CBSE Class 12 Physics Question Paper Solution 2016

MARKING SCHEME

Q. No.	Expected Answer / Value Points	Marks	Total Marks
Set1,Q1 Set2,Q4 Set3,Q2	Positive \quad SECTION (A)	1	1
$\begin{aligned} & \hline \text { Set1,Q2 } \\ & \text { Set2,Q5 } \\ & \text { Set3,Q3 } \end{aligned}$	Electric flux remains unaffected. [NOTE: (As per the Hindi translation), change in Electric field is being asked, hence give credit if student writes answer as decreases]	1	1
$\begin{aligned} & \hline \text { Set1,Q3 } \\ & \text { Set2,Q1 } \\ & \text { Set3,Q5 } \end{aligned}$	A current carrying coil, in the presence of magnetic field, experiences a torque, which produces proportionate deflection. [Alternatively (deflection) $\theta \alpha \tau$ (Torque)]	1	1
$\begin{aligned} & \hline \text { Set1,Q4 } \\ & \text { Set2,Q2 } \\ & \text { Set3,Q4 } \end{aligned}$	Due to their short wavelengths, (they are suitable for radar system used in aircraft navigation).	1	1
$\begin{aligned} & \hline \text { Set1,Q5 } \\ & \text { Set2,Q3 } \\ & \text { Set3,Q1 } \end{aligned}$	Quality factor $\mathrm{Q}=\frac{\omega_{0}}{2 \Delta \omega}$, [Alternatively Quality factor $\mathrm{Q}=\frac{\omega_{0} L}{R}$, Alternatively, It gives the sharpness of the resonance circuit.] It has no unit.	$1 / 2$ $1 / 2$	1
$\begin{aligned} & \hline \text { Set1,Q6 } \\ & \text { Set2,Q9 } \\ & \text { Set3,Q7 } \end{aligned}$	SECTION (B) Explanation of the terms (i) Attenuation (ii) Demodulation		2
$\begin{array}{\|l\|} \hline \text { Set1,Q7 } \\ \text { Set2,Q10 } \\ \text { Set3,Q8 } \end{array}$	Plotting of graph $1 / 2+1 / 2$ Identification of line representing lower mass $1 / 2$ Reason $1 / 2$		

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& \hline \text { Set1,Q9 } \\
\& \text { Set2,Q7 } \\
\& \text { Set3,Q9 }
\end{aligned}
\] \& \begin{tabular}{|lc|}
\hline Calculation of emf \& 1 \\
Calculation of internal resistance \& 1 \\
\hline
\end{tabular}
\[
\begin{aligned}
\mathrm{emf} \& =\frac{E_{1} r_{2}+E_{2} r_{1}}{r_{1}+r_{2}} \\
\& =\frac{1.5 \times 0.3+2 \times 0.2}{0.2+0.3} \mathrm{~V} \\
\& =\frac{0.45+0.40}{0.5} \mathrm{~V}=1.7 \mathrm{~V} \\
r \& =\frac{r_{1} r_{2}}{r_{1}+r_{2}} \\
\& =\frac{0.2 \times 0.3}{0.2+0.3} \Omega \\
\& =\frac{0.06}{0.5} \Omega \\
\& =0.12 \Omega
\end{aligned}
\] \& 1/2 \& 2 \\
\hline Set1,Q10 Set2,Q8 Set3,Q6 \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Statement of Brewster's Law \& 1 \\
Reason of different value \& 1 \\
\hline
\end{tabular} \\
When unpolarised light is incident on the surface separating two media, the reflected light gets (completely) polarized only when the reflected light and refracted light become perpendicular to each other. \\
[Alternatively \\
If the student draws the diagram, as shown, and writes \(i_{p}\) as the polarizing angle, award this 1 mark. If the student just writes \(\mu=\tan i_{p}\), award half mark only.] \\
The refractive index of denser medium, with respect to rarer medium, is given by \(\mu=\tan i_{p}\) \\
Since Refractive index (\(\mu\)) of a transparent medium is different for different colours, hence Brewster angle is different for different colours.
\end{tabular} \& 1

$1 / 2$
$1 / 2$ \& 2

\hline \& \& \&

\hline
\end{tabular}

	ii. Below a certain frequency (threshold) there is no photo-emission. iii. Spontaneous emission of photo-electrons.	1	3
Set1,Q13 Set2,Q16 Set3,Q11	a) Expression for the magnetic force 1 b) Trace of paths $1 / 2+1 / 2+1 / 2$ Justification $1 / 2$ $\vec{F}=\mathrm{q}(\vec{v} \times \vec{B})$ (Give Full credit of this part even if a student writes: $F=\mathrm{q} v B \operatorname{Sin} \theta$ and Force (F) acts perpendicular to the plane containing \vec{v} and \vec{B}) b) Justification: Direction of force experienced by the particle will be according to the Fleming's Left hand rule / (any other alternative correct rule.)	$\begin{aligned} & 1 / 2+ \\ & 1 / 2+ \\ & 1 / 2 \end{aligned}$	3
Set1,Q14 Set2,Q11 Set3,Q15	(i) Definition of mutual inductance (ii) Calculation of change of flux linkage $\quad 2$ (i) Magnetic flux, linked with the secondary coil due to the unit current flowing in the primary coil, $\quad \phi_{2}=M I_{1}$ [Alternatively Induced emf associated with the secondary coil, for a unit rate of change of current in the primary coil. $\left.e_{2}=-M \frac{d I_{1}}{d t}\right]$ [Also accept the Definition of Mutual Induction, as per the Hindi translation of the question] [i.e. the phenomenon of production of induced emf in one coil due to change in current in neighbouring coil] (ii) Change of flux linkage	1	

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Set1,Q16 \\
Set2,Q13 \\
Set3,Q17
\end{tabular} \& \begin{tabular}{l}
Diagram showing attractive force on other wire. 1 \\
Obtaining an expression for force. \\
Definition of one ampere. \\
As shown in Figure, the direction of force on conductor \(b\) is attractive [Alternatively: \\
\(\vec{B}\) at a point on wire 2 , is along \(-\widehat{k}\) \\
\(\therefore \vec{F}\), on wire 2 , due to the \(\vec{B}\), is along \(-\hat{\imath}\), i.e. towards wire1. Hence the force is attractive. \\
Magnetic field, due to current in conductor a,
\[
B_{1}=\frac{\mu_{0} I_{1}}{2 \pi d}
\] \\
The magnitude of force on a length \(L\) of conductor \(b\),
\[
\begin{gathered}
F_{2}=I_{2} L B_{1} \\
F_{2}=\frac{\mu_{0} I_{1} I_{2} L}{2 \pi d}
\end{gathered}
\] \\
One ampere is that steady current which, when maintained in each of the two very long, straight, parallel conductors, placed one meter apart in vacuum, would produce on each of these conductors a force equal to \(2 \times 10^{-7}\) newton per meter of their length.
\end{tabular} \& \(1 / 2\)

$1 / 2$ \& 3

\hline $$
\begin{aligned}
& \hline \text { Set1,Q17 } \\
& \text { Set2,Q20 }
\end{aligned}
$$

Set3,Q18 \& \begin{tabular}{l}

Production of em waves	1
Drawing of sketch of linearly polarized em waves	1
Indication of directions of oscillating electric and magnetic fields	$1 / 2+1 / 2$

A charge oscillating with some frequency, produces an oscillating electric field in space, which in turn produces an oscillating magnetic
\end{tabular} \& \&

\hline
\end{tabular}

	field perpendicular to the electric field, this process goes on repeating, producing em waves in space perpendicular to both the fields. Directions of \vec{E} and \vec{B} are perpendicular to each other and also perpendicular to direction of propagation of em waves. OR Maxwell's generalization of Ampere's Circuital law Showing that current produced, within the plates of a capacitor is $i=\epsilon_{0} \frac{d \phi_{\epsilon}}{d t}$ Ampere's circuital law is given by as $\phi \vec{B} \cdot \overrightarrow{d l}=\mu_{0} i_{c}$ But for a circuit containing capacitor, during its charging / discharging the current within the plates of the capacitor varies, (producing displacement current i_{d}). Therefore, the above equation, as generalized by Maxwell, is given as $\phi \vec{B} \cdot \overrightarrow{d l}=\mu_{0} i_{c}+\mu_{0} i_{d}$ During the process of charging of capacitor, electric flux $\left(\phi_{\epsilon}\right)$ between the plates of capacitor changes with time, which produces the current within the plates of capacitor. This current, being proportional to $\frac{d \phi_{\epsilon}}{d t}$, we have $i=\epsilon_{0} \frac{d \phi_{\epsilon}}{d t}$	1 1 $1 / 2+1 / 2$ 1 1 1	3
$\begin{array}{\|l\|} \hline \text { Set1,Q18 } \\ \text { Set2,Q21 } \\ \text { Set3,Q16 } \end{array}$	a) Explanation of any two factors justifying the need of modulation b) Two advantages of FM over AM $1 / 2+1 / 2$ a) A low frequency signal is modulated for the following purposes: (i) It reduces the wavelength of transmitted signal, and the minimum height of antenna for effective communication is $\lambda / 4$. Therefore height of antenna becomes practically achievable.	1	

	(ii) Power radiated into the space by an antenna is inversely proportional to λ^{2}. Therefore, the power radiated into the space increases and signal can travel larger distance. (Give full credit of this part for any other correct answer) b) (i) High efficiency (ii) Less noise (iii) Maximum use of transmitted power (any two)	1 $1 / 2+1 / 2$	3
$\begin{aligned} & \hline \text { Set1,Q19 } \\ & \text { Set2,Q22 } \\ & \text { Set3,Q20 } \end{aligned}$	(i) Function of three segments (ii) Circuit diagram Input and output characteristics i) Emitter : Supplies the large number of majority charge carriers for the flow of current through the transistor. Base : Controls the movement of charge carriers coming from emitter region Collector: Collects a major portion of the majority carriers supplied by the emitter. (NOTE: Also accept the following explanation of these parts of the transistor as asked in Hindi translation) Emitter: Heavily doped and of moderate size. Base: Central region, thin and lightly doped. Collector: Moderately doped and large sized. ii) Input characteristics are obtained by recording the values of base current I_{B}, for different values of $V_{B E}$ at constant $V_{C E}$ Output characteristics are obtained by recording the values of I_{C} for different values of $V_{C E}$ at constant I_{B}	1/2	

	[Alternatively Also accept input/output characteristic curves for this part of the question.]		3
Set1,Q20 Set2,Q17 Set3,Q19	(ii) Reason for virtual image, through convex mirror a) Given $R=-20 \mathrm{~cm}$, and magnification $m=-2$ Focal length of the mirror $f=\frac{R}{2}=-10 \mathrm{~cm}$ $\begin{aligned} \text { Magnification (m) } & =-\frac{v}{u} \\ -2 & =-\frac{v}{u} \\ \Rightarrow v & =2 u \end{aligned}$ Using mirror formula $\begin{aligned} & \frac{1}{f}=\frac{1}{v}+\frac{1}{u} \\ & \Rightarrow-\frac{1}{10}=\frac{1}{2 u}+\frac{1}{u} \\ & \Rightarrow u=-15 \mathrm{~cm} \\ & \quad \therefore v=2 \times-15 \mathrm{~cm}=-30 \mathrm{~cm} \end{aligned}$ b) $\frac{1}{f}=\frac{1}{v}+\frac{1}{u}$ Using sign convention, for convex mirror, we have $f>0, \mathrm{u}<0$ From the formula $\frac{1}{v}=\frac{1}{f}-\frac{1}{u}$ $\because f$ is positive and u is negative, $\Rightarrow v$ is always positive, hence image is always virtual.		3
$\begin{aligned} & \hline \text { Set1,Q21 } \\ & \text { Set2,Q18 } \\ & \text { Set3,Q22 } \end{aligned}$	(i) Statement of Bohr's quantization condition $1 / 2$ de- Broglie explanation of stationary orbits 1 (ii) Relation between $\lambda_{1}, \lambda_{2}, \lambda_{3}$ $11 / 2$ (i) Only those orbits are stable for which the angular momentum, of revolving electron, is an integral multiple of $\frac{h}{2 \pi}$.		

	[Alternatively $L=\frac{n h}{2 \pi}$ i.e. angular momentum of orbiting electron is quantised.] According to de Broglie hypothesis Linear momentum $(p)=\frac{h}{\lambda}$ And for circular orbit $L=r_{n} p$ where ' r_{n} ' is the radius of quantized orbits. $=\frac{r h}{\lambda}$ Also $L=\frac{n h}{2 \pi}$ $\begin{aligned} & \therefore \frac{r h}{\lambda}=\frac{n h}{2 \pi} \\ \Rightarrow & 2 \pi r_{n}=n \lambda \end{aligned}$ \therefore Circumference of permitted orbits are integral multiples of the wavelength λ ii) $E_{C}-E_{B}=\frac{h c}{\lambda_{1}}$ $\begin{equation*} E_{B}-E_{A}=\frac{h c}{\lambda_{2}} \tag{i} \end{equation*}$ $E_{C}-E_{A}=\frac{h c}{\lambda_{3}} .$ Adding (i) \& (ii) $\begin{equation*} E_{C}-E_{A}=\frac{h c}{\lambda_{1}}+\frac{h c}{\lambda_{2}} . \tag{iv} \end{equation*}$ Using equation (iii) and (iv) $\frac{h c}{\lambda_{3}}=\frac{h c}{\lambda_{1}}+\frac{h c}{\lambda_{2}} \Rightarrow \frac{1}{\lambda_{3}}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}$	$1 / 2$	3
$\begin{aligned} & \hline \text { Set1,Q22 } \\ & \text { Set2,Q19 } \\ & \text { Set3,Q21 } \end{aligned}$	Drawing of Schematic ray diagram 2 Two advantages $1 / 2+1 / 2$	2	

Page 11 of 19

	(i) Large gathering power (ii) Large magnifying power (iii) No chromatic aberration (iv) Spherical aberration is also removed (v) Easy mechanical support (vi) Large resolving power (Any Two)	$1 / 2+1 / 2$	3
$\begin{aligned} & \text { Set1,Q23 } \\ & \text { Set2,Q23 } \\ & \text { Set3,Q23 } \end{aligned}$	SECTION (D) Answers of part (i),(ii), (iii) $\quad 1+1+2$ (i) Values displayed by Meeta: Inquisitive/ Keen Observer/ Scientific temperament/ (Any other value.) Values displayed by Father: Encouraging/ Supportive /(Any other value) (ii) Meeta's father explained that the traffic light is made up of tiny bulbs called light emitting diodes (LED) (Also accept other relevant answers) (iii)Light emitting diode These diodes (LED's) operate under forward bias, due to which the majority charge carriers are sent from these majority zones to minority zones. Hence recombination occur near the junction boundary, which releases energy in the form of photons of light.	1 1 $1 / 2$ $1 / 2$ 1	4
$\begin{aligned} & \text { Set1,Q24 } \\ & \text { Set2,Q25 } \\ & \text { Set3,Q26 } \end{aligned}$			

Page 12 of 19

From Figure

$$
\vec{V}=\overrightarrow{V_{L}}+\overrightarrow{V_{R}}+\overrightarrow{V_{C}}
$$

where $\left|\overrightarrow{V_{R}}\right|=i_{m} R$

$$
\begin{gathered}
\left|\overrightarrow{V_{L}}+\overrightarrow{V_{C}}\right|=V_{C m}-V_{L m} \\
=i_{m}\left(X_{C}-X_{L}\right) \\
\Rightarrow V_{m}^{2}=V_{R m}^{2}+\left(V_{C m}-V_{L m}\right)^{2} \\
l_{m}^{2} Z^{2}=l_{m}^{2} R^{2}+i_{m}^{2}\left(X_{C}-X_{L}\right)^{2} \\
\Rightarrow \mathrm{Z}=\sqrt{R^{2}+\left(X_{C}-X_{L}\right)^{2}}
\end{gathered}
$$

	$P_{2}=\frac{R}{Z}=\frac{R}{R}=1$ as $Z=R$ at resonance $\therefore \frac{P_{1}}{P_{2}}=\frac{\frac{1}{\sqrt{2}}}{1}=\frac{1}{\sqrt{2}}$ OR (i) Conversion of ac of low voltage into ac of high voltage $\&$ vice versa Mutual induction: When alternating voltage is applied to primary windings, emf is induced in the secondary windings. (a) (b) (Any one of the above diagram) Energy losses: a. Leakage of magnetic flux b. Eddy currents c. Hysterisis loss d. Copper loss ii) $N_{p}=100$ Transformation ratio $=100$ a) Number of turns in secondary coil	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2+1 / 2$	5

	$N_{s}=100 \times 100=10000$ b) Input Power $=$ Input voltage x current in primary $\begin{aligned} 1100 & =220 \times I_{p} \\ \Rightarrow I_{p} & =5 \mathrm{~A} \end{aligned}$ $\begin{aligned} & \text { c) } \frac{V_{s}}{V_{P}}=\frac{N_{s}}{N_{P}} \\ & \frac{V_{s}}{220}=100 \\ & \Rightarrow V_{s}=2.2 \times 10^{4} \mathrm{volts} \end{aligned}$ d) $\begin{aligned} & \frac{I_{P}}{I_{s}}=\frac{N_{S}}{N_{P}} \\ & \frac{5}{I_{s}}=100 \\ & \Rightarrow I_{S}=\frac{5}{100}=0.05 \mathrm{~A} \end{aligned}$ e) Power in secondary $=$ Power in Primary $=1100 \mathrm{~W}$	1/2	5
Set1,Q25 Set2,Q26 Set3,Q25	i) Deduce the conditions for a) constructive and b) destructive interference $21 / 2$ Graph showing the variation of intensity 1 ii) $1 \frac{1}{2}$ i) From figure Path difference $=\left(S_{2} P-S_{1} P\right)$ $\begin{aligned} & \left(S_{2} P\right)^{2}-\left(S_{1} P\right)^{2}=\left[D^{2}+\left(x+\frac{d}{2}\right)^{2}\right]-\left[D^{2}+\left(x-\frac{d}{2}\right)^{2}\right] \\ & \left(S_{2} P+S_{1} P\right)\left(S_{2} P-S_{1} P\right)=2 x d \end{aligned}$	$1 / 2$	

$$
S_{2} P-S_{1} P=\frac{2 x d}{S_{2} P+S_{1} P}
$$

For $x, d \ll D$
$S_{2} P+S_{1} P=2 D$
$\therefore S_{2} P-S_{1} P=\frac{2 x d}{2 D}=\frac{x d}{D}$
For constructive interference $S_{2} P-S_{1} P=n \lambda, n=0,1,2 \ldots \ldots$
$\Rightarrow \frac{x d}{D}=n \lambda$
$\Rightarrow \boldsymbol{x}=\frac{n \lambda D}{d}$
For destructive interference $S_{2} P-S_{1} P=(2 n+1) \frac{\lambda}{2}$

$$
\begin{array}{ll}
\frac{x d}{D}=(2 n+1) \frac{\lambda}{2} & n=0,1,2 \ldots \\
\Rightarrow x=(2 n+1) \frac{\lambda D}{2 d} &
\end{array}
$$

ii)
(a) The Interference pattern has number of equally spaced bright and dark bands, while in the diffraction pattern the width of the central maximum is twice the width of other maxima.
(b) In Interference all bright fringes are of equal intensity, whereas in the diffraction pattern the intensity falls as order of maxima increases.
(c) In Interference pattern, maxima occurs at an angle $\frac{\lambda}{\boldsymbol{a}}$, where a is the slit width, whereas in diffraction pattern, at the same angle, first minimum occurs. (Here ' a ' is the size of the slit)
(Any other distinguishing feature)

OR

i) Plot showing the variation of the angle of deviation as a function of angle of incidence Derivation of expression of refractive index $11 / 2$
ii) Definition of Dispersion and its cause $1 / 2+1 / 2$
iii) Calculation of minimum value of refractive index $11 / 2$

Using $\delta=i+e-A$
$D_{m}=2 i-A$
$i=\frac{A+D_{m}}{2}$
$\mu=\frac{\sin i}{\sin r}=\frac{\sin \left(\frac{A+D_{m}}{2}\right)}{\sin A / 2}$
(ii) The phenomenon of splitting of white light into its constituent colours.

Cause: Refractive index of the material is different for different colours According to the equation, $\delta \not \equiv(\mu-1) A$, where A is the angle of prism, different colours will deviate through different amount.

| | | |
| :--- | :--- | :--- | :--- |

Page 18 of 19

Also, $\mathrm{R}=\rho \frac{\ell}{A}$
(ii)

Comparing (i) and (ii)

$$
\rho=\frac{m}{n e^{2} \tau}
$$

iii) Because constantan and manganin show very weak dependence of resistivity on temperature

OR

i) Working Principle of potentiometer 2
ii) Calculation of potential gradient and balance length
i) When constant current flows through a conductor of uniform area of cross section, the potential difference, across a length 1 of the wire, is directly proportional to that length of the wire.

$$
[V \propto l \text { (Provided current and area are constant] }
$$

ii) Current flowing in the potentiometer wire

$$
i=\frac{E}{R_{\text {total }}}=\frac{2.0}{15+10}=\frac{2}{25} \mathrm{~A}
$$

\therefore Potential difference across the two ends of the wire

$$
V_{A B}=\frac{2}{25} \times 10 \mathrm{~V}=\frac{20}{25}=0.8 \mathrm{volt}
$$

Hence potential gradient $\mathrm{K}=\frac{V_{A B}}{l_{A B}}=\frac{0.8}{1.0}=0.8 \mathrm{~V} / \mathrm{m}$
Current flowing in the circuit containing experimental cell,

$$
=\frac{1.5}{1.2+0.3}=1 \mathrm{~A}
$$

Hence, potential difference across length AO of the wire

$$
\begin{aligned}
& \quad=0.3 \times 1 V=0.3 \mathrm{~V} \\
& \Rightarrow 0.3=K \times l_{A O} \\
& =0.8 \times l_{A O} \\
& \Rightarrow l_{A O}=\frac{0.3}{0.8} m=0.375 \mathrm{~m} \\
& \quad=37.5 \mathrm{~cm}
\end{aligned}
$$

