CBSE Class 12 Physics Question Paper Solution

\begin{tabular}{|c|c|c|c|}
\hline Q. No. \& Value Points/Expected Answers \& Marks \& Total Marks \\
\hline \& It is diamagnetic material \& 1 \& 1 \\
\hline 4 \& \begin{tabular}{l}
- For identification of semiconductor diode \\
It is photodiode
\end{tabular} \& 1 \& 1 \\
\hline \multicolumn{4}{|c|}{SECTION-B} \\
\hline 5 \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline - To identify the part of the electromagnetic spectrum \& \(1 / 2\) \\
- For writing its frequency range \& \(1 / 2\) \\
\hline
\end{tabular} \\
Microwaves \\
Frequency range is \(10^{10}\) to \(10^{12} \mathrm{~Hz}\) \\
OR \\
- Production of electromagnetic wave \\
Accelerated charge produces an oscillating electric field which produces an oscillating magnetic field, which is a source of oscillating electric field, and so on. Thus electromagnetic waves are produced.
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \\
1
\end{tabular} \& 1

1

\hline 6 \& | - For writing expression for total current |
| :--- |
| - For showing that displacement current is the same as the current charging the capacitor $i=i_{c}+i_{d}$ |
| Where i_{c} is conduction current and i_{d} is displacement current |
| Outside the capacitor $i_{d}=0$ so $i=i_{c}$ |
| Inside the capacitor $i_{c}=0$ so $i=i_{d}$ | \& \[

$$
\begin{aligned}
& 1 \\
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\] \& 2

\hline 7 \& | - For writing expression for energy of photon $1 / 2$
 - For writing expression for kinetic energy of proton 1
 - For proving the relationship between the two $1 / 2$ |
| :--- |
| Energy of photon $E_{p}=\frac{h c}{\lambda}$ | \& $1 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
For proton \(\lambda=\frac{h}{m \mathrm{v}}\)
\[
m v=\frac{h}{\lambda}
\] \\
Kinetic energy of proton \(E_{k}=\frac{1}{2} m v^{2}\)
\[
\begin{aligned}
\& E_{k}=\frac{1}{2} \frac{h^{2}}{m \lambda^{2}} \\
\& E_{p}=\left(\frac{2 m \lambda c}{h}\right) E_{k}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$ \& 2

\hline 8 \& | - For writing Einstein's photoelectric equation |
| :--- |
| - For writing $E_{n}=-\frac{13.6}{n^{2}}$ |
| - For finding the value of n |
| From photoelectric equation $h \nu=\phi_{0}+e V_{s}$ $=2+0.55=2.55 \mathrm{eV}$ |
| Given $E_{n}=-\frac{13.6}{n^{2}}$ |
| The energy difference $\Delta \mathrm{E}=-3.4-(-2.55) \mathrm{eV}=-0.85 \mathrm{eV}$ $\begin{aligned} & \therefore \quad \frac{-13.6}{n^{2}}=-0.85 \\ & \because \quad n=4 \end{aligned}$ |
| OR |
| Energy in ground state, $E_{1}=-13.6 \mathrm{eV}$ |
| Energy supplied $=12.5 \mathrm{eV}$ |
| Energy in excited state, $-13.6+12.5=-1.1 \mathrm{eV}$ |
| But, $E_{n}=\frac{-13.6}{n^{2}}=-1.1$ $n=3$ |
| Maximum number of lines=3 | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 2

\hline
\end{tabular}

Q. No.	Value Points/Expected Answers		
9			
	\bullet To draw the ray diagram of astronomical telescope	$11 / 2$	
	\bullet Expression for magnification	$1 / 2$	

Ray diagram

OR

- To draw the ray diagram of compound microscope
- Expression for resolving power

Ray diagram

Q. No.	Value Points/Expected Answers	Marks	Total Marks
10	- Relation - Modified relation in case of line of sight - Range of frequency $d=\sqrt{2 h R}$ In case of line of sight of communication $d=\sqrt{2 h_{R} R}+\sqrt{2 h_{T} R}$ Frequency range is above 40 Mhz	$1 / 2$ 1 $1 / 2$	2
11	 Note: Even if student attempt by writing just the Q. No. or student just writes TIR (total internal reflection) etc. award full two marks.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$ $1 / 2$ $1 / 2$	2
12	- Explaining the cause of bluish color of sky - Appearance of sun red at the time of sun rise and sun set (a) Scattering is inversely proportional to the fourth power of wavelength. Or Shorter wavelength scatters more hence sky appear blue. (b) Red color is least scattered. So by the time light reaches the surface of earth all the colors except red get scattered away.		2
13	- Calculation of impedance - Calculation of inductance $\begin{aligned} & Z=\sqrt{R^{2}+X_{c}^{2}} \\ & R=\frac{V_{R}}{I_{R}}=30 \Omega \end{aligned}$	$1 / 2$ $1 / 2$	

	$\begin{aligned} & X_{c}=\frac{V_{c}}{I_{c}}=\frac{120}{30}=40 \Omega \\ & \mathrm{Z}=\sqrt{(30)^{2}+(40)^{2}}=50 \Omega \\ & X_{c}=X_{L} \end{aligned}$ As power factor $=1$ $100 \pi L=40$ $L=\frac{2}{5 \pi} \text { henry }$ OR - Determining the source frequency - Calculating impedance - For showing potential drop across LC (a) $\omega=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{5 \times 80 \times 10^{-6}}}=\frac{1}{\sqrt{400 \times 10^{-6}}}$ $\omega=\frac{1000}{20}=50 \mathrm{~Hz}$ (b) $Z=R=40 \Omega$ $\begin{aligned} & \mathrm{I}_{m}^{\max }=\frac{230 \sqrt{2}}{R}=\frac{230 \sqrt{2}}{40}=8.1 \mathrm{~A} \\ & V_{c}=I_{m}^{\max } X_{c}=\frac{230 \sqrt{2}}{40} \times \frac{1}{\omega C}=2033 \mathrm{volt} \\ & V_{L}=I_{m}^{\max } X_{L}=\frac{230 \sqrt{2}}{40} \times 2 \pi v L=2033 \text { volt } \end{aligned}$ (c) $V_{c}-V_{L}=0$	$1 / 2$ $1 / 2$ $1 / 2$ 1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
14	- Reason to explain why n-p region of zener diode is heavily doped $11 / 2$ - Calculation of current through zener diode $11 / 2$ n and p regions of zener diode are heavily doped so that depletion region formed is very thin and electric field at the junction is extremely high even for a small reverse bias voltage. Current in the circuit is: $I=\frac{V}{R}=\frac{5}{250}=\frac{1}{50}=.02 \mathrm{~A}$ Current through resistor of $1 k \Omega$ is:	$11 / 2$ $1 / 2$	

Q. No. Value Points/Expected Answers \quad Marks

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
I=\frac{15}{1000}=0.015 A
\] \\
As zener diode and \(1 k \Omega\) resistor are in parallel, current through the zener diode is:
\[
I=0.02-0.015=.005 A
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\) \& 3 \\
\hline 15 \& \begin{tabular}{l}
\begin{tabular}{|lc|}
\hline - \& Diagram of cyclotron \\
\(\bullet\) Explaining the working principle \& 1 \\
\(\bullet\) \& 1 \\
\hline
\end{tabular} \\
Diagram: \\
Working principle: The cyclotron uses crossed electric and magnetic fields which increases the kinetic energy of a charged particle without changing its frequency of revolution.
\[
\begin{aligned}
\& F_{c}=F_{m} \\
\& \frac{m v^{2}}{r}=q \mathrm{vB} \\
\& \omega=\frac{q B}{m} \\
\& v=\frac{q B}{2 \pi m}
\end{aligned}
\] \\
OR \\
- Diagram of straight solenoid \\
- Derivation of magnetic field \\
- Difference between toroid and solenoid (any one) \\
Diagram
\end{tabular} \& 1

1
1
$1 ⁄ 2$
$1 / 2$ \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Derivation: Let n be the number of turns per unit length. The total number of turns is \(n h\). The enclosed current is \(I_{e}=I(n h)\) \\
From Ampere's circuital law
\[
\begin{aligned}
\& B L=\mu_{0} I_{e} \\
\& B h=\mu_{0} I(n h) \\
\& B=\mu_{o} n I
\end{aligned}
\] \\
Difference between toroid and solenoid (any one) \\
(a) Solenoid behaves like a bar magnet whereas toroid does not. Or If student writes solenoid is straight and the toroid is circular give half mark. Or there is fringe effect in case of straight solenoid but not in toroid (allot one mark.)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

1
1
1 \& 3

\hline 16 \& | Proving magnetic moment as $\frac{e v r}{2}$ |
| :--- |
| Deducing expression of the magnetic moment of hydrogen atom |
| The magnetic moment is $m=I A$ |
| But current is $I=\frac{e}{T}=\frac{e \mathrm{v}}{2 \pi r}$ |
| Where $T=\frac{2 \pi r}{\mathrm{v}}$ and the area, $A=\pi r^{2}$ $m=\frac{e \mathrm{v}}{2 \pi r} \pi r^{2}=\frac{e \mathrm{vr}}{2}$ |
| But from Bohr's second postulate $\begin{aligned} & \mathrm{m}_{e} \mathrm{vr}=\frac{n h}{2 \pi}=\frac{h}{2 \pi} \quad \text { for } \mathrm{n}=1 \\ & \mathrm{v} r=\frac{n h}{2 \pi m_{e}} \end{aligned}$ |
| Hence the magnetic moment is | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline
\end{tabular}

	$\begin{aligned} & E_{I I I}=E_{1}+E_{2} \\ & E_{I I I}=\frac{\sigma}{\varepsilon_{0}}+\frac{\sigma}{2 \varepsilon_{0}} \\ & E_{I I I}=\frac{3 \sigma}{2 \varepsilon_{0}} \end{aligned}$ Electric field is towards the right OR Diagram $1 / 2$ Finding the surface charge density in the inner and outer surface of the shell $1+1 / 2$ Electric field in the cavity 1 (a) Diagram The surface charge density on inner surface of the shell is $\sigma_{1}=-\frac{q}{4 \pi r_{1}^{2}}$ The surface charge density on outer shell is $\sigma_{2}=\frac{Q+q}{4 \pi r_{2}^{2}}$ (b) Consider a Gaussian surface inside the shell, net flux is zero since $q_{\text {net }}=0$. According to Gauss's law it is independent of shape and size of shell.	112	3
18	- Derive expression for amplitude modulated wave. 2 - Deducing expression for lower and upper side bands. $1 / 2$ - Obtaining expression for modulation index. $1 / 2$ Let a carrier wave be given by $c(t)=A_{c} \sin \omega_{c} t$ where $\omega_{c}=2 \pi f_{c}$ And signal wave be $m(t)=A_{m} \sin \omega_{m} t$ where $\omega_{m}=2 \pi f_{m}$ The modulated signal is $c_{m}(t)=\left(A_{c}+A_{m} \sin \omega_{m} t\right) \sin \omega_{c} \mathrm{t}$	$1 / 2$	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& c_{m}(t)=A_{c}\left(1+\frac{A_{m}}{A_{c}} \sin \omega_{m} t\right) \sin \omega_{c} \mathrm{t} \\
\& c_{m}(t)=A_{c} \sin \omega_{c} \mathrm{t}+\mu \frac{A_{c}}{2} \cos \left(\omega_{c}-\omega_{m}\right) t-\mu \frac{A_{c}}{2} \cos \left(\omega_{c}+\omega_{m}\right) t
\end{aligned}
\] \\
The modulation index \(\mu=\frac{A_{m}}{A_{c}}\) \\
Lower frequency band \(\omega_{c}-\omega_{m}\) \\
Upper frequency band \(\omega_{c}+\omega_{m}\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 3 \\
\hline 19 \& \begin{tabular}{l}
- Draw a plot of \(\alpha\)-particle scattering to show variation of scattering particle. \\
- Describe briefly how large scattering explains existence of nucleus. \\
- Explain with the help of impact parameter picture how Rutherford scattering serves powerful way to determine upper limit of nucleus. \\
The data shows that large number of \(\alpha\)-particle do not suffer large scattering but small number suffer greater scattering it is concluded that \\
(i) most of the atom is empty space \\
(ii) massive positively charged nucleus occupies small region.
\end{tabular} \& 1

$11 / 2$
$1 / 2$ \&

\hline
\end{tabular}

Q. No. Value Points/Expected Answers

Marks

| 20 | | $1 / 2$ |
| :--- | :--- | :--- | :--- |

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& E^{\prime}=\frac{V}{d} \\
\& U=\frac{1}{2} \varepsilon_{0} E^{2}
\end{aligned}
\] \\
Award full marks
\end{tabular} \& \& \\
\hline \multirow[t]{2}{*}{21} \& \begin{tabular}{l}
- Reason for difficulty in detecting presence of anti-neutrino during \(\beta\)-decay \\
- Define decay constant of radioactive nucleus \\
- Derive expression for mean life in terms of decay constant \\
- Penetrating power is high \\
- Do not interact with matter (weak interaction) any one \\
- Decay constant is the reciprocal of the time duration in which undecayed radioactive nuclei reduce to 1 /e times the nuclei present initially. \\
\(\tau=\frac{\text { total life time of all nuclei }}{\text { total number of nuclei }}\) \\
\(\tau=\frac{\int_{0}^{\infty} t d N}{N_{0}}\) \\
\(\tau=\frac{\int_{0}^{\infty} t\left(N_{0} \lambda \varepsilon^{-\lambda t} d t\right)}{N_{0}}=\lambda \int t e^{-\lambda \tau} d t\)
\[
\tau=\frac{1}{\lambda}
\]
\end{tabular} \& \(1 / 2\)
1
\(1 / 2\)

$1 / 2$
$1 / 2$

$1 / 2$ \& 3

\hline \& | OR |
| :--- |
| (1) Short rang force |
| (2) Strongest force |
| (3) Attractive in nature |
| (4) Does not depend on charge (any two) | \& \&

\hline
\end{tabular}

Q. No. Value Points/Expected Answers \quad Marks

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
(b) Figure \\
\(r<r_{0}\) repulsive force \\
\(r>r_{0}\) attractive force
\end{tabular} \& \begin{tabular}{l}
1 \\
\(1 / 2\) \\
\(1 / 2\)
\end{tabular} \& 3 \\
\hline 22 \& \begin{tabular}{l}
- Tracing path of ray passing through prism \\
- Calculating angle of emergence and angle of deviation \(11 / 2+1 / 2\) \\
Ray diagram: \\
- \(\mathrm{A}=60^{\circ}\) \\
- \(\frac{2}{\sqrt{3}} \sin 60^{\circ}=\sin r\) \\
- \(\sin r=\frac{2 \sqrt{3}}{2 \sqrt{3}}=1\) \\
- \(r=90^{\circ}\) \\
Angle of deviation is equal to \(30^{\circ}\)
\end{tabular} \& 1

1112

$1 / 2$ \& 3

\hline 23 \& | - Proving the phase difference | 1 |
| :--- | :---: |
| - Calculation of Amplification factor | 1 |
| - Calculation of load resistance | 1 | \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Input signal, \(V_{i}=\Delta I_{B} r_{i}\) \\
Output signal, \(V_{o}=-\Delta I_{c} R_{L}\) \\
Voltage amplification, \(A_{V}=\frac{V_{o}}{V_{i}}\) \\
- \(A_{V}=-\frac{\Delta I_{B}}{\Delta I_{C}} \times \frac{r_{i}}{R_{L}}\) \\
- \(A_{V}=-\beta \times\) resistance gain \\
Here negative sign indicates that output is \(180^{\circ}\) out of phase w.r.t. input signal.
\[
\begin{gathered}
\text { - } \beta=\frac{\Delta I_{C}}{\Delta I_{B}}=\frac{4 \times 10^{-3}}{30 \times 10^{-6}}=\frac{400}{3} \\
r_{i}=\frac{\Delta V_{B E}}{\Delta I_{B}}=\frac{0.02}{30 \times 10^{-6}}=\frac{2 \times 10^{-2}}{3 \times 10^{-5}} \\
\text { - } r_{i}=\frac{2}{3} \times 10^{3} \Omega \\
A_{V}=\beta \frac{R_{L}}{r_{i}} \\
R_{L}=\frac{A_{V} \times r_{i}}{\beta}=\frac{400 \times 2 \times 10^{3} \times 3}{400 \times 3}=2 \times 10^{3} \Omega
\end{gathered}
\]
\end{tabular} \& 1/2 \& 3 \\
\hline 24 \& \begin{tabular}{l}
- Showing the plot of variation of resistivity
\[
1 / 2+1 / 2
\] \\
- Expression for resistivity \\
- Explaining variation of resistivity for conductor and semiconductor
\end{tabular} \& \(1 / 2\)

$1 / 2$ \&

\hline
\end{tabular}

Q. No. Value Points/Expected Answers

- $\rho=\frac{m}{n e^{2} \tau}$

1

- In case of conductors with increase in temperature, relaxation time decreases, so resistivity increases.
- In case of semiconductors with increase in temperature number density (n) of free electrons increases, hence resistivity increases.
- Deriving expression for e.m.f.
- Finding induced e.m.f. between the axel and rim of wheel 2

Flux linked with the coil at any instant of time is:
$\phi=\mathrm{NB} A \cos \omega t$
$\frac{d \phi}{d t}=N B A \omega(-\sin \omega t) \mathrm{S}$
$\varepsilon=-\frac{d \phi}{d t}$
$\varepsilon=\mathrm{NB} A \omega \sin \omega t$
$\varepsilon=\varepsilon_{0} \sin \omega t \quad\left(\right.$ Here $\left.\varepsilon_{0}=N B A \omega\right)$
(b) $l=0.5 \mathrm{~m}, v=120 \mathrm{rpm}=2 \mathrm{rps}$
$\omega=2 \pi \nu=4 \pi \mathrm{rad} / \mathrm{s}, \quad B=4 \times 10^{-4} T, \quad \delta=30^{0}$
$B_{H}=4 \times 10^{-4} \times \frac{\sqrt{3}}{2}$
$B_{H}=2 \sqrt{3} \times 10^{-4} T$
$\varepsilon=\frac{1}{2} B \omega l^{2}$
$\varepsilon=\frac{1}{2} \times 2 \sqrt{3} \times 10^{-4} \times 4 \pi \times(0.5)^{2}$
$\varepsilon=5.4 \times 10^{-4}$ volt
OR

- Deriving expression for magnetic energy stored in inductor and expression for energy density $11 / 2+1 / 2$
- Calculating the resultant magnetic force and torque $21 / 2+1 / 2$
(a) When external source supplies current to the inductor, e.m.f. is induced in it due to self induction. So the external supply has to do work to establish current. The amount of work done is:

$$
\begin{aligned}
& d w=|\varepsilon| I d t \quad \because \varepsilon=L \frac{d I}{d t} \\
& d w=L I d t
\end{aligned}
$$

Marks

	- $\rho=\frac{m}{n e^{2} \tau}$ - In case of conductors with increase in temperature, relaxation time decreases, so resistivity increases. - In case of semiconductors with increase in temperature number density (n) of free electrons increases, hence resistivity increases.	1 $1 / 2$ $1 / 2$	3
25	- Deriving expression for e.m.f. - Finding induced e.m.f. between the axel and rim of wheel 2 Flux linked with the coil at any instant of time is: $\phi=\mathrm{NB} A \cos \omega t$ $\begin{aligned} & \frac{d \phi}{d t}=N B A \omega(-\sin \omega t) \mathrm{S} \\ & \varepsilon=-\frac{d \phi}{d t} \end{aligned}$ $\varepsilon=\mathrm{NB} A \omega \sin \omega t$ $\varepsilon=\varepsilon_{0} \sin \omega t \quad\left(\right.$ Here $\left.\varepsilon_{0}=N B A \omega\right)$ (b) $l=0.5 \mathrm{~m}, v=120 \mathrm{rpm}=2 \mathrm{rps}$ $\begin{aligned} & \omega=2 \pi \nu=4 \pi \mathrm{rad} / \mathrm{s}, \quad B=4 \times 10^{-4} \mathrm{~T}, \quad \delta=30^{0} \\ & B_{H}=4 \times 10^{-4} \times \frac{\sqrt{3}}{2} \\ & B_{H}=2 \sqrt{3} \times 10^{-4} \mathrm{~T} \\ & \varepsilon=\frac{1}{2} B \omega l^{2} \\ & \varepsilon=\frac{1}{2} \times 2 \sqrt{3} \times 10^{-4} \times 4 \pi \times(0.5)^{2} \\ & \varepsilon=5.4 \times 10^{-4} \mathrm{volt} \end{aligned}$ - Deriving expression for magnetic energy stored in inductor and expression for energy density - Calculating the resultant magnetic force and torque (a) When external source supplies current to the inductor, e.m.f. is induced in it due to self induction. So the external supply has to do work to establish current. The amount of work done is: $\begin{aligned} & d w=\|\varepsilon\| I d t \quad \because \varepsilon=L \frac{d I}{d t} \\ & d w=L I d t \end{aligned}$	$1 / 2$ 1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1 1 1 $1 / 2$	5

Page 17 of 21
Marking Scheme
55/2/1
Q. No.
$W=\frac{1}{2} L I^{2}$
Energy density $=\frac{\text { Energy }}{\text { Volume }}$
$u=\left(1 / 2 L I^{2}\right) /$ volume
(b)

$$
5
$$

Force of attraction experienced by the length SP of the loop per unit length $F_{1}=\frac{2 \mu_{0} I_{1} I_{2}}{4 \pi r_{1}}$
$f_{1}=\frac{2 \times 10^{-7} \times 1 \times 0.2}{10 \times 10^{-2}}=4 \times 10^{-7} \mathrm{Nm}^{-1}$
$f_{2}=\frac{2 \mu_{0} I_{1} I_{2}}{4 \pi r_{2}}$
$f_{2}=\frac{2 \times 10^{-7} \times 1 \times 0.2}{15 \times 10^{-2}}=2.6 \times 10^{-7} \mathrm{Nm}^{-1}$
Force is repulsive
So the net force experienced by the loop is (per unit length)
$f=\left(f_{1}-f_{2}\right)$
Total force experienced by the loop is:
$F=\left(f_{1}-f_{2}\right) l=\left(1.4 \times 10^{-7}\right) \times 5 \times 10^{-2}$
$F=7 \times 10^{-7} \mathrm{~N}$
Net force is attractive in nature
As the lines of action of forces coincide torque is zero.

- Diagram production of polarized light by scattering of sun light 1
- Explanation
- Calculation of intensity of light transmitted through P_{1}, P_{2} and P_{3} $1 / 2+1+11 / 2$

Diagram:

Explanation: Charges accelerating parallel to the double arrows do not radiate energy towards the observer. The radiation scattered by the molecules therefore is polarised perpendicular to the plane of the figure.
ALTERNATIVELY: If the student writes " scattered light when viewed in a perpendicular direction is found to be polarised " (award one mark)

Intensity of light transmitted by $1^{\text {st }}$ Polaroid is, $I_{1}=\frac{I}{2}$
Intensity of light transmitted by $2^{\text {nd }}$ Polaroid is,
$I_{2}=I_{1} \cos ^{2} 45^{\circ}=\frac{I}{2}\left(\frac{1}{\sqrt{2}}\right)^{2}=\frac{I}{4}$
Intensity of light transmitted by $3^{\text {rd }}$ Polaroid is,
$I_{3}=I_{2} \cos ^{2} 45^{\circ}=\frac{I}{2}\left(\frac{1}{\sqrt{2}}\right)^{2}=\frac{I}{8}$

OR

- Reason $1 / 2$
- Deriving the expression for resultant intensity and condition for constructive and destructive interference

$$
1 \frac{1}{2}+1 / 2+1 / 2
$$

- Calculating the separation 2
(a) Because two independent sources cannot be coherent OR they are not coherent
(b) $y_{1}=a \cos \omega t$
$y_{2}=a \cos (\omega t+\phi)$

| So resultant displacement is give by
 $y=y_{1}+y_{2}$
 $y=a \cos \omega t+a \cos (\omega t+\phi)$
 $y=2 a \cos (\phi / 2) \cos (\omega t+\phi / 2)$
 The amplitude of the resultant displacement is $2 a \cos (\phi / 2)$ and therefore
 intensity at that point will be $I=4 I_{0} \cos ^{2}(\phi / 2)$
 For constructive interference: $\phi=0, \pm 2 \pi, \pm 4 \pi, \ldots \ldots .$. | 1 |
| :--- | :--- | :--- | :--- |

(b) The potentiometer is preferred over the voltmeter for measurement of e.m.f. of a cell because potentiometer draws no current from the voltage source being measured.
(c) $V=5 V, R_{A B}=50 \Omega, R=450 \Omega$

$$
\begin{aligned}
& \mathrm{I}=\frac{5}{450+50}=\frac{1}{100}=0.01 \mathrm{~A} \\
& V_{A B}=0.01 \times 50=0.5 \mathrm{~V} \\
& k=\frac{0.5}{10}=0.05 \mathrm{Vm}^{-1} \\
& l=\frac{V}{k}=\frac{300 \times 10^{-3}}{0.05}=6 \mathrm{~m}
\end{aligned}
$$

With 2V driver cell current in the circuit is $I=\frac{2}{450+50}=0.004 \mathrm{~A}$.
P.d. across $A B$ is $=0.004 \times 50=200 \mathrm{mV}$. Hence the circuit will not work.

OR

- State the working principle of meter bridge
- Reasons $1 / 2+1 / 2$
- Calculation of potential difference using Kirchhoff's rules 3
(a) Meter bridge is based on the principle of balanced Wheatstone bridge.
(b) (i) Thick copper strips are used to minimize resistance of connections which are not accounted for in the bridge formula
(ii) Balance point is preferred near midpoint of bridge wire to minimize percentage error in resistance (R).
(c)

