CBSE Class 12 Physics Question Paper Solution 2016

55/1/C

	MARKING SCHEME		55
Q. No.	Expected Answer / Value Points	Marks	Total Marks
	SECTION-A		
SET1,Q1 SET2,Q4 SET3,Q5	No work is done /		
3E13,Q3	$W = qV_{AB} = q \ge 0$	1	1
SET1,Q2 SET2,Q1 SET3,Q3	A diamagnetic specimen would move towards the weaker region of the field while a paramagnetic specimen would move towards the stronger region./ A diamagnetic specimen is repelled by a magnet while a paramagnetic specimen moves towards the magnet./	1	
	The paramagnetic get aligned along B and the diagrammatic perpendicular to the field.		1
SET1,Q3 SET2,Q5 SET3,Q2	Transmitter, Medium or Channel and Receiver.	1	1
SET1,Q4 SET2,Q3 SET3,Q1 .	It is due to least scattering of red light as it has the longest wavelength/ As per Rayleigh's scattering, the amount of light scattered $\propto \frac{1}{\lambda^4}$	1	1
SET1,Q5 SET2,Q2 SET3,Q4	E = 2V $r = 2\Omega$	1/2 1/2	1
	SECTION B		
SET1,Q6 SET2,Q9 SET3,Q8.	Definition- 1 Reason- 1/2 Role of bandpass filter- 1/2 Modulation index is the ratio of the amplitude of modulating signal to that of carrier wave	1	
	Alternatively $\mu = \frac{A_m}{A_c}$ Reason- To avoid distortion.	1/2	
	Role- A bandpass filter rejects low and high frequencies and allows a band of frequencies to pass through.	1⁄2	2

SET1,Q7 SET2,Q10 SET3,Q6	Path of emergent ray1Naming the face1/2Justification1/2		
	P 30 Normal B C	1	
	Face-AC		
	Here $i_c = \sin^{-1}(\frac{2}{3})$ = $\sin^{-1}(0.6)$	1/2	2
SET1,Q8	$\angle i$ on face AC is 30° which is less than $\angle i_c$. Hence the ray get replaced here.	1/2	
SET2,Q6 SET3,Q7	Formulae of Kinetic energy and deBrogliea wavelength 1/2 +1/2 Calculation and Result 1/2+1/2 Kinetic Energy for the second state-	1/2	
	$E_{k} = \frac{13.6eV}{n^{2}} = \frac{13.6eV}{4} = 3.4X1.6X10^{-19}J$ De Broglies wavelength $\lambda = \frac{h}{\sqrt{2mE_{k}}}$	1/2	
	$=\frac{6.63X10^{-34}}{\sqrt{2X9.1X10^{-31}X3.4X1.6X10^{-19}}}$	1⁄2	
	= 0.067nm	1⁄2	2
SET1,Q9 SET2,Q8 SET3,Q10	Definition1Formula1/2Calculation and Result1/2		
	The minimum energy, required to free the electron from the ground state of the hydrogen atom, is known as Ionization Energy.	1	

			1
	$E_o = \frac{me^4}{8 \epsilon_o^2 h^2} i.e, E_o \propto m$ Therefore, Ionization Energy will become 200 times	1⁄2	
	OR	1/2	2
	Formula1Calculation and Result $\frac{1}{\frac{1}{2}+\frac{1}{2}}$,2	
	$\frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{\infty^2} \right)$ For shortest wavelength, n = α	1	
	Therefore, $\frac{1}{\lambda} = \frac{R}{4} = > \lambda = \frac{4}{R} = 4 \times 10^{-7} \text{m}$	1/2 1/2	2
SET1,Q10 SET2,Q7 SET3,Q9	a) Relation for terminal potential1/2b) Justification1/2c) Explanation (parallel and series)1/2 + 1/2	0	
	a) Effective resistance of the circuit $R_E = 6\Omega$ $\therefore I = \frac{12A}{6} = 2A$		
	Terminal potential difference across the cell, V=E-ir	1⁄2	
	Also p.d. across 4Ω resistor = $4X2V$ = $8V$ Hence the volmeter gives the same reading in the two cases.	1⁄2	
	b) In series -current same	1/2	
	In parallel – potential same	1/2	2
	SECTION C		
SET1,Q11			
SET2,Q15 SET3,Q22	Definition-1/2i.Diagram of Equipotential Surface1/2		
	ii.Diagram and reason $\frac{1}{2} + \frac{1}{2}$		
	iii.Answer and Reason ¹ /2+ ¹ /2		
	Surface with a constant value of potential at all points on the surface.	1⁄2	
L			

	i.	1/2	
	ii.	1/2	
	$V \propto \frac{1}{r}$	1/2	
	iii.No	1⁄2	
	If the field lines are tangential, work will be done in moving a charge on the surface which goes against the definition of equipotential surface.	1/2	3
SET1,Q12 SET2,Q14 SET3,Q12	Statement1Plotting the graph1Calculating value of (μ) refractive index1i. When the pass axis of a poloroid makes an angle θ with the plane of polarisation of polorised light of intensity I_o incident on it, then the intensity of the tramsmitted emergent light is given by $I=I_o cos^2 \theta$ Note: If the student writes the formula $I=I_o cos^2 \theta$ and draws the	1	

SET1,Q14			
SET2,Q12 SET3,Q19	(a) Basic nuclear process 1		
5210,Q13	(b) (i) value of x, y, z 1 (ii) value of a, b, c 1		
	a. Basic nuclear reaction	1	
	$P \rightarrow n + e^+ + \nu$		
	b.(i) $x = \frac{\beta^{+}}{1e}$, y =5, z =11 (ii) a=10, b=2, c=4	1 1	3
SET1,Q15			
SET2,Q11 SET3,Q21	(i) Relation for drift velocity2(ii) Effect of temperature1		
5213, 221			
	i. When a potential difference is applied across a conductor, an electric field is produced and free electrons are acted upon by an electric force (= -Ee). Due to this, electrons accelerate and keep colliding with each other and acquire a constant (average) velocity v_d \therefore , $F_e = -Ee$	1/2	
	$\therefore, F_e = \frac{-eV}{l}$	1⁄2	
	As $a = \frac{-F}{m} = \frac{-eV}{m}$ as $v = u + at$		
	$u = 0$, $t = \tau$ (relaxation time)	1⁄2	
	$v_d = -a \tau$		
	$v_d = \frac{-eV}{lm}\tau$	1/2	
	ii. Decreases, as time of relaxation decreases.	1/2, 1/2	3
SET1,Q16			
SET2,Q22 SET3,Q15	Proof for average power1½Effect on brightness½Explanation1		

			,
	i) $P_{av} = I_{av} \ge e_{av} \cos \emptyset$	1⁄2	
	For an ideal inductor, $\phi = \frac{\pi}{2}$	1⁄2	
	$\therefore P_{av} = l_{av} \ge e_{av} \cos \frac{\pi}{2}$	1/2	
	$P_{av} = 0$, 2	
	ii) Brightness decreases	1⁄2	
	Because as iron rod is inserted inductance increases. Thus, current decreases and brightness decreases.	1/2 1/2	3
SET1,Q17 SET2,Q21			
SET3,Q16	i.Diagram of Formation ¹ / ₂ Explanation of formation of		
	Depletion region ¹ / ₂		
	Barrier potential ¹ / ₂		
	ii.Circuit diagram of Half wave rectifier ¹ / ₂		
	Explanation 1	- C	
	 i. Due to diffusion and drift, the electrons and holes move across the junctions, creating a final stage in which a region is created across the junction wall, which gets devoid of the mobile charge carriers. This region is called depletion region; the potential difference across the region is called Barriers potential 	1/2	

	reflected back to the earth by the ionosphere.		
SET1,Q19 SET2,Q19 SET3,Q17	i. Identification 1+1 ii. Momentary deflection of galvanometer Reason 1/2 Expressions 1/2		
	i. a. Microwaves b. X-rays	1 1	
	ii Due to conduction current in the connecting wires and a displacement current between the plates $I_d = \epsilon_0 \frac{d\phi_E}{dt}$	1/2 1/2	3
SET1,Q20 SET2,Q18 SET3,Q11	i. Collection current $\frac{1}{2} + \frac{1}{2}$ ii. Base Current $\frac{1}{2} + \frac{1}{2}$ iii. Base voltage $\frac{1}{2} + \frac{1}{2}$		
	i. Input signal Voltage AC Collector Current- $i_c = \frac{V_{ce}}{R_c} = 1.0mA$	1/2 +1/2	
	Base Current- $\vec{i}_b = \frac{i_c}{\beta} = \frac{1.0mA}{100} = 0.01mA$	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	3
	Base signal Voltage= $i_b R = 0.01 \text{mA x} 1 \text{k}\Omega = 10 \text{mv}$	72 +72	5

	determined by the number of photon incident normally on a crossing an unit area per unit time.	1/2 +1/2	
		1/2 +1/2	3
		1	
SET1,Q22 SET2,Q16 SET3,Q20	Explanation for magnetic field on the axis of current loop 2	1.0	
	Drawing- magnetic field lines 1	201	
	i. $ \frac{dI}{R} + \frac{dB_1}{x} + \frac{dB_2}{P} + \frac{dB_3}{B_3} + X $	1⁄2	
	$\overrightarrow{dB} = \frac{\mu_o \overrightarrow{dl} X \overrightarrow{r}}{4\pi r^3}$	1⁄2	
	$dB_x = \frac{\mu_0 I dl R}{4\pi (x^2 + R^2)^{\frac{3}{2}}}$	1⁄2	
	$\overrightarrow{B} = B_x \hat{\iota} = \frac{\mu_{oIR^2}}{2(x^2 R^2)^{\frac{3}{2}}} \hat{\iota}$	1⁄2	
	ii.		

		1	3
	SECTION D	1	
SET1,Q23 SET2,Q23 SET3,Q23	a. Principle and working $1+1$ b. Two values, each, displayed by $1+1$ b. Two values, each, displayed by $1/2+1/2$ i. Ram $1/2+1/2$ ii.School teacher $1/2+1/2$ a. Principle:Whenever a coil is rotated in a magnetic field, an emf is induced in it due to the change in magnetic flux linked with it.Working- As the coil rotates, its inclination (θ) with respect to the field changes.Hence sinosodial /varying emf(= $e_o sin\omega t$) is obtained./May also be explained graphically.[Note- Give full marks if the student obtains the expression for induced emf mathematically.]b. Values Ram- Scientific aptitude, curiosity, keenness to learn, positive approach, etc(any two) Teacher-	1	
	Dedication, concern for students, depth of knowledge, generous, positive attitude towards queries, motivational approach.(any two)	1/2 +1/2	3

SET1,Q24 SET2,Q26 SET3,Q25	SECTION E i. Labelled diagram 1 Principle 1 ii. Expression for the turn ratio in terms of voltage ½ iii. Ratio of primary and secondary currents in terms of turns 1 iv. Current drawn by primary Formula- ½ Calculation and result ½ +½	1	

Inside		
$\xrightarrow{\to}_{E=E_1}^{+} \xrightarrow{+}_{E_2}^{+}$		
$=\frac{\sigma+\sigma}{2E_0}=\frac{\sigma}{E_0}$		
Outside $\overrightarrow{E} = \overrightarrow{E_2} - \overrightarrow{E_1}$		
$=\frac{\sigma-\sigma}{2\epsilon_0}=0$ b. Potential difference between plates	1⁄2	
$V = Ed = \frac{1}{\epsilon_o} \frac{Qd}{A}$	¹ / ₂ + ¹ / ₂	
c. Capacitance		
$C = \frac{Q}{v} = \frac{\epsilon_0 A}{d}$	$\frac{1}{2} + \frac{1}{2}$	
ii. As potential on and inside a charged sphere is given $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r} = \frac{1}{4\pi\epsilon_0} \cdot \frac{4\pi r^2 \sigma}{r}$	1/2	
\therefore , $V \propto r$ Hence, the bigger sphere will be at higher potential, so charge will flow from bigger sphere to smaller sphere.	1/2	5