CBSE Class 12 Physics Question Paper Solution

Q. No. Value Points/Expected Answers Marks **Total Marks** 1 For drawing equipotential surfaces for an electric dipole. 1 (Even if a student mentions or draws equatorial plane, award 1 mark.) 1 1 2 For writing the expression for radius 1/2To find the change in the radius of the circular orbit 1/2• $r = \frac{1}{B} \sqrt{\frac{2mV}{q}}$ 1/2 $r' = \sqrt{2}r$ 1 1∕2 Alternatively $r\alpha\sqrt{V}$ 1⁄2 $\frac{r'}{r} = \sqrt{2}$ 1/2 1 Even if student writes $Bqv = \frac{mv^2}{r}$ award one mark 3 For writing relationship between susceptibility and temperature 1/2Calculating the temperature 1/2 $\chi_m \propto \frac{1}{T}$ 1⁄2 $T_2 = \frac{\chi_{m1}}{\chi_{m2}} \times T_1$ $T_2 = \frac{1.2 \times 10^5}{1.44 \times 10^5} \times 300 = 250K$ 1/2 1 OR For identification of magnetic material 1 •

55/2/1

Page 2 of 21 Marking Scheme 55/2/1

Q. No.	Value Points/Expected Answers	Marks	Total Marks
	It is diamagnetic material	1	1
4	For identification of semiconductor diode 1 It is photodiode	1	1
	SECTION-B		
5	• To identify the part of the electromagnetic spectrum1/2• For writing its frequency range1/2		
	Microwaves Frequency range is 10^{10} to 10^{12} Hz	1/2 1/2	1
	OR	80	
	Production of electromagnetic wave 1		
	Accelerated charge produces an oscillating electric field which produces an oscillating magnetic field, which is a source of oscillating electric field, and so on. Thus electromagnetic waves are produced.	1	1
6	 For writing expression for total current 1 For showing that displacement current is the same as the current charging the capacitor 1 		
		1	
	$i = i_c + i_d$ Where <i>i</i> is conduction current and <i>i</i> is displacement current	-	
	Where i_c is conduction current and i_d is displacement current Outside the capacitor $i_d = 0$ so $i = i_c$	17	
	Inside the capacitor $i_d = 0$ so $i = i_d$	1/2 1/2	2
	$\frac{1}{c} = 0.50 \ i = i_d$	12	-
7	• For writing expression for energy of photon $\frac{1}{2}$ • For writing expression for kinetic energy of proton 1 • For proving the relationship between the two $\frac{1}{2}$	1/2	
	Energy of photon $E_p = \frac{hc}{\lambda}$		

55/2/1			
Q. No.	Value Points/Expected Answers	Marks	Total Marks
	For proton $\lambda = \frac{h}{mv}$ $mv = \frac{h}{\lambda}$	1⁄2	
	Kinetic energy of proton $E_k = \frac{1}{2}mv^2$ $E_k = \frac{1}{2}\frac{h^2}{m\lambda^2}$ $E_p = \left(\frac{2m\lambda c}{h}\right)E_k$	1⁄2 1⁄2	2
8	• For writing Einstein's photoelectric equation $1/2$ • For writing $E_n = -\frac{13.6}{n^2}$ $1/2$ • For finding the value of n 1 From photoelectric equation $hv = \phi_0 + eV_s$ = 2 + 0.55 = 2.55 eV Given $E_n = -\frac{13.6}{n^2}$	1⁄2	
	The energy difference $\Delta E = -3.4 - (-2.55) eV = -0.85 eV$ $\therefore \frac{-13.6}{n^2} = -0.85$ $\therefore n = 4$ OR	1/2 1/2 1/2	2
	• Calculation of energy in excited state $\frac{1}{2}$ • Formula $\frac{1}{2}$ • Finding out the maximum number of lines $\frac{1}{2}$ Energy in ground state, $E_1 = -13.6eV$ Energy supplied = $12.5eV$ Energy in excited state, $-13.6+12.5 = -1.1eV$ But, $E_n = \frac{-13.6}{n^2} = -1.1$ n = 3	1/2 1/2 1/2 1/2	2
	Maximum number of lines=3	1⁄2	2

Page 3 of 21 Marking Scheme

Page 4 of 21 Marking Scheme 55/2/1

Page 5 of 21 Marking Scheme 55/2/1

	55/2/1	[
Q. No.	Value Points/Expected Answers	Marks	Total Marks
10	 Relation ¹/₂ Modified relation in case of line of sight 1 		
	• Range of frequency 1/2 $d = \sqrt{2hR}$ In case of line of sight of communication $d = \sqrt{2h_RR} + \sqrt{2h_TR}$ Frequency range is above $40Mhz$	¹ / ₂ 1 ¹ / ₂	2
11	 Conditions Distinction between primary and secondary rainbow Distinctions Conditions	1⁄2 1⁄2	2
	Primary rainbowSecondary rainbow1.Internal reflection takes place once.1.Internal reflection takes place twice.2.Intensity is higher2.Intensity is low	1/2 1/2	
12	 Explaining the cause of bluish color of sky 1 Appearance of sun red at the time of sun rise and sun set 1 (a) Scattering is inversely proportional to the fourth power of wavelength. Or Shorter wavelength scatters more hence sky appear blue. (b) Red color is least scattered. So by the time light reaches the surface of earth all the colors except red get scattered away. 	1	2
13	• Calculation of impedance 2 • Calculation of inductance 1 $Z = \sqrt{R^2 + X_c^2}$ $R = \frac{V_R}{I_p} = 30\Omega$	1⁄2 1⁄2	

	55/2/1				
Q. No.	Value Points/Expected Answers	Marks	Total Marks		
	V 120				
	$X_{c} = \frac{V_{c}}{I_{c}} = \frac{120}{30} = 40\Omega$	1/2			
	$Z = \sqrt{(30)^2 + (40)^2} = 50\Omega$				
		1⁄2			
	$X_c = X_L$				
	As power factor =1 $100\pi L = 40$				
		1⁄2			
	$L = \frac{2}{5\pi} henry$	1/2	3		
		72	Ū		
	OR				
	Determining the source frequency				
	Calculating impedance 1/2				
	For showing potential drop across LC 1 ¹ / ₂	0			
		07			
	(a) $\omega = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{5 \times 80 \times 10^{-6}}} = \frac{1}{\sqrt{400 \times 10^{-6}}}$				
		1			
	$\omega = \frac{1000}{20} = 50 Hz$				
	(b) $Z = R = 40\Omega$	1/2			
	$I_m^{\max} = \frac{230\sqrt{2}}{R} = \frac{230\sqrt{2}}{40} = 8.1A$				
		1⁄2			
	$V_c = I_m^{\text{max}} X_c = \frac{230\sqrt{2}}{40} \times \frac{1}{\omega C} = 2033 \text{ volt}$				
	$V_L = I_m^{\max} X_L = \frac{230\sqrt{2}}{40} \times 2\pi v L = 2033 \text{ volt}$	1⁄2			
	40				
	(c) $V_c - V_L = 0$	1/2	3		
14	• Reason to explain why n-p region of zener diode is heavily doped				
T .1	• Reason to explain why h-p region of zener thoughts heavily doped $1\frac{1}{2}$				
	• Calculation of current through zener diode $1\frac{1}{2}$				
	n and n regions of general diade are besuited as that deviation and				
	n and p regions of zener diode are heavily doped so that depletion region formed is very thin and electric field at the junction is extremely high even				
	for a small reverse bias voltage.	1 1⁄2			
	Current in the circuit is:				
	$I = \frac{V}{R} = \frac{5}{250} = \frac{1}{50} = .02A$	1/2			
	R = 250 = 50 Current through resistor of $1k\Omega$ is:	12			

Page 6 of 21 Marking Scheme

Page 7 of 21 Marking Scheme 55/2/1

. No.	Value Points/Expected Answers	Marks	Total Mar
		IVIALKS	
	$I = \frac{15}{1000} = 0.015A$	1/2	
	As zener diode and $1k\Omega$ resistor are in parallel, current through the zener diode is: I = 0.02 - 0.015 = .005A	1⁄2	3
15	• Diagram of cyclotron1• Explaining the working principle1• Showing frequency is independent of radius and speed1		
	Diagram: Magnetic field out Deflection plate of the paper Exit Port		
	D ₁ OSCILLATOR	1	
	Working principle: The cyclotron uses crossed electric and magnetic fields which increases the kinetic energy of a charged particle without changing its frequency of revolution. $F_c = F_m$	1	
	$\frac{mv^2}{r} = qvB$ $\omega = \frac{qB}{m}$	1/2	
	$\nu = \frac{qB}{2\pi m} $ OR	1⁄2	3
	 Diagram of straight solenoid ¹/₂ Derivation of magnetic field 1+1/2 Difference between toroid and solenoid (any one) 1 		

	Marking Scheme 55/2/1		
Q. No.	Value Points/Expected Answers	Marks	Total Marks
	$\cdot g$ $d \xrightarrow{h} \xrightarrow{c} c$ $a \xrightarrow{b} \xrightarrow{w}$ $a \xrightarrow{b} \xrightarrow{b}$	1⁄2	
	Derivation: Let n be the number of turns per unit length. The total number of turns is nh . The enclosed current is $I_e = I(nh)$ From Ampere's circuital law $BL = \mu_0 I_e$ $Bh = \mu_0 I(nh)$ $B = \mu_o nI$ Difference between toroid and solenoid (any one) (a) Solenoid behaves like a bar magnet whereas toroid does not. Or If student writes solenoid is straight and the toroid is circular give half mark. Or there is fringe effect in case of straight solenoid but not in toroid (allot one mark.)	¹ /2 1 1	3
16	Proving magnetic moment as $\frac{e\text{vr}}{2}$ 2 Deducing expression of the magnetic moment of hydrogen atom 1 The magnetic moment is $m = IA$ But current is $I = \frac{e}{T} = \frac{e\text{v}}{2\pi r}$ Where $T = \frac{2\pi r}{v}$ and the area, $A = \pi r^2$ $m = \frac{e\text{v}}{2\pi r} \pi r^2 = \frac{e\text{vr}}{2}$ But from Bohr's second postulate $m_e \text{vr} = \frac{nh}{2\pi} = \frac{h}{2\pi}$ for n=1 $\text{vr} = \frac{nh}{2\pi m_e}$ Hence the magnetic moment is	1/2 1/2 1/2 1/2 1/2	3

Page 8 of 21 Marking Scheme 55/2/1

Page 9 of 21 Marking Scheme 55/2/1

Q. No.	55/2/1		
Q. NO.	Value Points/Expected Answers	Marks	Total Marks
	$m = \frac{e}{2} \frac{h}{2\pi m_e} = \frac{eh}{4\pi m_e} \text{(Here n=1)}$	1⁄2	
17	Diagram1+1/2Deducing electric field expression(i)(i)To the left of first sheet(ii)To the right of second sheet(iii)Between the two sheets1/2+1/2+1/2Diagram		
	$\vec{E}_1 \leftarrow \vec{E}_1$ \vec{E}_2 \vec{E}_2	1½	
	$\vec{E}_2 \longrightarrow \vec{E}_2$ $I \longrightarrow \vec{E}_2$ $I \longrightarrow \vec{E}_1$ $II \longrightarrow \vec{E}_1$		
	Electric field in the region left of first sheet $E_1 = E_1 + E_2$ $E_1 = \sigma \sigma$		3
	$E_{I} = \frac{\sigma}{\varepsilon_{0}} - \frac{\sigma}{2\varepsilon_{0}}$ $E_{I} = + \frac{\sigma}{2\varepsilon_{0}}$	1⁄2	
	It is towards right Electric field in the region to the right of second sheet $E_{II} = \frac{\sigma}{2\varepsilon_0} - \frac{\sigma}{\varepsilon_0}$		
	$E_{II} = -\frac{\sigma}{2\varepsilon_0}$ It is towards left	1⁄2	
	Electric field between the two sheets		

Page 10 of 21 Marking Scheme 55/2/1

55/2/1				
Q. No.	Value Points/Expected Answers	Marks	Total Marks	
	F - F + F			
	$E_{III} = E_1 + E_2$			
	$E_{III} = \frac{\sigma}{2} + \frac{\sigma}{2z}$			
	$E_{III} = \frac{\sigma}{\varepsilon_0} + \frac{\sigma}{2\varepsilon_0}$ $E_{III} = \frac{3\sigma}{2\varepsilon_0}$			
	$E_{III} = \frac{3\sigma}{2}$	1⁄2		
	Electric field is towards the right			
	OR			
	Diagram ½			
	Finding the surface charge density in the inner and outer surface			
	of the shell $1+1/2$			
	Electric field in the cavity 1			
	(a) Diagram			
		0		
		0.2		
	$\begin{pmatrix} +q & r \end{pmatrix}$	1/2		
	T.			
	Q+q			
		1		
	The surface charge density on inner surface of the shell is $\sigma_1 = -\frac{q}{4\pi r_1^2}$	1		
	The surface charge density on outer shell is $\sigma = \frac{Q+q}{Q+q}$	1/2		
	The surface charge density on outer shell is $\sigma_2 = \frac{Q+q}{4\pi r_2^2}$			
	(b) Consider a Gaussian surface inside the shell, net flux is zero since	1	3	
	$q_{net} = 0$. According to Gauss's law it is independent of shape and size of shell.	1	3	
18	• Derive expression for amplitude modulated wave. 2			
	 Deducing expression for lower and upper side bands. ¹/₂ 			
	 Obtaining expression for modulation index. ½ 			
	Let a carrier wave be given by			
	$c(t) = A_c \sin \omega_c t$ where $\omega_c = 2\pi f_c$			
	And signal wave be			
	$m(t) = A_m \sin \omega_m t$ where $\omega_m = 2\pi f_m$			
	The modulated signal is			
	$c_m(t) = (A_c + A_m \sin \omega_m t) \sin \omega_c t$	1⁄2		

Page 11 of 21 Marking Scheme 55/2/1

	55/2/1				
Q. No.	Value Points/Expected Answers	Marks	Total Marks		
	$c_m(t) = A_c (1 + \frac{A_m}{A_c} \sin \omega_m t) \sin \omega_c t$ $c_m(t) = A_c \sin \omega_c t + \mu \frac{A_c}{2} \cos(\omega_c - \omega_m) t - \mu \frac{A_c}{2} \cos(\omega_c + \omega_m) t$	1/2 1/2			
	The modulation index $\mu = \frac{A_m}{A_c}$	1⁄2 1⁄2			
	Lower frequency band $\omega_c - \omega_m$ Upper frequency band $\omega_c + \omega_m$	1⁄2	3		
19	 Draw a plot of α -particle scattering to show variation of scattering particle. Describe briefly how large scattering explains existence of nucleus.	1 1/2 1/2			

	55/2/1		
Q. No.	Value Points/Expected Answers	Marks	Total Marks
	b Target nucleus	1⁄2	
	From the picture it is clear that for small impact parameter suffers large scattering thus it shows the upper limit to the size of nucleus.	1⁄2	3
20	(i) Change in capacitance1(ii) Change in electric field1(iii) Change in electric density1Dielectric slab of thickness 5mm is equivalent to an air capacitor of	02	
	thickness $=\frac{5}{10}$ mm. Effective separation between the plates with air in between is =(5+0.50)mm $= 5.5$ mm (i) Effective new capacitance	1⁄2	
	$= 200 \mu F \times \frac{5mm}{5.5mm} = \frac{2000}{11} \mu F$ $\approx 182 \mu F$ (ii) Effective new electric field $= \frac{100 V}{5.5 \times 10^{-3} m} = \frac{20000}{11}$	1	
	$\approx 18182 V / m$	1⁄2	
	(iii) $\frac{New energy stored}{Original energy stored} = \frac{\frac{1}{2}CV^2}{\frac{1}{2}CV^2} = \frac{C}{C} = \frac{10}{11}$	1	
	New Energy density will be $\left(\frac{10}{11}\right)^2$ of the original energy density = $\frac{100}{121}$ of		
	the original energy density.		
	Note: If the student writes $C = \frac{A\varepsilon_0}{d}$ $C_m = \frac{KA\varepsilon_0}{d}$		

Page 12 of 21 Marking Scheme 55/2/1

Page 13 of 21 Marking Scheme 55/2/1

	55/2/1		
Q. No.	Value Points/Expected Answers	Marks	Total Marks
21	$E = \frac{V}{d}$ $U = \frac{1}{2} \varepsilon_0 E^2$ Award full marks • Reason for difficulty in detecting presence of anti-neutrino during β -decay $\frac{1}{2}$ • Define decay constant of radioactive nucleus $\frac{1}{2}$ • Derive expression for mean life in terms of decay constant 2		
	 Penetrating power is high Do not interact with matter (weak interaction) any one Decay constant is the reciprocal of the time duration in which undecayed radioactive nuclei reduce to 1/e times the nuclei present initially. $\tau = \frac{\text{total life time of all nuclei}}{\text{total number of nuclei}}$ $\tau = \frac{\int_{0}^{\infty} t dN}{N_{0}}$ $\tau = \frac{\int_{0}^{\infty} t (N_{0} \lambda \varepsilon^{-\lambda t} dt)}{N_{0}} = \lambda \int t e^{-\lambda \tau} dt$	1√2 1 1√2 1√2	
	$\tau = \frac{1}{\lambda}$ OR (a) Stating distinguishing feature of nuclear force. 1 (b) Drawing a plot showing variation of potential energy. 1 (c) Marking the regions. $1/2+1/2$ (1) Short rang force (2) Strongest force	1∕2	3
	(3) Attractive in nature(4) Does not depend on charge (any two)	1	

Page 14 of 21 Marking Scheme 55/2/1

	Marking Scheme 55/2/1				
Q. No.	Value Points/Expected Answers	Marks	Total Marks		
	Input signal, $V_i = \Delta I_B r_i$ Output signal, $V_o = -\Delta I_c R_L$ Voltage amplification, $A_V = \frac{V_o}{V_i}$ • $A_V = -\frac{\Delta I_B}{\Delta I_C} \times \frac{r_i}{R_L}$ • $A_V = -\beta \times \text{resistance gain}$	1⁄2			
	• $A_V = -\beta \times \text{resistance gain}$ Here negative sign indicates that output is 180° out of phase w.r.t. input signal. • $\beta = \frac{\Delta I_C}{\Delta I_B} = \frac{4 \times 10^{-3}}{30 \times 10^{-6}} = \frac{400}{3}$	1⁄2			
	• $p = \frac{\Delta I_B}{\Delta I_B} = \frac{1}{30 \times 10^{-6}} = \frac{1}{3}$ $r_i = \frac{\Delta V_{BE}}{\Delta I_B} = \frac{0.02}{30 \times 10^{-6}} = \frac{2 \times 10^{-2}}{3 \times 10^{-5}}$	1	3		
	• $r_i = \frac{2}{3} \times 10^3 \Omega$ $A_V = \beta \frac{R_L}{r_i}$ $R_L = \frac{A_V \times r_i}{\beta} = \frac{400 \times 2 \times 10^3 \times 3}{400 \times 3} = 2 \times 10^3 \Omega$	1⁄2			
24	 Showing the plot of variation of resistivity 1/2 + 1/2 Expression for resistivity 1 Explaining variation of resistivity for conductor and semiconductor 1/2 + 1/2 	1/2			
	Resistivity P(10 ⁴ nn)	1⁄2			
	$\begin{array}{c} \overrightarrow{U} \\ 0 \\ \overrightarrow{S}0 \\ \overrightarrow{I}00 \\ \overrightarrow{I}50 \\ \overrightarrow{I} \overrightarrow{I} \overrightarrow{I} \overrightarrow{I} \overrightarrow{I} \overrightarrow{I} \overrightarrow{I} \overrightarrow{I}$	1∕2			

Page **15** of **21**

Page 16 of 21 Marking Scheme 55/2/1

	55/2/1		
Q. No.	Value Points/Expected Answers	Marks	Total Marks
	m		
	• $\rho = \frac{m}{ne^2\tau}$	1	
	• In case of conductors with increase in temperature, relaxation time		
	decreases, so resistivity increases.	1⁄2	
	• In case of semiconductors with increase in temperature number	1/2	3
	density (n) of free electrons increases, hence resistivity increases.	12	J
25			
	Deriving expression for e.m.f.		
	• Finding induced e.m.f. between the axel and rim of wheel 2		
	Flux linked with the coil at any instant of time is: $\phi = NBA\cos \omega t$		
		1/2	
	$\frac{d\phi}{dt} = NBA\omega(-\sin\omega t) S$	0	
		0.1	
	$\varepsilon = -\frac{d\phi}{dt}$	1	
		T	
	$\varepsilon = \text{NBA}\omega\sin\omega t$	1⁄2	
	$\varepsilon = \varepsilon_0 \sin \omega t$ (Here $\varepsilon_0 = NBA\omega$)		
	(b) $l = 0.5m, v = 120rpm = 2rps$	1/2	
	$\omega = 2\pi v = 4\pi \ rad \ / \ s, \ B = 4 \times 10^{-4} T, \ \delta = 30^{\circ}$	72	
	$B_{-4} = 4 \times 10^{-4} \times \sqrt{3}$		
	$B_{H} = 4 \times 10^{-4} \times \frac{\sqrt{3}}{2}$ $B_{H} = 2\sqrt{3} \times 10^{-4} T$		
	$B_{H} = 2\sqrt{3} \times 10^{-4} T$	17	
	$c = \frac{1}{2} B o l^2$	1/2	
	$\varepsilon = \frac{1}{2}B\omega l^2$	1	
	$\varepsilon = \frac{1}{2} \times 2\sqrt{3} \times 10^{-4} \times 4\pi \times (0.5)^2$		
			_
	$\varepsilon = 5.4 \times 10^{-4} volt$ OR	1	5
	Deriving expression for magnetic energy stored in inductor and		
	expression for energy density $1\frac{1}{2} + \frac{1}{2}$		
	• Calculating the resultant magnetic force and torque $2\frac{1}{2} + \frac{1}{2}$		
	(a) When external source supplies current to the inductor, e.m.f. is induced in it due to self induction. So the external supply has to do		
	work to establish current. The amount of work done is:		
	$dw = \varepsilon I dt$ $\therefore \varepsilon = L \frac{dI}{dt}$	1⁄2	
	dw = LIdt		

Marking Scheme 55/2/1 Value Points/Expected Answers Q. No. Marks **Total Marks** $W = \frac{1}{2}LI^2$ 1 Energy density $=\frac{Energy}{Volume}$ $u = (1/2LI^2)/volume$ 1/2 (b) I.=0.2A I, = I.A 10 cm 3 15 cm Force of attraction experienced by the length SP of the loop per unit length $F_1 = \frac{2\mu_0 I_1 I_2}{4\pi r_1}$ 1∕2 $f_1 = \frac{2 \times 10^{-7} \times 1 \times 0.2}{10 \times 10^{-2}} = 4 \times 10^{-7} Nm^{-1}$ 1/2 Force is attractive $f_2 = \frac{2\mu_0 I_1 I_2}{4\pi r_2}$ 1/2 1/2 $f_2 = \frac{2 \times 10^{-7} \times 1 \times 0.2}{15 \times 10^{-2}} = 2.6 \times 10^{-7} Nm^{-1}$ Force is repulsive So the net force experienced by the loop is (per unit length) $f = (f_1 - f_2)$ Total force experienced by the loop is: $F = (f_1 - f_2)l = (1.4 \times 10^{-7}) \times 5 \times 10^{-2}$ 1/2 $F = 7 \times 10^{-7} N$ Net force is attractive in nature 1⁄2 5 As the lines of action of forces coincide torque is zero.

Page 17 of 21

Page 18 of 21 Marking Scheme

Page 19 of 21 Marking Scheme 55/2/1

	55/2/1					
Q. No.	Value Points/Expected Answers	Marks	Total Marks			
	So resultant displacement is give by					
	$y = y_1 + y_2$					
	$y = a \cos \omega t + a \cos(\omega t + \phi)$					
	$y = 2a\cos(\phi/2)\cos(\omega t + \phi/2)$					
	The amplitude of the resultant displacement is $2a\cos(\phi/2)$ and therefore					
	intensity at that point will be $I = 4I_0 \cos^2(\phi/2)$	1				
	For constructive interference: $\phi = 0, \pm 2\pi, \pm 4\pi, \dots$	1				
	For constructive interference: $\psi = 0, \pm 2\pi, \pm 4\pi, \dots$	1/2				
	For destructive interference: $\phi = \pm \pi, \pm 3\pi, \pm 5\pi, \dots$	1/2				
	(c) Position of second maxima $y_2 = \frac{5}{2} \frac{\lambda D}{a}$	72				
	2 4	1/2				
	Separation between the positions of the second maxima with λ_1 and λ_2 is:					
	$\Delta y = \frac{5D(\lambda_2 - \lambda_1)}{2a} = \frac{5 \times 1.5 \times (596 - 590) \times 10^{-9}}{2 \times 2 \times 10^{-6}} = 11.25 \times 10^{-3} m$	1				
	$2a \qquad 2 \times 2 \times 10^{-6} \qquad -11.25 \times 10^{-6} m$	~0	5			
		1	0			
	 resistance of cell by potentiometer 1+1 Reason 1 Calculating balancing length and reason (circuit works or not) 1¹/₂ +1 					
	(a) Circuit diagram: K_2	1				
	Brief description: Plug in the key k_1 and keep k_2 unplugged and the find the balancing length l_1 such that: $E = k l_1$ (1)	1/2				
	With the key k_2 also plugged in find out balancing length l_2 again such that:					

Page **20** of **21** Marking Scheme 55/2/1

	55/2/1		
•	Value Points/Expected Answers	Marks	Total Ma
Т	V - kl (2)		
	$V = kl_2 \tag{2}$	1/2	
	As $r = \left(\frac{E}{V} - 1\right)R$	72	
	$r = \left(\frac{l_1}{l_2} - 1\right)R$		
	$l_2 = \begin{pmatrix} l_2 \end{pmatrix}^{R}$		
	(b) The potentiometer is preferred over the voltmeter for measurement of		
	e.m.f. of a cell because potentiometer draws no current from the voltage	1/2	
	source being measured.	S	
	(c) $V = 5V, R_{AB} = 50\Omega, R = 450\Omega$		
	$I = \frac{5}{450 + 50} = \frac{1}{100} = 0.01A$	1/	
		1/2	
	$V_{AB} = 0.01 \times 50 = 0.5V$		
	$k = \frac{0.5}{10} = 0.05 Vm^{-1}$	1/2	
		200	
	$l = \frac{V}{k} = \frac{300 \times 10^{-3}}{0.05} = 6m$	1⁄2	
	k 0.05	17	
	With 2V driver cell current in the circuit is $I = \frac{2}{2} = 0.0044$	1⁄2	
	With 2V driver cell current in the circuit is $I = \frac{2}{450+50} = 0.004A$. P.d. across AB is =0.004×50=200mV. Hence the circuit will not work.		
	P.u. across AB is $-0.004 \times 30 - 200 \text{mV}$. Hence the circuit will not work.	1/2	
	OR		
	 State the working principle of meter bridge 1 Reasons 1/2 +1/2 		
	 Calculation of potential difference using Kirchhoff's rules 		
	(a) Meter bridge is based on the principle of balanced Wheatstone bridge.	1	
		1	
	(b) (i) Thick copper strips are used to minimize resistance of connections		
	which are not accounted for in the bridge formula (ii) Balance point is preferred near midpoint of bridge wire to minimize	1⁄2	
	percentage error in resistance (R).		
		1/2	
	(c)		

Marking Scheme					
Q. No.	55/2/1 Value Points/Expected Answers	Marks	Total Marks		
	$I = I_1 + I_2 \qquad (1)$ $In \ loop \ ABCDA$ $-8 + 2I_1 - 1 \times I_2 + 6 = 0 \qquad (2)$ $In \ loop \ DEFCD$ $-4I - 1 \times I_2 + 6 = 0$ $4I + I_2 = 6$ $4(I_1 + I_2) + I_2 = 6$ $4I_1 + 5I_2 = 6 \qquad (3)$ From equations (1) and (2) we get $I_1 = \frac{8}{7}A, \ I_2 = \frac{2}{7}A, \ I = \frac{10}{7}$ Potential difference across resistor 4Ω is: $V = \frac{10}{7} \times 4 = \frac{40}{7} \ volt$	1 1 1⁄2 1⁄2	5		

Page **21** of **21**