SECTION (A)

<table>
<thead>
<tr>
<th>Q. No.</th>
<th>Expected Answer / Value Points</th>
<th>Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set1,Q1</td>
<td>Positive</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Set2,Q4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set3,Q2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set1,Q2</td>
<td>Electric flux remains unaffected. [NOTE: (As per the Hindi translation), change in Electric field is being asked, hence give credit if student writes answer as decreases]</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Set2,Q5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set3,Q3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set1,Q3</td>
<td>A current carrying coil, in the presence of magnetic field, experiences a torque, which produces proportionate deflection. [Alternatively (deflection) (\theta \propto (\text{Torque}))]</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Set2,Q1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set3,Q5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set1,Q4</td>
<td>Due to their short wavelengths, (they are suitable for radar system used in aircraft navigation).</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Set2,Q2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set3,Q4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set1,Q5</td>
<td>Quality factor (Q = \frac{\omega_0}{2\Delta\omega}), [Alternatively (Q = \frac{\omega_0L}{R}), Alternatively, It gives the sharpness of the resonance circuit.]</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>Set2,Q3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set3,Q1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION (B)

Explanation of the terms

(i) Attenuation
(ii) Demodulation

(i) The loss of strength of a signal while propagating through a medium.
(ii) The process of retrieval of information, from the carrier wave, at the receiver.

<table>
<thead>
<tr>
<th>Q. No.</th>
<th>Expected Answer / Value Points</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set1,Q6</td>
<td>Plotting of graph (\frac{1}{2} + \frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>Set2,Q9</td>
<td>Identification of line representing lower mass (\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>Set3,Q7</td>
<td>Reason (\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
</tbody>
</table>
As \(\lambda = \frac{k}{\sqrt{2mqV}} \)

As the charge of two particles is same, therefore

\[\lambda \propto \frac{1}{\sqrt{m}} \] i.e. Slope \(\propto \frac{1}{\sqrt{m}} \)

Hence, particle with lower mass \((m_2) \) will have greater slope.

Set1,Q8	Calculation of Energy released 2
Set2,Q6	Calculation of Energy in the fusion Reaction 2
Set3,Q10	Calculation of Energy in the fusion Reaction 2

Binding energy of nucleus with mass number 240,

\[E_{bn} = 240 \times 7.6 \text{ MeV} \]

Binding energy of two fragments

\[= 2 \times 120 \times 8.5 \text{ MeV} \]

Energy released

\[= 240 (8.5 - 7.6) \text{ MeV} \]

\[= 240 \times 0.9 \]

\[= 216 \text{ MeV} \]

\[\text{OR} \]

Total Binding energy of Initial System

i.e. \(^2\text{H} + ^2\text{H} = (2.23 + 2.23) \text{ MeV} \]

\[= 4.46 \text{ MeV} \]

Binding energy of Final System i.e. \(^3\text{He} \)

\[= 7.73 \text{ MeV} \]

Hence energy released

\[= 7.73 \text{ MeV} - 4.46 \text{ MeV} \]

\[= 3.27 \text{ MeV} \]
When unpolarised light is incident on the surface separating two media, the reflected light gets (completely) polarized only when the reflected light and refracted light become perpendicular to each other.

[Alternatively
If the student draws the diagram, as shown, and writes \(i_p \) as the polarizing angle, award this 1 mark.
If the student just writes \(\mu = \tan i_p \), award half mark only.]

The refractive index of denser medium, with respect to rarer medium, is given by \(\mu = \tan i_p \)

Since Refractive index (\(\mu \)) of a transparent medium is different for different colours, hence Brewster angle is different for different colours.
SEASON (C)

Set1, Q11
Set2, Q14
Set3, Q12

Obtaining an expression for Electric field intensity 2
Showing behavior at large distance 1

Net Electric Field at point P = \(\int_{0}^{2\pi a} dE \cos \theta \)

\[dE = \text{Electric field due to a small element having charge } dq \]
\[= \frac{1}{4\pi \varepsilon_0} \frac{dq}{r^2} \]

Let \(\lambda = \text{Linear charge density} \)
\[= \frac{dq}{dl} \]
\[dq = \lambda dl \]

Hence
\[E = \int_{0}^{2\pi a} \frac{1}{4\pi \varepsilon_0} \frac{\lambda dl}{r^2} \times \frac{x}{r}, \text{ where } \cos \theta = \frac{x}{r} \]

\[= \frac{\lambda x}{4\pi \varepsilon_0 r^3} (2\pi a) \]

\[= \frac{1}{4\pi \varepsilon_0} \frac{Qx}{(x^2 + a^2)^{3/2}}, \text{ where total charge } Q = \lambda \times 2\pi a \]

At large distance i.e. \(x >> a \)

\[E \approx \frac{1}{4\pi \varepsilon_0} \frac{Q}{x^2} \]

This is the Electric field due to a point charge at distance \(x \).

(NOTE: Award two marks for this question, if a student attempts this question but does not give the complete answer)

Set1, Q12
Set2, Q15
Set3, Q13

Three Characteristic features 1+1+1

The three characteristic features which can’t be explained by wave theory are:

i. Kinetic energy of emitted electrons are found to be independent of intensity of incident light.
ii. Below a certain frequency (threshold) there is no photo-emission.

iii. Spontaneous emission of photo-electrons.

<table>
<thead>
<tr>
<th></th>
<th>Set1,Q13</th>
<th>Set2,Q16</th>
<th>Set3,Q11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Expression for the magnetic force</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>b) Trace of paths</td>
<td>½ + ½ + ½</td>
<td>½ + ½ + ½</td>
<td></td>
</tr>
</tbody>
</table>

\[\vec{F} = q (\vec{v} \times \vec{B}) \]

(Give Full credit of this part even if a student writes:
\(F = qvB \sin \theta \) and

Force (\(F \)) acts perpendicular to the plane containing \(\vec{v} \) and \(\vec{B} \))

\[\frac{1}{2} + \frac{1}{2} + 1 \frac{1}{2} + \frac{1}{2} \]

b)

Justification: Direction of force experienced by the particle will be according to the Fleming’s Left hand rule / (any other alternative correct rule.)

\[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \]

Set1,Q14
Set2,Q11
Set3,Q15

(i) Definition of mutual inductance 1
(ii) Calculation of change of flux linkage 2

(i) Magnetic flux, linked with the secondary coil due to the unit current flowing in the primary coil, \(\phi_2 = M_1 I_1 \)

[Alternatively

Induced emf associated with the secondary coil, for a unit rate of change of current in the primary coil. \(e_2 = -M \frac{dI_1}{dt} \)]

[Also accept the Definition of Mutual Induction, as per the Hindi translation of the question]

[i.e. the phenomenon of production of induced emf in one coil due to change in current in neighbouring coil]

(ii) Change of flux linkage
\[d\phi = M \, dI \]
\[= 1.5 \times (20-0) W \]
\[= 30 \text{ weber} \]

<table>
<thead>
<tr>
<th>SET 1, Q15</th>
<th>SET 2, Q12</th>
<th>SET 3, Q14</th>
<th>1 (\frac{1}{2}) (\frac{1}{2}) 3</th>
</tr>
</thead>
</table>

| (i) Calculation of capacitance of each capacitor \(\frac{1}{2} + \frac{1}{2} \) |
| (ii) Calculation of potential difference \(\frac{1}{2} + \frac{1}{2} \) |
| (iii) Estimation of ratio of electrostatic energy 1 |

\(i) \quad \text{Let } C_X = C \)

\[C_Y = 4C \text{ (as it has a dielectric medium of } \varepsilon_r = 4 \text{)} \]

For series combination of two capacitors

\[\frac{1}{C} = \frac{1}{C_X} + \frac{1}{C_Y} \]

\[\Rightarrow \frac{1}{4 \mu F} = \frac{1}{C} + \frac{1}{4C} \]

\[\frac{1}{4 \mu F} = \frac{5}{4C} \]

\[\Rightarrow C = 5 \mu F \]

\[\text{Hence } C_X = 5 \mu F \]
\[C_Y = 20 \mu F \]

\(ii) \quad \text{Total charge } Q = CV \]
\[= 4 \mu F \times 15 V = 60 \mu C \]

\[V_X = \frac{Q}{C_X} = \frac{60 \mu C}{5 \mu F} = 12 V \]

\[V_Y = \frac{Q}{C_Y} = \frac{60 \mu C}{20 \mu F} = 3 V \]

\(iii) \quad \frac{E_X}{E_Y} = \frac{Q^2}{2C_X} = \frac{C_Y}{C_X} = \frac{20}{5} = 4 : 1 \]

(Also accept any other correct alternative method)
As shown in Figure, the direction of force on conductor b is attractive [Alternatively:
\[\vec{B} \text{ at a point on wire 2, is along } -\hat{k} \]
\[\therefore \vec{F}, \text{ on wire 2, due to the } \vec{B}, \text{ is along } -\hat{l}, \text{ i.e. towards wire 1. Hence the force is attractive.} \]

Magnetic field, due to current in conductor a,
\[B_1 = \frac{\mu_0 I_1}{2\pi d} \]

The magnitude of force on a length L of conductor b,
\[F_2 = I_2LB_1 \]
\[F_2 = \frac{\mu_0 I_1 I_2 L}{2\pi d} \]

One ampere is that steady current which, when maintained in each of the two very long, straight, parallel conductors, placed one meter apart in vacuum, would produce on each of these conductors a force equal to \(2 \times 10^{-7} \) newton per meter of their length.

A charge oscillating with some frequency, produces an oscillating electric field in space, which in turn produces an oscillating magnetic
field perpendicular to the electric field, this process goes on repeating, producing EM waves in space perpendicular to both the fields.

Directions of \(\vec{E} \) and \(\vec{B} \) are perpendicular to each other and also perpendicular to direction of propagation of EM waves.

OR

Maxwell’s generalization of Ampere’s Circuital law

\[
\oint \vec{B} \cdot d\vec{l} = \mu_0 i_c
\]

Ampere’s circuital law is given by as
\[
\oint \vec{B} \cdot d\vec{l} = \mu_0 i_c
\]

But for a circuit containing capacitor, during its charging or discharging the current within the plates of the capacitor varies, (producing displacement current \(i_d \)). Therefore, the above equation, as generalized by Maxwell, is given as
\[
\oint \vec{B} \cdot d\vec{l} = \mu_0 i_c + \mu_0 i_d
\]

During the process of charging of capacitor, electric flux \(\phi_e \) between the plates of capacitor changes with time, which produces the current within the plates of capacitor. This current, being proportional to \(\frac{d\phi_e}{dt} \), we have
\[
i = \varepsilon_0 \frac{d\phi_e}{dt}
\]

Question

1. A low frequency signal is modulated for the following purposes:
 a) Explanation of any two factors justifying the need of modulation
 b) Two advantages of FM over AM

 a) A low frequency signal is modulated for the following purposes:
 - It reduces the wavelength of transmitted signal, and the minimum height of antenna for effective communication is \(\frac{\lambda}{4} \). Therefore height of antenna becomes practically achievable.
(ii) Power radiated into the space by an antenna is inversely proportional to χ^2. Therefore, the power radiated into the space increases and signal can travel larger distance.

(Give full credit of this part for any other correct answer)

b)

(i) High efficiency
(ii) Less noise
(iii) Maximum use of transmitted power (any two)

\[
\frac{1}{2} + \frac{1}{2}
\]

Set1,Q19
Set2,Q22
Set3,Q20

(i) Function of three segments $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
(ii) Circuit diagram 1
Input and output characteristics $\frac{1}{2}$

i) Emitter : Supplies the large number of majority charge carriers for the flow of current through the transistor.
Base : Controls the movement of charge carriers coming from emitter region
Collector: Collects a major portion of the majority carriers supplied by the emitter.

(NOTE: Also accept the following explanation of these parts of the transistor as asked in Hindi translation)

Emitter: Heavily doped and of moderate size.
Base: Central region, thin and lightly doped.
Collector: Moderately doped and large sized.

ii)

Input characteristics are obtained by recording the values of base current I_B, for different values of V_{BE} at constant V_{CE}
Output characteristics are obtained by recording the values of I_C for different values of V_{CE} at constant I_B
<table>
<thead>
<tr>
<th>Set1,Q20</th>
<th>Set2,Q17</th>
<th>Set3,Q19</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Calculation of distance of an object and location of image</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(ii) Reason for virtual image, through convex mirror</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a) Given (R = -20) cm, and magnification (m = -2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focal length of the mirror (f = \frac{R}{2} = -10) cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnification ((m) = \frac{-v}{u})</td>
<td>(\frac{1}{2})</td>
<td></td>
</tr>
<tr>
<td>(-2 = \frac{-v}{u})</td>
<td>(\frac{1}{2})</td>
<td></td>
</tr>
<tr>
<td>(\Rightarrow v = 2u)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using mirror formula</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{f} = \frac{1}{v} + \frac{1}{u})</td>
<td>(\frac{1}{2})</td>
<td></td>
</tr>
<tr>
<td>(\Rightarrow -\frac{1}{10} = \frac{1}{2u} + \frac{1}{u})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Rightarrow u = -15) cm</td>
<td></td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(\therefore v = 2 \times -15 \text{ cm} = -30) cm</td>
<td></td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{f} = \frac{1}{v} + \frac{1}{u})</td>
<td>(\frac{1}{2})</td>
<td></td>
</tr>
<tr>
<td>Using sign convention, for convex mirror, we have (f > 0, u < 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From the formula</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{v} = \frac{1}{f} - \frac{1}{u})</td>
<td>(\frac{1}{2})</td>
<td></td>
</tr>
<tr>
<td>(\therefore f) is positive and (u) is negative,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Rightarrow v) is always positive, hence image is always virtual.</td>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td>i. Statement of Bohr’s quantization condition</td>
<td>(\frac{1}{2})</td>
<td></td>
</tr>
<tr>
<td>ii. de-Broglie explanation of stationary orbits</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(ii) Relation between (\lambda_1, \lambda_2, \lambda_3)</td>
<td>1 (\frac{1}{2})</td>
<td></td>
</tr>
<tr>
<td>(i) Only those orbits are stable for which the angular momentum, of revolving electron, is an integral multiple of (\frac{h}{2\pi}).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[Alternatively

\[L = \frac{nh}{2\pi} \]

i.e. angular momentum of orbiting electron is quantised.]

According to de Broglie hypothesis

Linear momentum \(p = \frac{h}{\lambda} \)

And for circular orbit \(L = r_n p \) where ‘\(r_n \)’ is the radius of quantized orbits.

\[= \frac{r_n h}{\lambda} \]

Also \(L = \frac{nh}{2\pi} \)

\[\therefore \frac{r_n h}{\lambda} = \frac{nh}{2\pi} \]

\[\Rightarrow 2\pi r_n = n\lambda \]

\(\therefore \) Circumference of permitted orbits are integral multiples of the wavelength \(\lambda \)

\(ii) \)

\[E_C - E_B = \frac{hc}{\lambda_1} \]

\[\ldots \ldots \ldots (i) \]

\[E_B - E_A = \frac{hc}{\lambda_2} \]

\[\ldots \ldots \ldots (ii) \]

\[E_C - E_A = \frac{hc}{\lambda_3} \]

\[\ldots \ldots \ldots (iii) \]

Adding \((i) \) & \((ii) \)

\[E_C - E_A = \frac{hc}{\lambda_1} + \frac{hc}{\lambda_2} \]

\[\ldots \ldots \ldots (iv) \]

Using equation (iii) and (iv)

\[\frac{hc}{\lambda_3} = \frac{hc}{\lambda_1} + \frac{hc}{\lambda_2} \]

\[\Rightarrow \frac{1}{\lambda_3} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \]

\[Set1,Q22 \]

\[Set2,Q19 \]

\[Set3,Q21 \]

Drawing of Schematic ray diagram

Two advantages

\[\frac{1}{2} + \frac{1}{2} \]
(i) Large gathering power
(ii) Large magnifying power
(iii) No chromatic aberration
(iv) Spherical aberration is also removed
(v) Easy mechanical support
(vi) Large resolving power

(Any Two)

\[
\frac{1}{2} + \frac{1}{2}
\]

\[
3
\]

SECTION (D)

Set1,Q23
Set2,Q23
Set3,Q23

(i) Values displayed by Meeta:
Inquisitive/ Keen Observer/ Scientific temperament/ (Any other value.)

\[
1
\]

Values displayed by Father:
Encouraging/ Supportive / (Any other value)

\[
1
\]

(ii) Meeta’s father explained that the traffic light is made up of tiny bulbs called light emitting diodes (LED)
(Also accept other relevant answers)

\[
\frac{1}{2}
\]

(iii) Light emitting diode

These diodes (LED’s) operate under forward bias, due to which the majority charge carriers are sent from these majority zones to minority zones. Hence recombination occur near the junction boundary, which releases energy in the form of photons of light.

\[
1
\]

SECTION (E)

Set1,Q24
Set2,Q25
Set3,Q26

(i) Obtaining expression for impedance & phase angle
\[
1 \frac{1}{2} + 1
\]

Condition of current being in phase with voltage
\[
\frac{1}{2}
\]

Naming of circuit condition
\[
\frac{1}{2}
\]

(ii) Calculation of \(\frac{P_1}{P_2} \)

\[
1 \frac{1}{2}
\]
From Figure

\[\vec{V} = \vec{V}_L + \vec{V}_R + \vec{V}_C \]

where \(|\vec{V}_R| = i_m R \)

\[|\vec{V}_L + \vec{V}_C| = V_{cm} - V_{lm} \]

\[= i_m (X_C - X_L) \]

\[\Rightarrow V_m^2 = V_{cm}^2 + (V_{cm} - V_{lm})^2 \]

\[l_m^2 Z^2 = l_m^2 R^2 + i_m^2 (X_C - X_L)^2 \]

\[\Rightarrow Z = \sqrt{R^2 + (X_C - X_L)^2} \]

From Figure

\[\tan \phi = \frac{V_{cm} - V_{lm}}{V_{Rm}} = \frac{i_m (X_C - X_L)}{i_m R} \]

\[\phi = \tan^{-1} \left(\frac{X_C - X_L}{R} \right) \]

Condition for current and voltage are in phase:

\[V_L = V_C \text{ or } X_L = X_C \]

Circuit is called Resonant circuit.

ii) Power factor \(P_1 = \frac{R}{Z} = \frac{R}{\sqrt{R^2 + R^2}} = \frac{1}{\sqrt{2}} \)

(as \(X_L = R \))

Power factor when capacitor C of Reactance \(X_C = X_L \) is put in series in the circuit
\[P_2 = \frac{R}{Z} = \frac{R}{R} = 1 \]

as \(Z = R \) at resonance

\[\therefore \frac{P_1}{P_2} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \]

OR

(i) Function of transformer
 - Working principle and diagram
 - Various energy losses (two)

(ii) Calculation of part (a), (b), (c), (d) & (e)

(i) Conversion of ac of low voltage into ac of high voltage & vice versa

Mutual induction: When alternating voltage is applied to primary windings, emf is induced in the secondary windings.

![Diagram of transformer with primary and secondary windings.](image)

(Any one of the above diagram)

Energy losses:
- a. Leakage of magnetic flux
- b. Eddy currents
- c. Hysteresis loss
- d. Copper loss

(Any two)

\[N_p = 100 \]

Transformation ratio = 100

a) Number of turns in secondary coil
\(N_s = 100 \times 100 = 10000 \)

b) Input Power = Input voltage x current in primary
\[1100 = 220 \times I_p \]
\[\Rightarrow I_p = 5A \]

c) \[\frac{V_s}{V_p} = \frac{N_s}{N_p} \]
\[\frac{V_s}{220} = 100 \]
\[\Rightarrow V_s = 2.2 \times 10^4 \text{ volts} \]

d) \[\frac{I_p}{I_s} = \frac{N_s}{N_p} \]
\[\frac{5}{I_s} = 100 \]
\[\Rightarrow I_s = \frac{5}{100} = 0.05 \text{ A} \]

e) Power in secondary = Power in Primary
\[= 1100 \text{ W} \]

Set 1, Q25 Set 2, Q26 Set 3, Q25

i) Deduce the conditions for a) constructive and b) destructive interference
Graph showing the variation of intensity

ii) Three distinguishing features

From the figure, the path difference is given by:

\[(S_2P - S_1P) \]

\[(S_2P)^2 - (S_1P)^2 = [D^2 + (x + \frac{d}{2})^2] - [D^2 + (x - \frac{d}{2})^2] \]

\[(S_2P + S_1P)(S_2P - S_1P) = 2xd \]
\[
S_2P - S_1P = \frac{2xd}{S_2P + S_1P}
\]

For \(x, d << D\)
\[
S_2P + S_1P = 2D
\]

\[
\therefore S_2P - S_1P = \frac{2xd}{2D} = \frac{xd}{D}
\]

For constructive interference \(S_2P - S_1P = n\lambda, n=0,1,2,\ldots\)

\[
\Rightarrow \frac{xd}{D} = n\lambda
\]

\[
\Rightarrow x = \frac{n\lambda D}{d}
\]

For destructive interference \(S_2P - S_1P = (2n + 1)\frac{\lambda}{2}\)

\[
\frac{xd}{D} = (2n + 1)\frac{\lambda}{2}
\]

\[
\Rightarrow x = (2n + 1)\frac{\lambda D}{2d}
\]

ii)

(a) The Interference pattern has number of equally spaced bright and dark bands, while in the diffraction pattern the width of the central maximum is twice the width of other maxima.

(b) In Interference all bright fringes are of equal intensity, whereas in the diffraction pattern the intensity falls as order of maxima increases.

(c) In Interference pattern, maxima occurs at an angle \(\frac{\lambda}{a}\), where \(a\) is the slit width, whereas in diffraction pattern, at the same angle, first minimum occurs. (Here ‘\(a\)’ is the size of the slit)

(Any other distinguishing feature)
From figure \(\delta = D_m, i = e \) which implies \(r_1 = r_2 \)

\[
2r = A, \text{ or } r = \frac{A}{2}
\]

Using \(\delta = i + e - A \)
\[D_m = 2i - A\]
\[i = \frac{A + D_m}{2}\]
\[
\mu = \frac{\sin i}{\sin r} = \frac{\sin \left(\frac{A + D_m}{2}\right)}{\sin \left(\frac{A}{2}\right)}
\]

(ii) The phenomenon of splitting of white light into its constituent colours.

Cause: Refractive index of the material is different for different colours
According to the equation, \(\delta \neq (\mu - 1)A \), where \(A \) is the angle of prism, different colours will deviate through different amount.
For total internal reflection,
\(\angle i \geq \angle i_c \) (critical angle)

\[\Rightarrow 45^0 \geq \angle i_c \], i.e., \(\angle i_c \leq 45^0 \)

\[\sin i_c \leq \sin 45^0 \]

\[\frac{1}{\sin i_c} \geq \sqrt{2} \]

\[\Rightarrow \mu \geq \sqrt{2} \]

Hence, the minimum value of refractive index must be \(\sqrt{2} \)

<table>
<thead>
<tr>
<th>Set1,Q26</th>
<th>Set2,Q24</th>
<th>Set3,Q24</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Average velocity acquired by the electrons in the conductor in the presence of external electric field.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii) Derivation of expression of resistivity</td>
<td>Factors affecting resistivity</td>
<td></td>
</tr>
<tr>
<td>iii) Reason of using constantan and manganin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

i) Definition of drift velocity

\[v_d = \frac{-eE\tau}{m} \] where \(\tau \) is the relaxation time.

ii) \(v_d = \frac{-eE\tau}{m} \)

We have \(E = -\frac{V}{\ell} \), where \(V \) is potential difference across the length \(\ell \) of the conductor.

\[v_d = \frac{eV\tau}{m\ell} \]

Current flowing \(I = neAv_d \)

\[I = neAv_d \frac{eV\tau}{m\ell} = \frac{ne^2AV\tau}{m\ell} \]

\[\frac{I}{v} = \frac{ne^2A\tau}{m\ell} = \frac{1}{R} \]

\[\text{(i)} \]
Also, \(R = \rho \frac{L}{A} \) \(\text{---------(ii)} \)

Comparing (i) and (ii)

\[
\rho = \frac{m}{ne^2\tau}
\]

Resistivity of the material of a conductor depends on the relaxation time, i.e., temperature and the number density of electrons.

iii) Because constantan and manganin show very weak dependence of resistivity on temperature

\[\text{OR} \]

| i) Working Principle of potentiometer | 2 |
| ii) Calculation of potential gradient and balance length | 3 |

i) When constant current flows through a conductor of uniform area of cross section, the potential difference, across a length \(l \) of the wire, is directly proportional to that length of the wire.

\[V \propto l \text{ (Provided current and area are constant)} \]

ii) Current flowing in the potentiometer wire

\[
i = \frac{E}{R_{\text{total}}} = \frac{2.0}{15 + 10} = 2 \text{ A}
\]

\(\therefore \) Potential difference across the two ends of the wire

\[
V_{AB} = \frac{2}{25} \times 10V = \frac{20}{25} = 0.8 \text{ volt}
\]

Hence potential gradient \(K = \frac{V_{AB}}{l_{AB}} = \frac{0.8}{1.0} = 0.8 \text{ V/m} \)

Current flowing in the circuit containing experimental cell, \(\frac{1.5}{1.2 + 0.3} = 1 \text{ A} \)

Hence, potential difference across length \(AO \) of the wire

\[
0.3 = K \times l_{AO}
\]

\[= 0.8 \times l_{AO} = 0.3 \]

\[\Rightarrow l_{AO} = \frac{0.3}{0.8} = 0.375 \text{ m} = 37.5 \text{ cm} \]

\[\frac{1}{2} \]