
CBSE Class 12 Physics Question Paper Solution 2016

SET 55/1/S

Q. No.	Expected Answer / Value Points	Marks	Total Marks
	Section A		
Set1,Q1	(i) Manganin	1⁄2	
Set2,Q3			
Set3,Q2	(ii) $R = \frac{\rho l}{A}$. As ρ increases A also increases	1⁄2	1
	Alternatively,		
	$R_{c} = \rho_{c} \frac{l}{A_{c}}; R_{m} = \rho_{m} \frac{l}{A_{m}}. since \ \rho_{m} > \rho_{c} \ \therefore A_{m} > A_{c}$		
Set1,Q2	Phase angle = 60°	1	
Set2,Q2	[Note : If the student only writes, $[\cos \varphi = 0.5]$, give ½ mark]		1
Set3,Q5	Determine all the effective densities of the least in a	1	
Set1,Q3 Set2,Q1	Between plates of capacitor during charging / discharging Alternatively ,	1	
Set3,Q4	In the region of time varying electric field		1
Set1,Q4	(i) $P = NOT$ gate	1/2	-
Set2,Q5	(ii) $Q = OR$ gate	1/2	1
Set3,Q1		20	
Set1,Q5	Def: The average time, between successive collisions of electrons, (in a	1	
Set2,Q4	conductor) is known as relaxation time		1
Set3,Q3	Section B		1
Set1,Q6			
Set2,Q6	Electrostatic Shielding ¹ / ₂		
Set3,Q10	Using this property in actual practice 1		
	Potential in a cavity ¹ / ₂		
	The field inside a conductor is zero.	1/2	
	Sensitive instruments are shielded from outside electrical influences by enclosing them in a hollow conductor.	1	
	(any other relevant answer.)	1	
	Potential inside the cavity is not zero/ potential is constant.	1⁄2	2
Set1,Q7			
Set2,Q7	Two properties of electromagnetic waves $\frac{1}{2} + \frac{1}{2}$ Showing e m waves have momentum1		
Set3,Q8	Any two properties of electromagnetic waves	1/2 + 1/2	
	Such as (a) transverse nature (b) does not get deflected by electric fields or	72 + 72	
	magnetic fields (c) same speed in vacuum for all waves (d) no material		
	medium required for propagation (e) they get refracted, diffracted and		
	polarised / (any two properties)		
	Electric charges present on a plane, kept normal to the direction of		
	propagation of an e.m. wave can be set and sustained in motion by the electric	1	
	and magnetic field of the electromagnetic wave. The charges thus acquire energy and momentum from the waves		
	energy and momentum from the waves.		

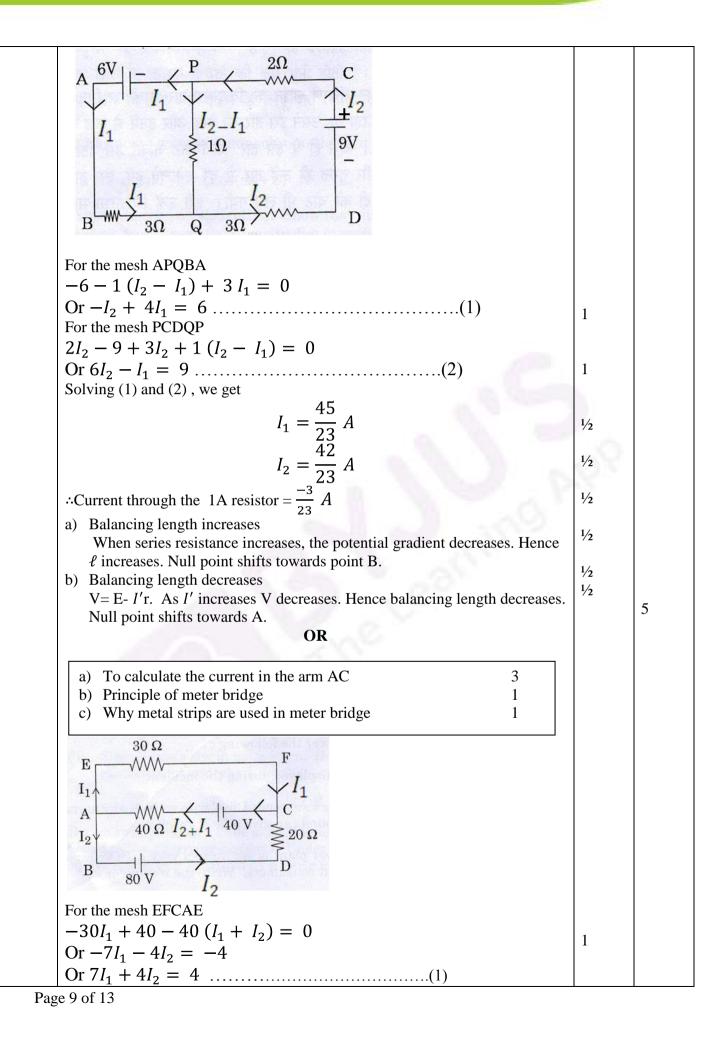
	Alternatively		
	Radiation Pressure – Electromagnetic waves exert radiation pressure. Hence, they carry momentum.		2
Set1,Q8 Set2,Q8 Set3,Q9	$\begin{tabular}{ c c c c } \hline Principle & \frac{1}{2} \\ \hline Calculation of \lambda & 1 \frac{1}{2} \end{tabular}$		
5010,25	Diffraction effects are observed for beams of electrons scattered by the crystals	1⁄2	
	$\lambda = \frac{1.227nm}{\sqrt{V}}$	1⁄2	
	$\lambda = \frac{1.227nm}{\sqrt{120}}$	1⁄2	
	Value $\lambda = 0.112$ nm Alternatively	1⁄2	
	$\lambda = \frac{h}{\sqrt{2meV}}$	1⁄2	
	$=\frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-19} \times 120}}$	1/2	
	$\lambda = 0.112$ nm	1/2	2
Set1,Q9 Set2,Q10 Set3,Q7	Function of Transducer1Function of Repeater1	.Q.	
	(i) Transducer: The device which converts one form of energy into another	1	
	 (ii) Repeater: A repeater picks up signal, amplifies and retransmits them to receiver 	1	2
Set1,Q10 Set2,Q9 Set3,Q6	Finding the principal quantum number1Finding the total energy1		
	(i) $r = r_0 n^2$ 21.2x10 ⁻¹¹ = 5.3x10 ⁻¹¹ n ² implies n = 2	1/2 1/2	
	(ii) $E = \frac{-13.6eV}{n^2}$	$\frac{1/2}{1/2}$	
	$=\frac{-13.6eV}{2^2} = -3.4eV$ [Award ¹ / ₂ mark if the student just writes E= E ₁ /4]		2
	OR		
	Calculation of energy of photon1½Identification of transistion½		
	(i) Energy of photon = $\frac{hc}{\lambda} = \frac{6.64 \times 10^{-34} \times 3 \times 10^8}{275 \times 10^{-9} \times 1.6 \times 10^{-18}} eV = 4.5 eV$	$\frac{1/2 + 1/2}{+ 1/2}$	
	(ii) The corresponding transition is B	1⁄2	2

Page 2 of 13

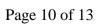
Page 3 of 13

Set1,Q13			
Set2,Q16	a) Definition of intensity 1		
Set3,Q19	b) Required graph 1		
	c) Explanation of nature of the curves 1		
	a) Intensity of radiation equals the energy of all the Photons incident		
	normally per unit area per unit time.		
	Alternatively, The intensity of radiation is proportional to the number	1	
	of photons emitted per unit area per unit time.		
	b) A photo current		
	I,	1	
	I ₁ I ₃		
	2/2/2		
	\leftarrow		
	collector potential		
	c) As per Einstein's equation,		
	(i) The stopping potential is same for I_1 and I_2 as they have the	1/2	
	same frequency.		
	(ii) The saturation currents are as shown, because $I_1 > I_2 > I_3$	1⁄2	3
		30	
Set1 014			
Set1,Q14 Set2,Q14 Set3,Q12	(i) To explain the process of emission1(ii) Material preferred to make LED and reason $\frac{1}{2} + \frac{1}{2}$ (iii) True advantages of prime LED1		
	(iii) Two advantages of using LED $\frac{1}{2} + \frac{1}{2}$		
	(i) During Forward bias of LED, electrons move from n side to p side and	1	
	holes move from p side to n side. During recombination, energy is	1	
	released in the form of photons having energy hv of the order of band		
	gap.		
	(ii) GaAs/ GaAsP (any one)	1⁄2	
	Band gap should be 1.8 eV to 3 eV These materials have band gap which		
	is suitable to produce desired visible light wavelengths.	1/2	
	is surmore to produce desired visiole light wavelengths.	/ _	
	(iii)Low operational voltage, fast action, no warm up time required, nearly		
	monochromatic, long life ,ruggedness, fast on and off switching capacity.	$\frac{1}{2} + \frac{1}{2}$	3
Set1 015	(any two points)		
Set1,Q15 Set2,Q13	Calculation of capacitance 1		
Set3,Q14	Calculation of Impedence 1		
	Calculation of Power dissipitated 1		
	Capacitance = $C = \frac{1}{2}$	1⁄2	
	Capacitance = C = $\frac{1}{L\omega^2}$ = $\frac{\frac{1}{\frac{4}{\pi^2}(2\pi \times 50)^2}}$ F		
	$=\frac{4}{\pi^2(2\pi\times 50)^2}\mathbf{F}$	1/2	
	n^2 e 4 of 13	12	

Page 4 of 13


		1
$= 2.5 \times 10^{-5} F$	1/2	
Impedence = resistance(since V and I are in phase		
\therefore Impedence = 100 Ω	1/2	
Power discipated = $\frac{E_{rms}^2}{R}$		
R .	1/2	
$=\frac{(200)^2}{100}W=400$ watt	1/2	3
Set1,Q16		
Set2,Q19 (i) To calculate angle of prism	1 1/2	
Set3,Q20 (ii) To trace the path of incident light inside the	e prism $1\frac{1}{2}$	
$sin(\frac{A+D}{2})$	1/2	
(i) $\mu = \frac{\sin\left(\frac{A+D}{2}\right)}{\sin\frac{A}{2}}$		
$= \frac{\sin\left(\frac{2A}{2}\right)}{\sin\frac{A}{2}} = 2\cos A/2 = \sqrt{3}$	1/2	
2		
$\therefore A = 60^{\circ}$	1/2	
(ii) $\mu = \sqrt{3} = \frac{1}{sini_c}$		
Struc	N	
\therefore Simi $-$ ¹ \sim 0.59	7	
$\therefore Sini_c = \frac{1}{\sqrt{3}} \cong 0.58$	1/2	
Lies between 30° and 45°		
Hence, TIR takes place.		
Alternatively,		
$sinc = \frac{1}{\sqrt{3}}$ which is less than $\frac{1}{\sqrt{2}}$		
\therefore angle of incidence > i_c		
\therefore TIR		
	1	3
Set1,Q17 To plot (PE/A) us mass number graph	11/2	
Set2,Q18 Set2,Q17 To plot (BE/A) vs mass number graph To state the property of nuclear force	1/2	
Set3,Q17 To explain the release of energy in fission and	$\frac{72}{1/2} + \frac{1}{2}$	
fusion using the graph	/2 + /2	
rusion using the graph		
	NEW VIE	
Za-rue TS Fe 100 Mo 121	United by the second se	
E B Ince a low with An a	CON	
uojun Bereino	11/2	
B HE N O	11/2	
Not the second s		
B B B B B B B B B B B B B B B B B B B		
uoponu tad view of the second		
H ^a	250	
No No<		
0 50 100 150 200 Mass number (A)	250	
0 50 100 150 200	250	
Mass number (A) Nuclear force is Saturated, or short ranged [any o	250 one] ¹ /2	
Mass number (A) Nuclear force is Saturated, or short ranged [any of The final system is more tightly bound when heavy	one] 1/2 y nucleus undergoes 1/2	
Nuclear force is Saturated, or short ranged [any of the final system is more tightly bound when heavy nuclear fission. Hence, there is a release of energy.	one] 1/2 y nucleus undergoes 1/2	
Mass number (A) Nuclear force is Saturated, or short ranged [any of The final system is more tightly bound when heavy	one] 1/2 y nucleus undergoes 1/2	

		<u>г </u>
Alternatively : There is an increase in BE/nucleon both during (i) Nuclear fission of heavy nuclei and (ii) Nuclear fussion of light nuclei	1/2 1/2	3
To draw circuit diagram of amplifier 1 ¹ / ₂ Deriving the expression for β ac 1 ¹ / ₂ a) $P_{V=0} = P_{ac} \cdot \frac{R_L}{r}$ $\therefore \beta_{ac} = A_v \frac{r}{R_L}$ Alternatively: [If the student writes $\beta_{ac} = \frac{\delta I_c}{\Delta I_B}$ award full credit]	2	3
 (i) Naming the phenomenon Two conditions for TIR Two conditions for TIR Labelled diagram of optical fibre (i) Total internal reflection (ii) Rays of light have to travel from optically denser medium to optically rarer medium and Angle of incidence in the denser medium should be greater than critical angle (iii) 	1 1/2 1/2 1	
[Note: Deduct ¹ / ₂ mark if labelling is not done]		3
Three applications of internet $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ Explanation of any one 1 $\frac{1}{2}$ Applications of internet- e mail, social networking sites, e –commerce, mobile telephony, GPS, [Any three] Explanation of any one	$\frac{1/2 + 1/2}{1 + 1/2}$ 11/2	3
	(i) Nuclear fission of heavy nuclei and (ii) Nuclear fussion of light nuclei To draw circuit diagram of amplifier 1 $\frac{1}{2}$ Deriving the expression for β ac 1 $\frac{1}{2}$ a) $A_V = \beta_{ac} \cdot \frac{R_L}{r}$ $\therefore \beta_{ac} = A_V \frac{r}{R_L}$ Alternatively: [If the student writes $\beta_{ac} = \frac{\delta I_c}{\Delta I_B}$ award full credit] (i) Naming the phenomenon 1 (ii) Two conditions for TIR $\frac{1}{2} + \frac{1}{2}$ (iii) Labelled diagram of optical fibre 1 (i) Total internal reflection (ii) Rays of light have to travel from optically denser medium to optically rarer medium and Angle of incidence in the denser medium should be greater than critical angle (iii) Internatively: [If the student is not done] Three applications of internet $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ Applications of internet = mail, social networking sites, e -commerce, mobile telephony, GPS, [Any three]	(i) Nuclear fission of heavy nuclei and (ii) Nuclear fussion of light nuclei To draw circuit diagram of amplifier Deriving the expression for β ac a) $A_{V} = \beta_{ac} \cdot \frac{R_{L}}{r}$ $\therefore \beta_{ac} = A_{V} \frac{r}{R_{L}}$ Alternatively: [If the student writes $\beta_{ac} = \frac{\delta l_{c}}{\Delta l_{g}}$ award full credit] (i) Naming the phenomenon (ii) Two conditions for TIR $\frac{l_{2}}{l_{2}} + \frac{l_{2}}{l_{2}}$ (ii) Total internal reflection (ii) Rays of light have to travel from optically denser medium to optically rarer medium and Angle of incidence in the denser medium should be greater than critical angle (iii) Locute Ly2 mark if labelling is not done] Three applications of internet $\frac{l_{2} + l_{2} + l_{2}}{l_{2}}$ Applications of internet - e mail, social networking sites, e -commerce, mobile telephony, GPS, [Any three]


Page 6 of 13

Set1,Q21 Set2,Q11			
-	To show that the intensity of maximum is four times the 2		
Set3,Q11	intensity of light from each slit		
	Conditions for constructive and destructive $\frac{1}{2} + \frac{1}{2}$ interference		
	Resultant displacement		
	$y=y_1+y_2$ = $a[\cos(\omega t) + \cos(\omega t + \phi)]$		
	$= 2a\cos\left(\frac{\phi}{2}\right)\cos\left(\omega t + \frac{\phi}{2}\right)$	1/2	
	\therefore amplitude of resultant wave = $2a \cos\left(\frac{\phi}{2}\right)$	1/2	
	: Intensity = $4I_o \cos^2\left(\frac{\phi}{2}\right)$, where $I_o = a^2$ is the intensity of each harmonic	/ _	
	wave	1/2	
	At the maxima, $\phi = \pm 2n\pi \therefore \cos^2 \frac{\phi}{2} = 1$	1/2	
	At the maxima , $I = 4I_0 = 4 \times$ intensity due to one slit	/2	
	$I=4I_0 cos^2\left(\frac{\phi}{2}\right)$	1/	
	For constructive interference, I is maximum	1/2	
	It is possible when $cos^2\left(\frac{\phi}{2}\right) = 1; \frac{\phi}{2} = n\pi; \phi = 2n\pi$	1	
	For destructive interference, I is minimum, i.e, I=0		
	It is possible when $\cos^2\left(\frac{\phi}{2}\right) = 0; \frac{\phi}{2} = \frac{(2n-1)\pi}{2}; \phi = (2n \pm 1)\frac{\pi}{2}$	1/2	3
Set1,Q22			
Set2,Q21	(i) Two properties of soft iron $\frac{1}{2} + \frac{1}{2}$		
Set3,Q13	(ii) Statement of Gauss's law in magnetism1Difference and Explanation $\frac{1}{2} + \frac{1}{2}$		
	Difference and Explanation $72 + 72$		
	(i) Low coercivity and high permeability	$\frac{1}{2} + \frac{1}{2}$	
	(ii) The net magnetic flux through any closed surface is zero/	1	
	$\oint B. ds = 0$		
	$\oint E \cdot ds = \frac{q}{\epsilon_0}$ /The net electric flux through any closed surface is $\frac{1}{\epsilon_0}$	1/	
	times the net charge.	$\frac{1/2}{1/2}$	
	which indicates magnetic monopoles do not exist/ magnetic poles	/ _	
	always exists in pairs		3
	[Note : If the student just states Guass's Law in electrostatics these 2 marks may be awarded.]		
	OR		
	a) Deriving the expression for Magnetic field at a point 2		
	outside the current carrying solenoid		
	b) Writing the condition 1		

	a) The magnitude of the total field is obtained due to small elements	1/2	
	a) The magnitude of the total field is obtained due to small elements $dB = \frac{\mu_o n dx l a^2}{2[(r-x)^2 + a^2]^{\frac{3}{2}}}$ x varies from $x = -l$ to $x = +l$	1⁄2	
	$B = \frac{\mu_o n I a^2}{2} \int_{-l}^{l} \frac{dx}{[(r-x)^2 + a^2]^{\frac{3}{2}}}$ For $r \gg a$ and, we have $r \gg x$	1⁄2	
	$B \simeq \frac{\mu_o n I a^2}{2r^3} \int_{-l}^{l} dx = B = \frac{\mu_o n I a^2 (2\ell)}{2r^3}$ Here magnetic moment $m = n 2I(\pi a^2)$	29 29	
	$Thus B = \frac{\mu_o 2m}{4\pi r^3}$ This is also the far axial magnetic field of a bar magnet. Hence, the magnetic field, due to current carrying solenoid along its axial line is similar to that of a bar magnet for far off axial points.	1⁄2	
	Section D		3
Set1,Q23 Set2,Q23 Set3,Q23	section Da) Two values1+1b) Reason1c) Reason, for why power is transmitted at high voltage1		
	 a) Caring, helpful, presence of mind (or any other (two) relevant values) b) Current passes between two points only when there is a potential difference between them/ c) To minimise power loss during transmission. 	2 1 1	4
<u> </u>	Section E	1	
Set1,Q24 Set2,Q25 Set3,Q26	(i) To fine the magnitude and the direction of current in 1Ω resistor 3 (ii) (Shift and reason) in each case $(\frac{1}{2} + \frac{1}{2}) \ge 2$		

	For the mesh ACDBA		
	$40 (I_1 + I_2) - 40 + 20I_2 - 80 = 0$	1	
	$Or \ 40I_1 + 60I_2 - 120 = 0$	1	
	Or $2I_1 + 3I_2 = 6$ (2)		
	Solving (1) and (2), we get -12		
	$I_1 = \frac{12}{12} A$		
	$I_{1} = \frac{-12}{13} A$ $I_{2} = \frac{34}{13} A$		
	$I_2 = \frac{1}{13} A$		
	\therefore Current through arm AC = $I_1 + I_2$		
	$=\frac{22}{13}A$	1	
	$=\frac{13}{13}A$	1	
		1	
	a) Metre bridge works on Wheatstone's bridge balancing condition.	_	
	b) Metal strips will have less resistance / to maintain continuity, without	1	
	adding to the resistance of the circuit.		5
Set1,Q25		1	
Set2,Q26	(i) Biot-Savart law in vector form1(ii) Deriving an expression for the magnetic field at a3	0	
Set3,Q24	point on the axial line of current carrying coil	20	
	(iii) Ratio of magnetic field at the centre and 1	1.1	
	given outside point		
	(i) $\overrightarrow{dB} = \frac{\mu_o I d\ell \times \hat{r}}{2} = \frac{\mu_o I d\ell \times \vec{r}}{2}$	1	
	$\frac{4\pi r^2}{\mu_a I dl} \frac{4\pi r^3}{\sin \theta} \frac{\mu_a I dl}{\mu_a I dl}$	1	
	(i) $\overrightarrow{dB} = \frac{\mu_o I \overrightarrow{d\ell} \times \hat{r}}{4\pi r^2} = \frac{\mu_o I \overrightarrow{d\ell} \times \vec{r}}{4\pi r^3}$ (ii) $dB = \frac{\mu_0 I dl \sin \theta}{4\pi r^2}$ here $\theta = 90$; $dB = \frac{\mu_0 I dl}{4\pi r^2}$	1⁄2	
		1⁄2	
	$= dB \sin\phi = \frac{\mu_o I d\ell}{4\pi r^2} \sin\phi$		
	$B = \int \frac{\mu_o I dl}{\mu_o I dl} \sin \omega = \frac{\mu_o I (2\pi R^2)}{\mu_o I (2\pi R^2)}$	1/2+ 1/2	
	$D = \int_{0}^{1} \frac{4\pi r^2}{4\pi r^2} \sin \psi = \frac{4\pi r^3}{4\pi r^3}$,21 ,2	
	$B = \int_{0}^{R} \frac{\mu_o I dl}{4\pi r^2} \sin \varphi = \frac{\mu_o I (2\pi R^2)}{4\pi r^3}$ $B = \frac{\mu_o N I (R^2)}{2r^3} = \frac{\mu_o N I R^2}{2(R^2 + d^2)^{\frac{3}{2}}}$		
	$D = \frac{1}{2r^3} - \frac{1}{2(R^2 + d^2)^2}$	1/2	
	1 ^Y		
	dl- dB_0		
	$I \xrightarrow{K} P \overset{\theta}{\to} X$		
	d P dB _x	1⁄2	
	z		
L		1	

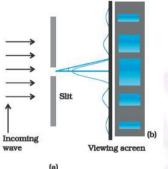
	(i) Magnetic field at the centre of the coil $B_1 = \frac{\mu_0 NI}{2R}$		
	Magnetic field at the outside point $B_2 = \frac{\mu_0 N I R^2}{2[R^2 + 3R^2]^{\frac{3}{2}}} = \frac{\mu_0 N I R^2}{2[4R^2]^{\frac{3}{2}}} = \frac{\mu_0 N I}{2*8R}$	1/2	
	$\frac{B_1}{B_2} = 8$	1⁄2	
	Note : If the student takes $r = \sqrt{3} R$, the ratio of B centre to B axial would be $3\sqrt{3}$: 1. Award 1 mark in this case also.]	2	5
	OR		
	a) Velocity selection condition1b) Name of device $\frac{1}{2}$ What does the machine do $\frac{1}{2}$ Use of two fields $\frac{1}{2} + \frac{1}{2}$ Regions of existence of field $\frac{1}{2} + \frac{1}{2}$ Nature of fields $\frac{1}{2} + \frac{1}{2}$		
	a) $qE = Bqv$ v = E/B	1	
	 (b) Name of the device: Cyclotron It accelerates charged particles/ions Electric field accelerates the charged particles. Magnetic field makes particles to move in circle. Electric field exists between the Dees. Magnetic field exists both inside and outside the dees. Magnetic field is uniform / constant. Electric field is oscillating/ alternating in nature. 	$\frac{1/2}{1/2}$ 1 1 1	5
Set1,Q26 Set2,Q24 Set3,Q25	Explaining the formation of the diffraction pattern3Secondary maxima1/2Minima1/2Why do secondary maxima get weaker in intensity1		
	From S M_2 $0 \\ M_2$ M_2 M_2 To C M_2	1⁄2	
	11 of 13		

The diffraction pattern formed can be understood by adding the contributions from the different wavelets of the incident wavefront, with their proper phase differences.

1

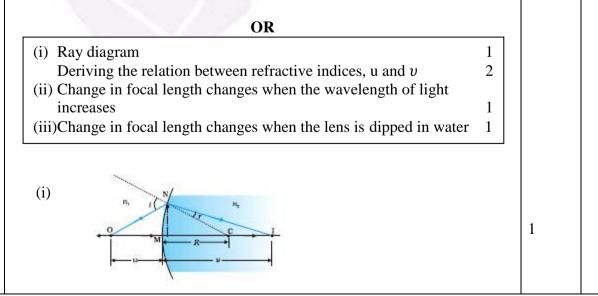
1/2

1/2


5

1

For the cental point, we imagine the slit to be divided into two equal halves. The contribution of corresponding wavelets, in the two halves, are in phase with each other. Hnce we get a maxima at the central point. The entire incident wavefront contributes to this maxima.


All other points, for which $\theta = (n + \frac{1}{2})\frac{\lambda}{a}$, get a net non zero contribution from all the wavelets. Hence all such points are also points of maxima. Points for which $\theta = \frac{n\lambda}{a}$, the net contribution, from all the wavelets, is zero. Hence these points are point of minima.

We thus get a diffraction pattern on the screen, made up of points of maxima and minima. $\frac{1}{2}$

Secondary maxima keep on getting weaker in intensity, with increasing n. This is because, at the

- (i) First secondary maxima, the net contribution is only from (effectively) 1/3 rd of the incident wavefront on the slit.
- (ii) Second secondary maxima, the net contribution is only from (effectively) 1/5th of the incident wavefront on the slit.And so on.

Page 12 of 13

$$\begin{aligned} \tan \alpha &= \frac{AN}{ON} \approx \alpha \\ \tan \beta &= \frac{AN}{ON} \approx \beta \\ \tan \gamma &= \frac{AN}{ON} \approx \gamma \\ \alpha &+ \gamma = i; r = \gamma - \beta \\ 1 \\ \frac{AN}{ON} + \frac{AN}{CN} = i; r = \frac{AN}{CN} - \frac{AN}{NI} \\ n_{21} = \frac{\sin i}{\sin r} \approx \frac{i}{r} \\ \frac{n_2}{2n_1} = \frac{AN}{CN} - \frac{AN}{NI} \\ n_2 (\frac{AN}{CN} - \frac{AN}{NI}) = n_1 (\frac{AN}{ON} + \frac{AN}{CN}) \\ CN &= R; NI = V; ON = -u \\ \frac{n_2}{V} - \frac{n_1}{u} = \frac{n_2 - n_1}{R} \\ \frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \frac{2}{R} \\ \text{(ii) As } \mu_1 \text{ increases focal length increases} \\ \frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \frac{2}{R} \\ \text{(iii) As } \mu_1 \text{ increases focal length increases} \\ \frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \frac{2}{R} \\ \text{(iii) As } \mu_1 \text{ increases focal length increases} \\ \frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \frac{2}{R} \\ \text{(iii) As } \mu_1 \text{ increases focal length increases} \\ \frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \frac{2}{R} \\ \text{(iii) As } \mu_1 \text{ increases focal length increases} \\ \frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \frac{2}{R} \\ \text{(iii) As } \mu_1 \text{ increases focal length increases} \\ \frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \frac{2}{R} \\ \text{(iii) As } \mu_1 \text{ increases focal length increases} \\ \frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \frac{2}{R} \\ \text{(iii) As } \mu_1 \text{ increases focal length increases} \\ \frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \frac{2}{R} \\ \text{(iii) As } \mu_1 \text{ increases focal length increases} \\ \frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \frac{2}{R} \\ \text{(iii) As } \mu_1 \text{ increases focal length increases} \\ \frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \frac{2}{R} \\ \frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \frac{2}{R} \\ \frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \frac{1}{R} \\ \frac{1}{f} =$$