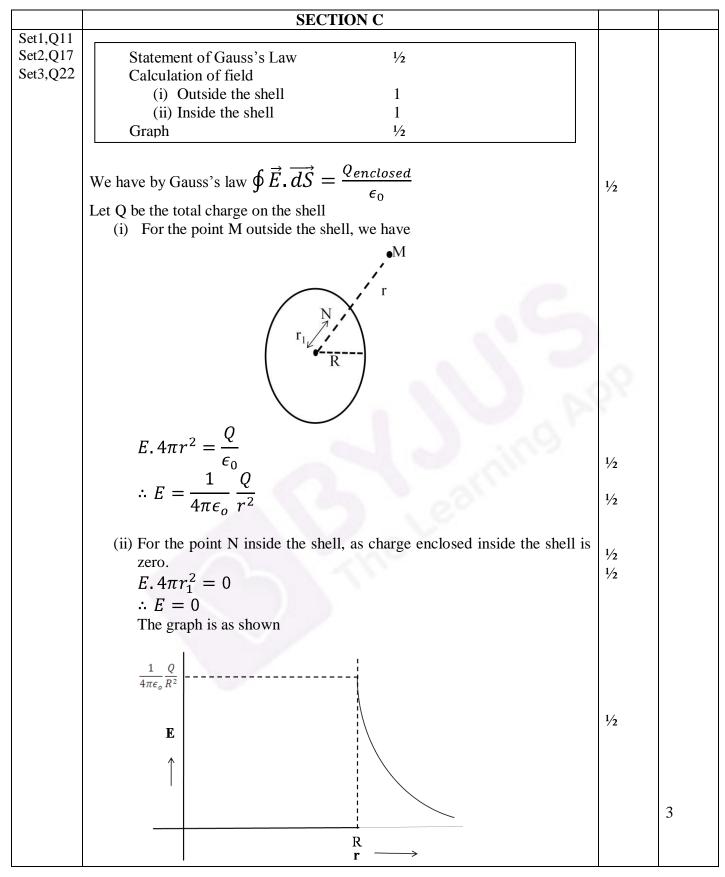
CBSE Class 12 Physics Question Paper Solution 2016

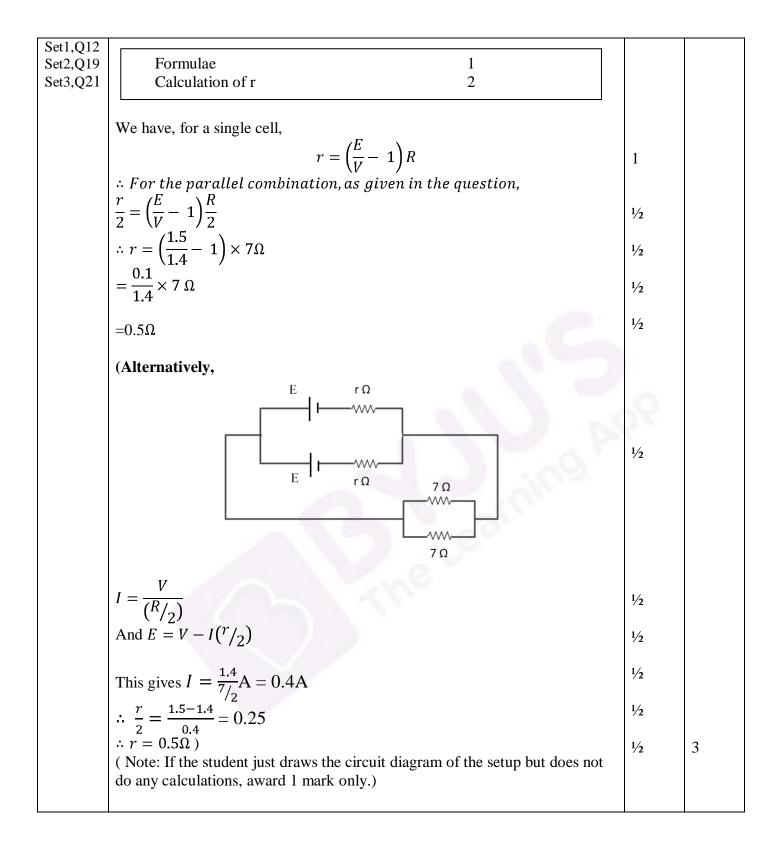
SET 55/1/1/N

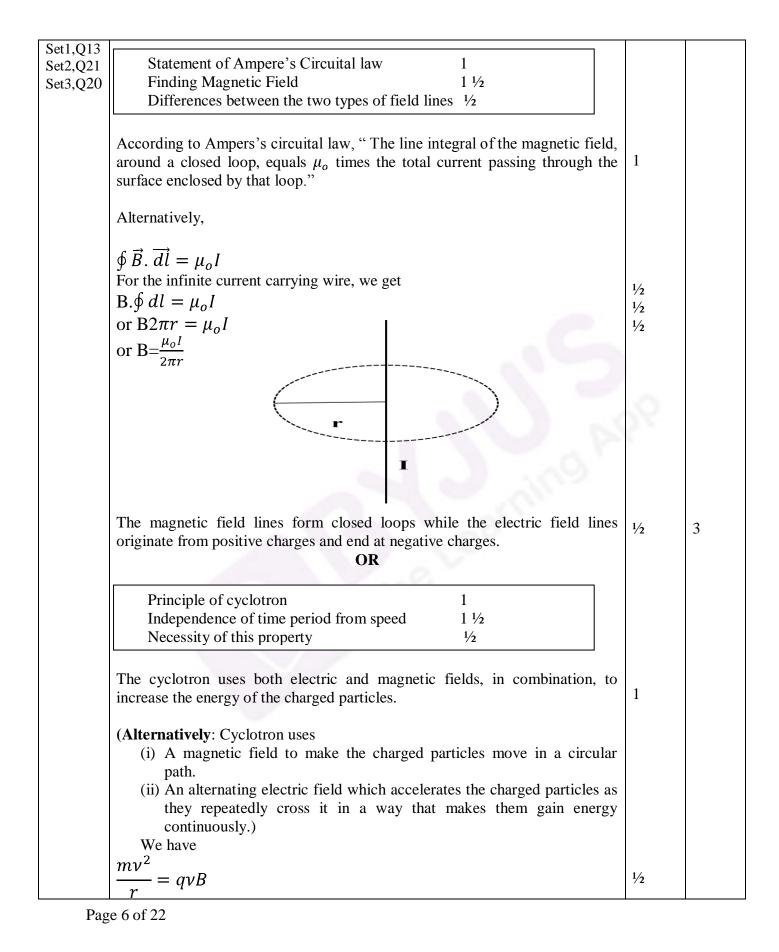
MARKING SCHEME

Q. No.	Expected Answer / Value Points	Marks	Total Marks
Set1,Q1 Set2,Q2 Set3,Q4	SECTION A Zero / No work done / None	1	1
Set1,Q2 Set2,Q5	Drift velocity per unit field $(\mu_m = \frac{v_d}{E})$	1/2	
Set3,Q3	$\mu_n \propto \tau$ (directly proportional to relaxation time)	1/2	1
Set1,Q3	Charged particle moves inclined to the magnetic field		
Set2,Q4 Set3,Q2	(angle between $\vec{\vartheta}$ and \vec{B} is neither $\pi/2$ nor 0) (component of $\vec{\vartheta}$, parallel to \vec{B} , is not zero.)	1	1
Set1,Q4	(some) light gets deviated / scattered / absorbed	1/2	
Set2,Q1 Set3,Q5	Scattering of light	1⁄2	1
Set1,Q5 Set2,Q3	$v_{side\ bands} = v_c \pm v_m$	1/2	
Set3,Q1	= 2005 kHz ; 1995 kHz (Give full 1 mark if the student straightaway writes the answer as 2005 kHz and 1995 kHz)	1/2	1
	SECTION B		
Set1,Q6 Set2,Q8 Set3,Q7	Formulae:1Substitution and calculation:1		
5ct3,Q7	$R = \rho \frac{l}{A}; I = neAv_d$	1⁄2	
	$\therefore \rho = \frac{V}{nelv_d}$ Alternatively,	1⁄2	
	$\begin{pmatrix} j = \sigma E = \frac{E}{\rho} \text{ or } \frac{E}{j} = \rho \\ \therefore \rho = \frac{V}{lnev_d} \end{pmatrix}$		
	(Award this 1 mark even if the student writes the formula for ρ directly as such)		
	$\therefore \rho = \frac{5}{0.1 \times 8 \times 10^{28} \times 1.6 \times 10^{-19} \times 2.5 \times 10^{-4}} \Omega - m$	1⁄2	
	$= 1.56 \times 10^{-5} \Omega - m$ $\simeq 1.6 \times 10^{-5} \Omega - m$	1/2	2


Page 1 of 22

Set1,Q7			
Set2,Q10 Set3,Q8	Formulae $\frac{1}{2} + \frac{1}{2}$		
	Conclusions in the two cases $\frac{1}{2} + \frac{1}{2}$		
	(i) $\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mqV}}$		
	$p = \sqrt{2mqV}$ (mq) is more for α – particle, we have	1/2	
	$\lambda_{proton} > \lambda_{\propto -particle}$	1/2	
	· · ·	, 2	
	(Also, accept if the student writes $\frac{\lambda_{proton}}{\lambda_{\alpha}} = 2\sqrt{2} (or \sqrt{8})$		
	 (ii) K.E. = q V ∵ q is less for proton, we have 	1/2	
	$(K.E)_{proton} < (K.E)_{\alpha-particle}$	12	
	L L	1⁄2	2
	(Also accept if the student writes $\frac{(K.E.)_{\alpha}}{(K.E.)_{\rho}} = 2$)		
Set1,Q8			
Set2,Q9 Set3,Q6	Indicating the transition1Calculation of frequency1		
	When the electron jumps from the orbit with $n=3$ to $n=2$		
	(Longest wavelength of the Balmer series / First line of the Balmer series) $h\vartheta = E_3 - E_2 = \frac{E_1}{9} - \frac{E_1}{4}$	1	
	$nv = E_3 - E_2 = \frac{-5}{9} - \frac{-4}{4}$		
	$=\frac{1}{36}E_1 = \frac{1}{36} \times (-13.6 \ eV)$	1/2	
	$= \frac{-5}{36} E_1 = \frac{-5}{36} \times (-13.6 \ eV)$ $= \frac{5}{36} \times 13.6 \times 1.6 \times 10^{-19} J$		
	$\therefore \eta = \frac{5 \times 13.6 \times 1.6 \times 10^{-19}}{10^{-19}} \text{ Hz}$		
	$\therefore \vartheta = \frac{5 \times 13.6 \times 1.6 \times 10^{-19}}{36 \times 6.63 \times 10^{-34}} \text{ Hz}$ \$\approx 4.57 \times 10^{14} \text{ Hz.}	1/2	2
		12	2
	(If the student just writes $\vartheta = \frac{-5}{36} \frac{E_1}{h}$, award ½ mark)		
	(Alternatively,		
	$\frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{3^2} \right) = \frac{5}{36} R$	1/2	
	$\frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{3^2} \right) = \frac{5}{36} R$ $\therefore \vartheta = \frac{c}{\lambda}$ $= c \times \frac{5}{36} R$		
	$= c \times \frac{5}{2c}R$		
	$= 3 \times 10^8 \times \frac{5}{36} \times 1.097 \times 10^7 Hz$		
	$\simeq 4.57 \times 10^{14} Hz)$	1/2	
	· · · · · · · · · · · · · · · · · · ·		

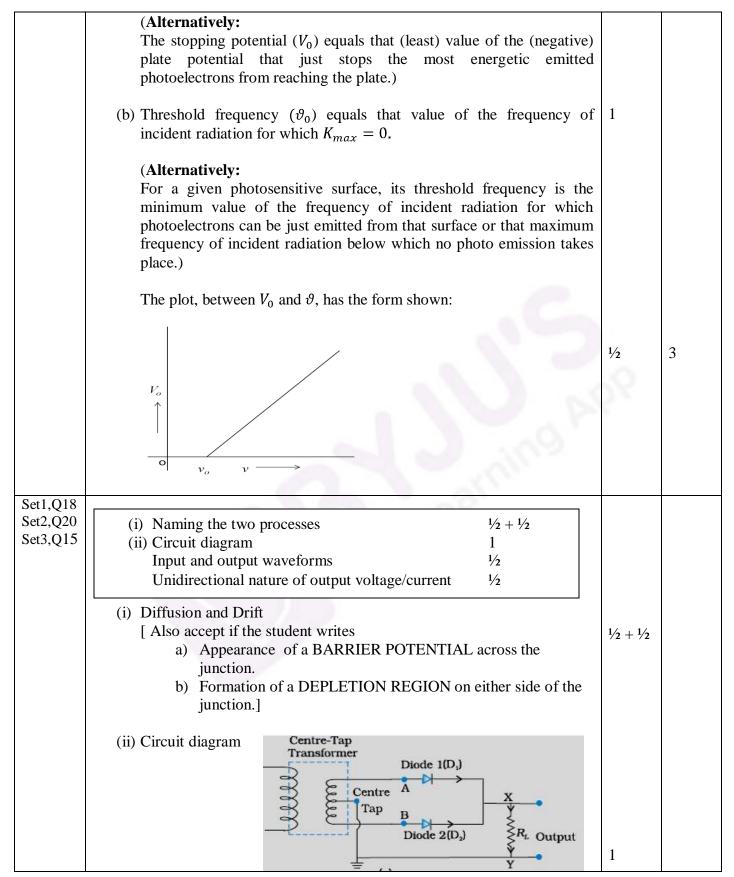

Page 2 of 22


	OR		
	Formula1Calculation of λ 1		
	$\frac{1}{\lambda} = R \left(\frac{1}{1^2} - \frac{1}{\infty^2} \right)$ $\therefore \lambda = \frac{1}{R}$	1/2	
	$\therefore \lambda = \frac{1}{R}$	1/2	
	$= \frac{1}{1.097 \times 10^7} \text{ m}$ $\simeq 9.116 \times 10^{-8} \text{ m}$ $\simeq 912 A^0 (91.2 \text{ nm})$	1	2
Set1,Q9 Set2,Q6	Two Reasons 1+1		
Set3,Q10	 If base band signal were to be transmitted directly 1. The height of the antennae needed will be impractically large. 2. The effective power radiated would be too low. 3. There would be a high probability of different signals getting mixed 		
	up with one another. (Any two)	1+1	2
Set1,Q10 Set2,Q7 Set3,Q9	Identifying that θ is the angle of minimum deviation $\frac{1}{2}$ Formula $\frac{1}{2}$ Calculation of θ 1		
	Since $AQ = AR$, we have $QR \parallel BC$ $\therefore \theta$ is the angle of minimum deviation.		
	(Alternatively: Since AQ=AR, we get		
	$\angle r_1 = \angle r_2$ $\therefore \ \theta$ is the angle of minimum deviation.)	1/2	
	$\mu = \frac{\sin\left(\frac{A+\delta m}{2}\right)}{\sin(\frac{A}{2})}$	1⁄2	
	$\therefore \sqrt{3} = \frac{\sin\left(\frac{60+\delta m}{2}\right)}{\sin 30^{\circ}}$ $\therefore \frac{\sqrt{3}}{2} = \sin\left(\frac{60+\delta m}{2}\right)$	1⁄2	
	$\therefore \frac{60+\delta m}{2}=60$		
	or $\delta m = 60^{\circ}$	1/2	2

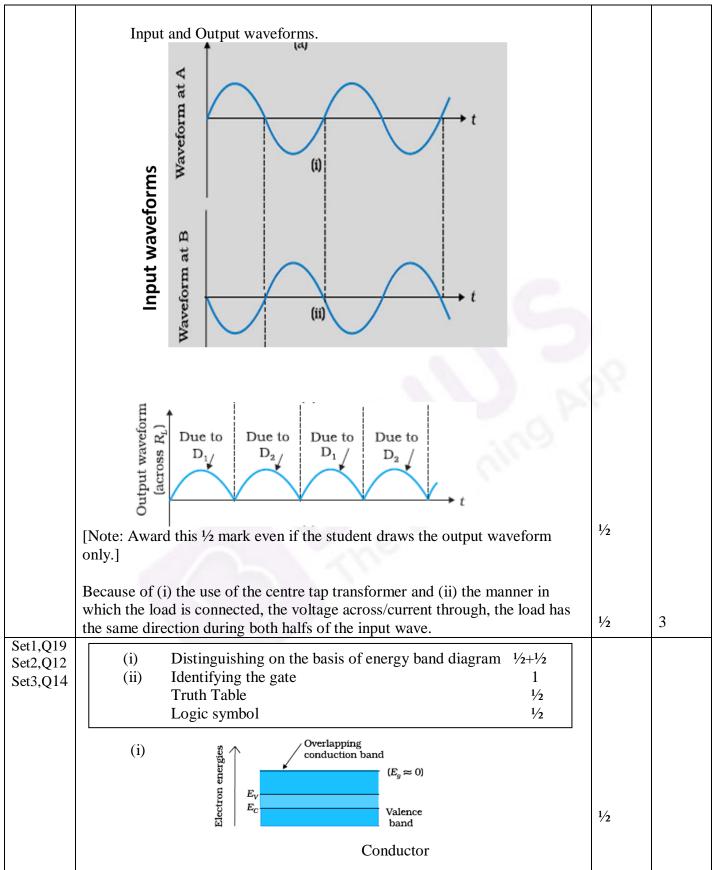
Page 3 of 22

Page 4 of 22

		I	
	$\therefore r = \frac{mv}{m}$		
	$\therefore r = \frac{mv}{qB}$		
	Also $T = \frac{2\pi r}{v}$ $\therefore T = \frac{2\pi m}{qB}$	1/2	
	$AISO I = \frac{1}{v}$	/2	
	$T - \frac{2\pi m}{2\pi m}$	1/2	
	$\cdots = \frac{1}{qB}$		
	\therefore T is independent of v, the speed of the charged particles.		
	This property ensures that if the frequency of the applied alternating electric field matches the cyclotron frequency, the particle whould keep on getting accelerated every time it crosses the gap between the dees.	1/2	3
	(Alternatively : Because of the property, the applied alternating electric field can be made to accelerate the charged particles continuously. This property ensures that the resonance condition can be satisfied and the		
	particle gets accelerated continously.		
	This property ensures that we can have $\vartheta = \vartheta_c$, the resonance condition.)		
Set1,Q14			
Set2,Q14	Showing that the average power, over a complete cycle is zero 2	0	
Set3,Q19	Effect on brightness of bulb 1	2.	
	(i) Let the applied voltage be		
	$V = V_0 sin\omega t$ The current through an ideal capacitor, would then be		
	The current through an ideal capacitor, would then be π		
	$I = I_0 sin\left(\omega t + \frac{\pi}{2}\right) = I_0 cos\omega t$	1⁄2	
	$\therefore P_{inst} = VI$		
	$\therefore P_{AV} = \frac{1}{T} \int_0^T VIdt$	1/2	
	$T V_0 I_0$, 2	
	$\therefore P_{AV} = \frac{V_0 I_0}{2} \langle \sin 2\omega t \rangle$	1⁄2	
	=0	1/2	
		72	
	(Alternatively ,		
	For an ideal capacitor, the current leads voltage in phase by $\pi/2$.		
	$\therefore P = \frac{E_0}{\sqrt{2}} \frac{I_0}{\sqrt{2}} \cos \phi = \frac{E_0 I_0}{2} \cos \frac{\pi}{2}$		
	= 0)		
	(ii) The brightness of the bulb would also reduce gradually.(Alternatively:	1	
	$x = \frac{1}{2}$		
	$X_c = \frac{1}{\omega C}$		
	$\therefore X_c$ increases as C decreases. Hence, with decreasing C, the bricktness of the bulb would decrease.		3
	brightness of the bulb would decrease.)		

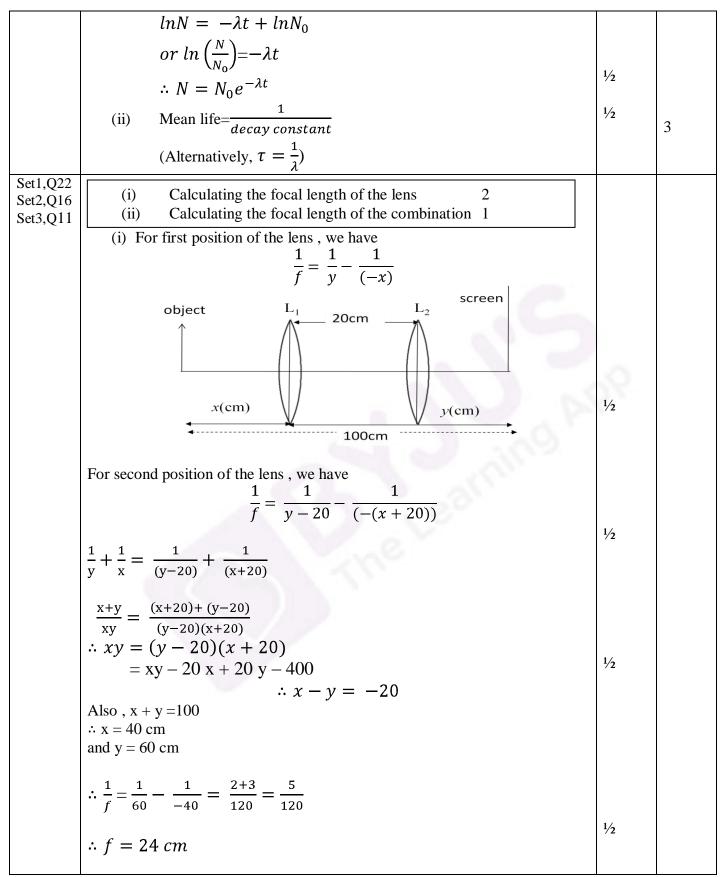

Page 7 of 22

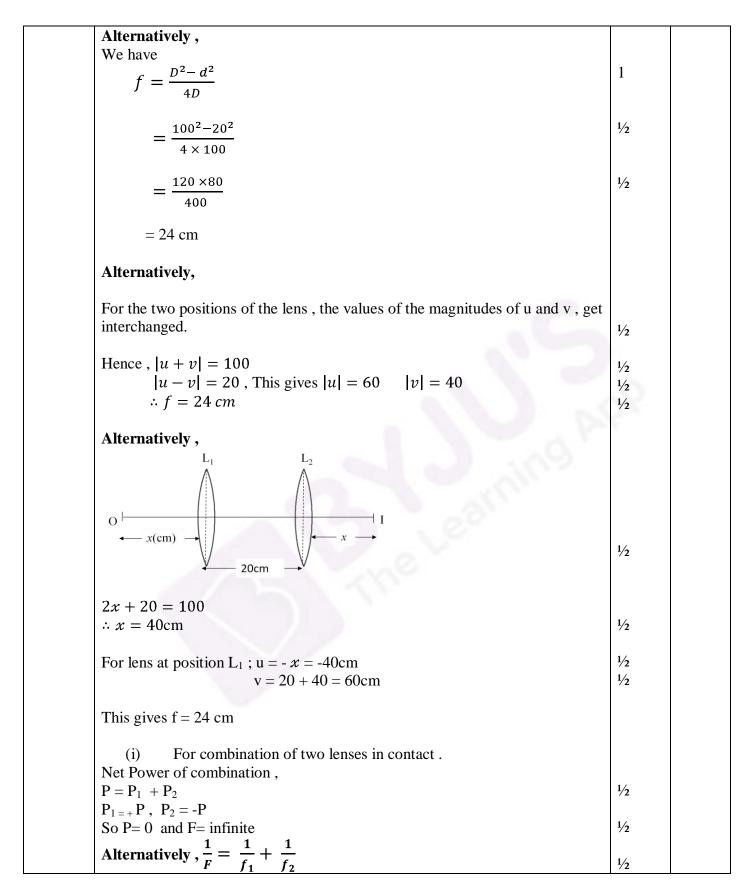
Set1,Q15		1	
Set1,Q13 Set2,Q22	Production of e.m. waves $\frac{1}{2}$		
Set3,Q18	Source of energy ¹ / ₂		
2000,210	Expressions for electric and magnetic fields $\frac{1}{2} + \frac{1}{2}$		
	Any two properties $\frac{1}{2} + \frac{1}{2}$		
	E.M. waves are produced by accelerated /oscillating charges.	1/2	
	Source of energy is the source that accelerates the charges	1/	
	Expression for the electric and magnetic fields (for an e.m. wave propagating	1/2	
	along the $z - axis$) can be		
	$E_x = E_0 \sin(kz - wt)$	1/2	
	$B_y = B_0 \sin(kz - wt)$	1/2	
	Properties (any two)		
	(i) Transverse nature		
	(ii) Have a definite speed (for all frequencies) in vaccum		
	(iii) Can be polarized		
	(iv) Can show the phenomenon of interference and diffraction	5.00	
	(v) Can transport energy from one point to another	0	
	(vi) Have oscillating electric and magnetic fields along mutually	2.5	
	perpendicular directions		
	(vii) Have a momentum associated with them.		
	(viii) Their speed , in a medium , depends upon the values of μ and ε for		
	that medium.	$\frac{1}{2} + \frac{1}{2}$	3
Set1,Q16			
Set2,Q15	(i) Derivation of Snell's law 2		
Set3,Q17	(ii) Sketches to differentiate between plane wavefront and spherical		
	wavefront 1		
	(i) \		
	Incident wavefront		
	Medium 1		
	4 F		
	Medium 2 A		
	12 Auge In	1/	
	u ₂ > v ₁ Refracted wavefront	1⁄2	
	E B		
	We have BC= $\vartheta_1 \tau$ and $AE = \vartheta_2 \tau$	1⁄2	
	Also $\sin i = \frac{BC}{AC}$ and $\sin r = \frac{AE}{AC}$	1⁄2	
	A = AC $AC = AC$ AC		
	- 9 of 22		



	$\therefore \frac{\sin i}{2} = \frac{BC}{BC} = \frac{\vartheta_1}{2} = \frac{\eta_2}{2}$		
	$\therefore \ \frac{1}{\sin r} = \frac{1}{AE} = \frac{1}{\vartheta_2} = \frac{1}{n_1}$		
	= a constant This is Snell's law.	1⁄2	
	(ii) Plane wavefront	1⁄2	
	Spherical wavefront	1/2	3
Set1,Q17			
Set2,Q11	Two properties of Photon $\frac{1}{2} + \frac{1}{2}$ Writing Einstein's equation $\frac{1}{2}$		
Set3,Q16	Definition of stopping potential (V_0) $\frac{1}{2}$		
	Definition of Threshold frequency (v_0) $\frac{1}{2}$		
	Plot between V_0 and v $\frac{1}{2}$		
	Properties of Photon		
	 (i) For a radiation of frequency υ, each photon has an energy, E = hυ, associated with it (ii) The energy of a photon is independent of the intensity of incident 		
	radiation.		
	(iii)During the collision of a photon, with an electron, the total energy of the photon gets absorbed by the electron.(Any two)	1/2 + 1/2	
	Einstein's photoelectric equation is		
	$K_{max} = hv - \phi_0$	1/2	
	or $eV_0 = hv - \phi_0$		
	(a) Stopping potoential, V_0 , equals that value of the negative potential for which $ eV_0 = K_{max}$	1⁄2	
	e Q of 22	1	1

Page 9 of 22




	$E_{g} < 3 \text{ eV}$	1⁄2	
	Semiconductor		
	(i) The gate is a NAND gate	1	
	Truth Table of NAND gate		
	InputABY001011101110	1⁄2	
	<u>Logic Symbol</u> A B	1⁄2	3
Set1,Q20 Set2,Q18 Set3,Q13	Space wave propagation1Factors that limit the range of propagation1/2Derivation of the expression11/2		
	<u>Space Wave Propagation</u> The mode of propagation in which radio waves travel, along a straight line, from the transmitting to the receiving antenna.	1	
	Limiting Factors(i)Curvature of the earth(ii)Insufficient height of the receving antenna(Award this ½ mark if the student writes any one of these two factors)	1⁄2	

		1	
	Derivation		
	Transmitting Antenna Receiving Point	1/2	
	From the figure, we have $(R + h)^2 = R^2 + d^2$		
	Or $2Rh \cong d^2(as h^2 << 2Rh)$	1/2	
	$\therefore, d = \sqrt{2Rh}$		
	For a transmitting antenna of height h_T , and a receiving antenna of height h_R , the maximum line of sight distance becomes		
	$d_M = \sqrt{2Rh_T} + \sqrt{2Rh_R}$ [NOTE: Give 1 mark if the student writes the expression for d_M]	1⁄2	3
Set1,Q21 Set2,Q13 Set3,Q12	(i) Derivation of the mathematical expression $2\frac{1}{2}$ (ii) Relation between mean life and decay constant $\frac{1}{2}$ (i) Let there be N_0 radioactive nuclei at t =0. If N is the number of nuclei left over at t=t, we have $\frac{-dN}{dt} \propto N$		
	$or \frac{-dN}{dt} = \lambda N \ (\lambda = decay \ constant)$	1⁄2	
	$\therefore \ \frac{dN}{N} = -\lambda \ dt$	1⁄2	
	or $lnN = -\lambda t + constant$ \therefore At t=0, we have	1/2	
	$lnN_0 = constant$	1⁄2	
Dogo	12 of 00	I	1

Page 13 of 22

Page 14 of 22

Page 15 of 22

	$=\frac{1}{f} + \left(\frac{-1}{f}\right) = 0$		
G 11 0 2 2	F = infinite	1/2	
Set1,Q23 Set2,Q23 Set3,Q23	(a) Values displayed $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ (b) Possible reason $\frac{1}{2}$ (c) Formula for force $\frac{1}{2}$ Max. value1Min. value $\frac{1}{2}$		
	 a) Value displayed by Seema : Helpful , considerate Family : Concerned , Affectionate Doctor : Humane nature (any one in all three cases) 	1/2 1/2 1/2	
	b) Expensive machinery/technique c) $F = qvBsin\theta$ $F_{max} = qvB = 1.6 \times 10^{-19} \times 10^4 \times 0.1$	1/2 1/2	
	$= 1.6 \times 10^{-16} N$	1	
	$F_{min} = \text{zero} (\text{ for } \theta = 0^0)$ SECTION E	1/2	4
Set1,Q24 Set2,Q25 Set3,Q26	a) Difference between the behaviours of the two $(\frac{1}{2} + \frac{1}{2})$ Modification of electric field.1b) (i) Charge stored + justification $\frac{1}{2} + \frac{1}{2}$ (ii) field strength + justification $\frac{1}{2} + \frac{1}{2}$ (iii) energy stored + justification $\frac{1}{2} + \frac{1}{2}$		
	a) E_* $Conductor$ E_* E_* $Conductor$ E_*	1/2 + 1/2	
	No electric field inside a conductor . (Give full credit to diagram. Give ¹ / ₂ mark if explanation only is given withou	t	

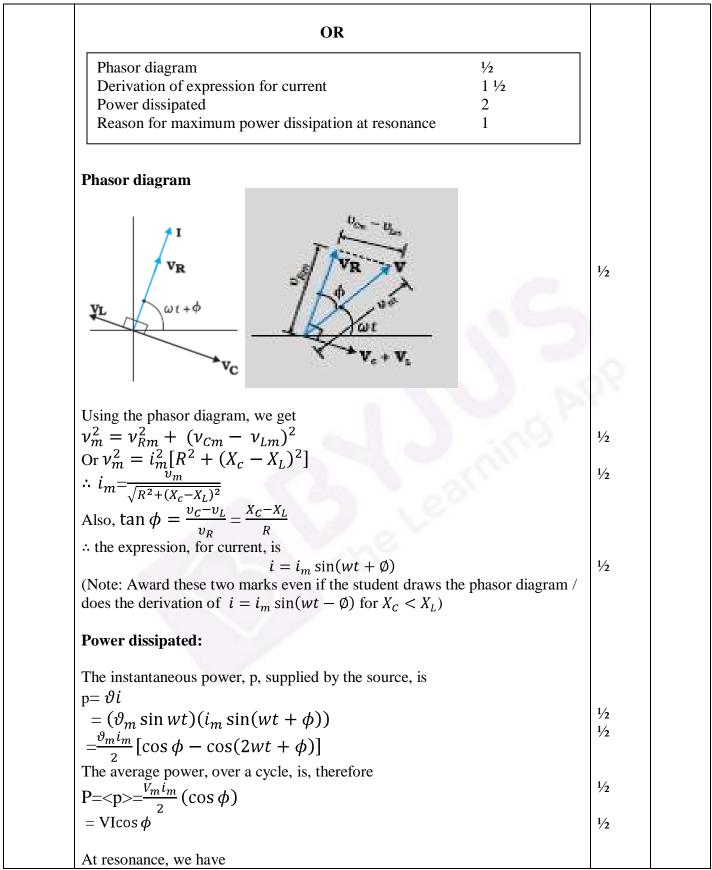
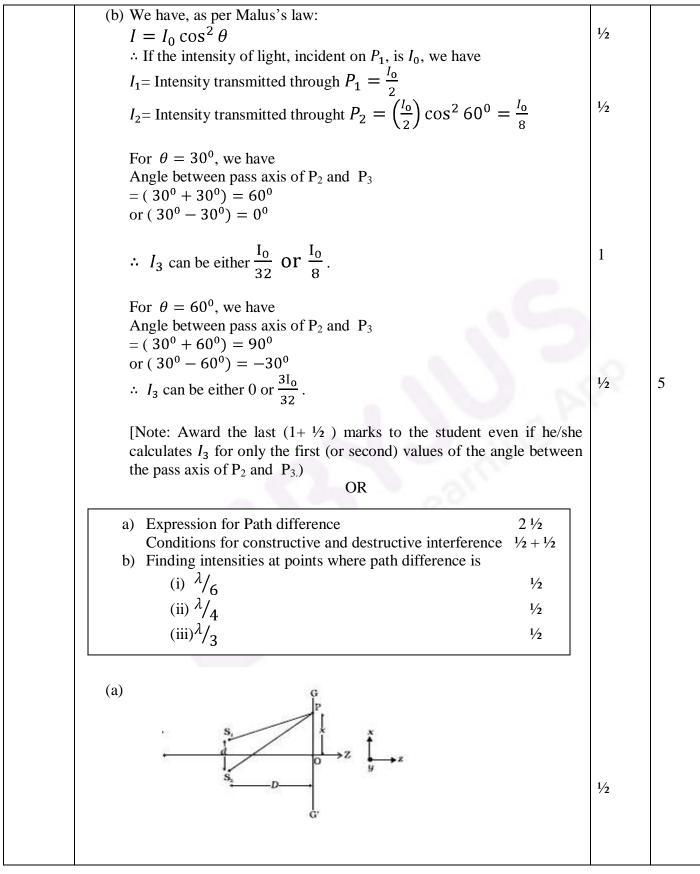

Page 16 of 22

diagram)	
Induced electric field ,due to polarisation of dielectric, is in opposite direction to the applied field.	1
(b) $E_{net} = E_0 - E_\rho$	
(i) Charge remains same, as after disconnecting capacitor no transfer of charge take place.	$\frac{1}{2} + \frac{1}{2}$
(ii) Electric field, $E = \frac{\sigma}{\epsilon_0} = \frac{q}{\epsilon_0 A}$ remain same, as there is no change in charge.	1/2 + 1/2
(iii)Energy stored $=$ $\frac{q^2}{2C} = \frac{q^2}{2\left(\frac{\epsilon_0 A}{d}\right)} = \frac{q^2 d}{2\epsilon_0 A}$	1/2
a. Energy will be doubled as separation between the plates(d) is doubled.	1⁄2
OR	
 a) Why is electric field normal to the equipotential surface. 1 ¹/₂ Sketch of the equipotential surface and electric field lines. ¹/₂ + ¹/₂ b) Obtaining the expression for the work done. 2 ¹/₂ 	2
(a) If the field is not normal to an equipotential surface, it would have a non zero component along the surface. This would imply that work would have to be done to move a charge on the surface which is contradictory to the definition of equipotential surface.	1 1/2
(Alternatively, Work done to move a charge dq, on a surface, can be expressed as $dW = dq(\vec{E}.\vec{dr})$	
But $dW=0$ on an equipotential surface	$\frac{1/2}{1/2}$
$ \vec{E} \perp \vec{dr} $ Equipotential surfaces for a charge –q	1/2
	1/2 +1/2
	1
(b) Work done to dissociate the system	1/2

Page 17 of 22

	$-1 \left[(-4q)(q) + (2q)(q) + (-4q)(2q) \right]$	1	
	$=\frac{-1}{4\pi\epsilon_0} \left[\frac{(-4q)(q)}{a} + \frac{(2q)(q)}{a} + \frac{(-4q)(2q)}{a} \right]$ $= -\frac{1}{4\pi\epsilon_0 a} \left[-4q^2 + 2q^2 - 8q^2 \right]$	1/	
	$=-\frac{1}{4}\left[-4q^{2}+2q^{2}-8q^{2}\right]$	1/2	
	$4\pi\epsilon_0 a^2$		
	$= + \left[\frac{10q^2}{4\pi\epsilon_0 a} \right]$	1/2	_
0.1025	$[4\pi\epsilon_0 a]$		5
Set1,Q25 Set2,Q26	(a) Identification of phenomenon ¹ / ₂		
Set3,Q24	Stating the factors $\frac{1}{2} + \frac{1}{2}$		
	Law ¹ / ₂		
	(b) Sketch of change in i. Flux 1		
	ii. Emf		
	iii. Force 1		
	(a) The phenomenon involved is electromagnetic induction (EMI) For the deflection:	1/2	
	Amount depends upon the speed of movement of the magnet.	1/2	
	Direction depends on the sense (towards, or away) of the movement of	1/2	
	the magnet.	22	
	The law describing the phenomenon is : The magnitude of the induced emf, in a circuit, is equal to the time		
	rate of change of the magnetic flux through the circuit.	1/2	
	(Note: Also accept if a student writes: whenever magnetic flux linked		
	with a conductor changes, an induced emf is setup in the conductor.)		
	(Alternatively, $\epsilon = -\frac{d\phi_B}{dt}$)		
	(b) OUTWARD INWARD		
	Bib		
	\mathbf{E} 0 b 2b b 0	1	
		1	
	-Blu 2b b 0		
	$B^{2}t^{0}$		
		1	5
	$\frac{-B^{2}f_{0}}{r}$ 2b b 0		



Page 19 of 22

	$X_c = X_L$	1/2	
	$ \tan \phi = 0 \Longrightarrow \phi = 0^0 $, 2	
	$\therefore \cos \phi = 1$, its maximum value.		
	Hence $P(=VI \cos \phi)$ has its maximum value at resonance.	1/2	5
Set1,Q26			
Set2,Q24	a) Reason for variation ¹ / ₂		
Set3,Q25	Polarisation due to scattering 2		
	b) Statement for Malus' law ¹ / ₂		
	Calculation of intensities for $(i) = 0 = 200$		
	(i) $\theta = 30^{\circ}$ 1 (ii) $\theta = 60^{\circ}$ 1		
	(1) v = 00 1		
	(a) As per Malus' law,		
	Transmitted intensity $I = I_o \cos^2 \theta$		
	\therefore The transmitted intensity will show a variation as per $\cos^2 \theta$.		
		1/2	
	[Note: If the student writes that " <u>unpolarised light will not show any</u> variation in intensity, when viewed through a polaroid, which is	12	
	rotated" award this ¹ / ₂ mark]	0	
		2.5	
	Incident Sunlight (Unpolarised)		
	∭+++++		
	Scattered Light		
	(Polarised)		
		1	
	To Observer		
	The electric field, of the incident wave, makes the electrons of the air	1/2	
	molecules, acquire both components of motion. (\uparrow as well as \bullet).		
	Charges accelerating parallel to \updownarrow , do not radiate energy towards the	1⁄2	
	observer. Hence the radiation, scattered towards the observer gets linearly polarised.		
	meany polarised.		
	(Note: Award these 2 marks even if the student just draws a well		
	labelled diagram, without giving any explanation.)		

Path difference $=S_2P - S_1P$		
Now $(S_2P)^2 - (S_1P)^2 = \left[D^2 + \left(x + \frac{d}{2}\right)^2\right] - \left[D^2 + \left(x + \frac{d}{2}\right)^2\right]$		
=2 x d		
where $S_1S_2 = d$ and OP=x $\therefore S_2P - S_1P = \frac{2xd}{(S_2P + S_1P)}$		
	1/2	
For x< <d and="" can="" d<<d,="" we="" write<br="">$S_2P + S_1P \simeq 2D$</d>	1⁄2	
Hence, Path difference= $S_2P - S_1P = \frac{2xd}{2D} = \frac{xd}{D}$	1/2	
For constructive interference, we must have	1/2	
$\frac{xd}{D} = n\lambda$		
: $x = x_n = \frac{n\lambda D}{d}$ (n=0, ±1, ±2,)	1/2	
For destructive interference, we must have		
$\left \frac{xd}{D} = \left(n + \frac{1}{2} \right) \lambda \right $	1/2	
: $x = x'_n = \frac{(n+\frac{1}{2})\lambda D}{1}$ (n=0, ±1, ±2,)		
$ \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	2	
(b) The general expression, for the intensity, at a point is		
$I = I_0 \cos^2 \frac{\emptyset}{2}$		
(i) For path difference $=\frac{\lambda}{c}$, $\phi = 60^{\circ}$	1/2	
(i) For path difference $=\frac{\lambda}{6}$, $\phi = 60^{\circ}$ $I = \frac{3I_0}{4}$		
(ii) For path difference $=\frac{\lambda}{4}$, $\phi = 90^{\circ}$	1⁄2	
$I = I_0/2$		
		5
(iii) For path difference $=\lambda/3$, $\phi = 120^{\circ}$	1/2	
$I = I_0 / 4$		