \& S=6 \Omega\) \& \(1 / 2+1 / 2\) \\
\hline 28. \& \begin{tabular}{|ll|}
\hline Description of basic elements with Labelled diagram \& 2 \\
Underlying principle \& 1 \\
Production of emf in loop \& \(11 / 2\) \\
Expression \& \(1 / 2\) \\
\hline
\end{tabular} \& \\
\hline \& \begin{tabular}{l}
Labelled diagram: \\
It consists of a coil mounted on a rotor shaft. The axis of rotation of the coil is perpendicular to the direction of the magnetic field. The coil (called armature) is mechanically rotated in the uniform magnetic field by some external means. The ends of the coil are connected to an external circuit by means of slip rings and brushes. \\
Underlying principle :As the coil rotates in a magnetic field B, the effective area of the loop (the face perpendicular to the field) which is \(A \cos \theta\), where \(\theta\) is the angle between area (A) and magnetic field (B) changes continuously. Hence magnetic flux linked with the coil keeps on changing with time and an induced emf is produced. \\
Production of emf in loop:
\end{tabular} \& 1

1
1
1

\hline
\end{tabular}

the armature perpendicular
rotates through 90° the plane of the mature is parallel to magnetic field
to the magnetic

The instantaneous value of the emf is $\varepsilon=N B A \omega \sin \omega t$

OR

Derivation of Expression for instantaneous current	3
Obtaining condition of resonance	$1 / 2$
Definition of power factor	$1 / 2$
Condition of maximum and minimum	$1 / 2+1 / 2$

From the phasor diagram, we have

$$
\begin{aligned}
v_{m}^{2} & =v_{R m}^{2}+\left(v_{C m}-v_{L m}\right)^{2} \\
& =i_{m}^{2}\left[R^{2}+\left(X_{C}-X_{L}\right)^{2}\right] \\
& i_{m}=\frac{v_{m}}{\sqrt{R^{2}+\left(X_{C}-X_{L}\right)^{2}}}
\end{aligned}
$$

The current is seen to lead the voltage by an angle Φ,where
$\tan \phi=\frac{X_{C}-X_{L}}{R}$,
hence $i=i_{m} \sin (\omega t+\phi)$.
(Accept the analytical approach also)

[^0]\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& \& \& \\
\hline \& \begin{tabular}{l}
Where
\[
i_{m}=\frac{v_{m}}{\sqrt{R^{2}+\left(X_{C}-X_{L}\right)^{2}}} \quad \text { and } \phi=\tan ^{-1}\left[\frac{\left(\omega L \sim \frac{1}{\omega C}\right)}{R}\right]
\] \\
Condition of resonance: \(\omega L \sim \frac{1}{\omega C}=0\) or \(\omega L=\frac{1}{\omega C}\) or \(\omega=\frac{1}{\sqrt{L C}}\) Power factor equals the cosine of the phase angle i.e power factor
\[
\cos \phi=\frac{R}{Z}
\] \\
Power factor is maximum when \(\cos \phi=1\) i.e when \(\mathrm{R}=\mathrm{Z}\) or \(\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}\). Power factor is minimum when \(\cos \phi=0\) i.e when \(R=0\).
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$ \& 5

\hline 29. \& | Statement of Huygen's principle 1
 Application to diffraction pattern 2
 Plot 1
 Explanation 1 |
| :--- |
| Huygens principle: Each point of wavefront is the source of a secondary disturbance and the wavelets emanating from these points spread out in all directions with the speed of the wave. The common tangent/ forward envelope, to all these secondary wavelets gives the new wavefront at later time. |
| Application to diffraction pattern: All the points of incoming wavefront (parallel to the plane of slit)are in phase with plane of slit. However the contribution of the secondary wavelets from different points, at any point, on the observation screen have phase differences dependent on the corresponding path differences. Total contribution, at any point, may add up to give a maxima or minima dependent on the phase differences. |
| Plot of intensity distribution and explanation: | \& 1

1
1
1 \&

\hline
\end{tabular}

The central point is a maxima as the contribution of all secondary wavelet pairs are in phase here. Consider next a point on the screen where an angle $\theta=3 \lambda / 2 a$. Divide the slit into three equal parts. Here the first two-thirds of the slit can be divided into two halves which have a $\lambda / 2$ path difference. The contributions of these two halves cancel. Only the remaining one-third of the slit contributes to the intensity at a point between the two minima. Hence, this will be much weaker than the central maximum (where the entire slit contributes in phase). We can similarly show that there are maxima at $\theta=(n+1 / 2) \lambda / a$ with $n=2,3$, etc. These become weaker with increasing n, since only one-fifth, one-seventh, etc., of the slit contributes in these cases.

OR

Labelled Ray diagram	1
Derivation	2
Estmation of magnifying power	2

Labeled Ray diagram:

Expression for total magnification:

Magnification due to the objective,
$m_{O}=\frac{h^{\prime}}{h}=\frac{L}{f_{o}}$
Magnification m_{e}, due to eyepiece, (when the final image is formed at the near point)

$$
m_{e}=\left(1+\frac{D}{f_{e}}\right)
$$

Total magnification,
$m=m_{0} m_{e} \simeq \frac{L}{f_{0}}\left(1+\frac{D}{f_{e}}\right)$
Estimation of magnifying power:
Given: $u_{0}=-1.5 \mathrm{~cm} ; f_{0}=1.25 \mathrm{~cm}$;
we have
$\frac{1}{f_{0}}=\frac{1}{v_{0}}-\frac{1}{u_{0}}$
$\frac{1}{1.25}=\frac{1}{v_{0}}-\frac{1}{-1.5} \quad \Rightarrow v_{0}=7.5 \mathrm{~cm}$
$m \simeq \frac{v_{0}}{u_{0}}\left(1+\frac{D}{f_{e}}\right)$
$=\frac{7.5}{-1.5}\left(1+\frac{25}{5}\right) \Rightarrow m=-30$

Explanation of depletion layer and potential barrier	$1+1$
Name of device and circuit diagram	$1 / 2+1$
Identification of logic gate and truth table	$1 / 2+1$

(a) depletion region: Due to the concentration gradient across p -, and n sides, holes diffuse from p -side to n -side $(\mathrm{p} \rightarrow \mathrm{n})$ and electrons diffuse from n -side to p -side ($\mathrm{n} \rightarrow \mathrm{p}$). As the electrons diffuse from $\mathrm{n} \rightarrow \mathrm{p}$, a layer of positive charge (or positive space-charge region) is developed on n-side of the junction. Similarly as the holes diffuse, a layer of negative charge (or negative space-charge region) is developed on the p-side of the junction. This spacecharge region on either side of the junction together is known as depletion region.
Barrier potential:
The loss of electrons from the n-region and the gain of electron by the pregion causes a difference of potential across the junction of the two regions. The polarity of this potential is such as to oppose further flow of carriers.
(b) Full wave rectifier,

Centre-Tap

(c) AND Gate,

Inpu*		Outpuit
0	B	X
0	0	0
0	1	0
1	0	0
1	1	1

OR

Circuit diagram	1
Working principle	$2 \frac{1}{2}$
Distinction	$1^{11 / 2}$

Working principle: In an oscillator, we get ac output without any external input signal. i.e. the output in an oscillator is self-sustained. To attain this, a
(Coupling through magnetic field)
 portion of the output powerof an amplifier, is returned back (fedback) to the input in phase with the starting power.
The energy band diagrams, showing the distinction between a conductor, a semiconductor and an insulator are shown below:

[^0]: (Accert he

