Sl.	Value
No.	
Q1.	Sphere A will be negatively charged

	Sphere B will be positively charged Alternatively- B will be similarly charged to the rod and A w OR
Qphere will be positively charged.	
Reason - Electrostatic Induction	

1

SECTION - A

SECTION - B
Q6.
i) Diagram(or statement) for justification
ii) Net force (expression)

Alternatively

The forces due to the charges placed diagonally opposite at the vertices of hexagon, on
the charge $-q$ cancel in pairs. Hence net force is due to one charge only.
Net Force $|\overline{\mathrm{F}}|=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}^{2}}{l^{2}}$
Ne
OR
I) Diagram $1 / 2$
ii) Derivation of period of oscillation

Derivation

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{r}}=-\mathrm{q} \operatorname{Esin} \varphi \text { (Restoring force) } \\
& \mathrm{ma}=-\mathrm{qEsin} \varphi \\
& \text { when } \varphi \text { is small } \\
& \mathrm{ma}=-\mathrm{qE} \varphi
\end{aligned}
$$

Sl.

No. \quad| $\mathrm{m} \frac{\mathrm{d}^{2} x}{\mathrm{dt}^{2}}$ | $=-\mathrm{qE} \frac{x}{l}$ |
| ---: | :--- |
| $\frac{\mathrm{~d}^{2} x}{\mathrm{dt}^{2}}$ | $=-\mathrm{q} \frac{\mathrm{E}}{\mathrm{m}} \frac{x}{l}$ |
| comparing with equation of lin | |
| $\frac{\mathrm{d}^{2} x}{\mathrm{dt}^{2}}$ | $=-\omega^{2} x$ |
| ω | $=\sqrt{\frac{\mathrm{qE}}{\mathrm{ml}}}$ |
| T | $=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\mathrm{ml}}{\mathrm{qE}}}$ |

Alternatively - The student can use angular SHM expression also. Full marks to be awarded for correct answer even without intermediate steps.

Q7.
$\begin{array}{ll}\text { i) Calculation of Equivalent capacitance } & 1 \\ \text { ii) Total Energy } & 1\end{array}$
i) Equivalent capacitance of two $3 \mu \mathrm{~F}$ capacitor in parallel $\mathrm{C}_{1}=3+3=6 \mu \mathrm{~F}$

Similarly equivalent capacitance of $1 \mu \mathrm{~F}$ and $2 \mu \mathrm{~F}$ in parallel

$$
\mathrm{C}_{2}=1+2=3 \mu \mathrm{~F}
$$

Equivalent capacitance of

$$
\begin{aligned}
& C_{1} \text { and } C_{2} \text { in series } \\
& C_{12}=\frac{6 \times 3}{6+3}=2 \mu \mathrm{~F}
\end{aligned}
$$

Net capacitance

$$
\mathrm{C}=2+2=4 \mu \mathrm{~F}
$$

ii) Energy stored $\mathrm{E}=1 / 2 \mathrm{CV}^{2}$

$$
\begin{aligned}
& =1 / 2 \times 4 \times 10^{-6} \times(100)^{2} \\
& =0.02 \mathrm{~J}
\end{aligned}
$$

[Note: Award the 1 mark for correct calculation in part (ii) if the value of C_{cq} obtained in part (i) is correct]
Q8.

$$
\begin{aligned}
& \text { Formula } \\
& \text { Calculation of Induced Voltage } \\
& \text { Induced voltage } \\
& \qquad \begin{aligned}
|\mathrm{V}| & =\mathrm{L} \frac{\mathrm{dI}}{\mathrm{dt}} \\
\therefore|\mathrm{~V}| & =\mu_{0} \mathrm{n}^{2} \mathrm{la} \frac{\mathrm{dI}}{\mathrm{dt}} \\
& =4 \pi \times 10^{-7} \times\left(\frac{10}{10^{-2}}\right)^{2} \times 0.5 \times 1 \times 10^{-4} \times \frac{(2-1)}{0.1} \\
& =6.28 \times 10^{-4} \mathrm{~V} \text { or } 0.628 \mathrm{mV}
\end{aligned}
\end{aligned}
$$

OR
$\begin{array}{lll}\text { Calculation of } & \text { (i) } \text { change of magnetic flux } & 1 \\ & \text { (ii) induced emf } & 1\end{array}$

$$
\text { i) } \begin{aligned}
\Delta \phi & =\phi_{2}-\phi_{1}=0-\mathrm{NBA} \cos \theta \\
& =140 \times 0.09 \times 5 \times 10^{-4} \cos 0=63 \times 10^{-4} \mathrm{~Wb}
\end{aligned}
$$

,

SI.	
No.	
	Alternatively

If student assumes that the coil was initially kept with its plane parallel to the field, i.e. $\varphi=90^{\circ}, \Delta \phi=(0-0)=0 \mathrm{~Wb}$
award 1 mark
ii) $\mathrm{e}=\frac{-\Delta \phi}{\Delta \mathrm{t}}=\frac{-63 \times 10^{-4}}{\Delta \mathrm{t}} \mathrm{V}$

Alternatively, if the student takes $\Delta \phi=0$, then $\mathrm{e}=\mathrm{o}$,
[Note: Award this 1 mark, If a student writes that induced emf cannot be calculated as value of time interval Δt it is not given.]
i) Ray Diagram 1
ii) Derivation of relation

From ray diagram

$$
\begin{gathered}
\tan \theta=\frac{\mathrm{MD}}{\mathrm{CD}} \text { and } \tan 2 \theta=\frac{\mathrm{MD}}{\mathrm{FD}} \\
\text { for small } \theta, \tan \theta \cong \theta, \tan 2 \theta \cong 2 \theta \\
\therefore \frac{\mathrm{MD}}{\mathrm{FD}}=2 \frac{\mathrm{MD}}{\mathrm{CD}} \\
\mathrm{FD}=\frac{\mathrm{CD}}{2} \cong \frac{\mathrm{CP}}{2} \\
\therefore \mathrm{f}=\frac{\mathrm{R}}{2}
\end{gathered}
$$

Let λ be the deBroglie wavelength associated with electron orbiting (with speed v) in the with $\mathrm{n}^{\text {th }}$ orbit (of radius r) in hydrogen atom.

$$
\begin{aligned}
\therefore \quad \lambda & =\frac{\mathrm{h}}{\mathrm{mv}} \\
\text { Also } 2 \pi \mathrm{r} & =\mathrm{n} \lambda \\
& =\frac{\mathrm{nh}}{\mathrm{mv}} \\
\therefore \quad \mathrm{~L} & =\mathrm{mvr}=\frac{\mathrm{nh}}{2 \pi}
\end{aligned}
$$

$\begin{aligned} & \text { Sl. } \\ & \text { No. } \end{aligned}$		Value Points / Expec
Q11.		i) Graph showing decay of radioactive nuclei ii) Determination of half life and average life.
	i)	

ii) From figure when $\mathrm{N}=\frac{\mathrm{N}_{0}}{2}$

$\mathrm{t}=\mathrm{T}^{1 / 2}$ (half life)	
Average life $\tau=\frac{\mathrm{T}^{1 / 2}}{0.6931}$	
Q12.	i) Two features of nuclear force. $1 / 2+1 / 2$ ii) Completion of equations

i) Any two points given :
(Nuclear forces are charge independent, Non central, spin dependent, strong force, short ranged.)
ii) ${ }_{92}^{238} \mathrm{U} \longrightarrow{ }_{90}^{234} \mathrm{Th}+{ }_{2}^{4} \mathrm{He}+\mathrm{Q}$
(Award this $1 / 2$ mark even if the student
${ }_{11}^{22} \mathrm{Na} \longrightarrow{ }_{10}^{22} \mathrm{Ne}+{ }_{+1}^{0} \mathrm{e}+v$

SECTION - C

Q13
i) Explanation with diagram 2
ii) Definition of polarization and its expression for linear isotropic dielectric in terms of electric field.

For conductor
Due to induction the free electrons collect on the left face of slab creating equal positive charge on the right face. Internal electric field is equal and opposite to external field; hence net electric field (inside the conductor) is zero.

No.

Value Points / Expected Answers

For dielectiric
For dielectiric
Due to alignment of atomic dipoles (permanent or induced) along \vec{E}, the net electric field within the dielectric decreases.
ii) The net dipole moment developed per unit volume in the presence of external electric field is called polarization vector $\overrightarrow{\mathrm{p}}$.
Expression \therefore
$\begin{array}{ll}\text { i) Circuit Diagram } & 1 / 2 \\ \text { ii) Calculation of equivalent resistance } & 11 / 2 \\ \text { iii) Calculation of Currents } & 1\end{array}$

Applying loop rule to $\mathrm{ABCC}^{\prime} \mathrm{EFA}$

$$
\begin{aligned}
& 3 \mathrm{I}+3 \frac{\mathrm{I}}{2}+3 \mathrm{I}-10=0 \\
& \frac{15}{2} \mathrm{I}=10 \\
& \mathrm{I}=\frac{2 \times 10}{15}=\frac{20}{15} \mathrm{~A}=\frac{4}{3} \mathrm{~A} \\
& \mathrm{R}_{\mathrm{tot}}=\frac{\mathrm{V}}{3 \mathrm{I}}=\frac{10 \times 15}{3 \times 20}=2.5 \Omega \\
& \text { Current }=\mathrm{I}_{\mathrm{AB}}\left(=\mathrm{I}_{\mathrm{AA}^{\prime}}=\mathrm{I}_{\mathrm{AD}}=\mathrm{I}_{\mathrm{DC}^{\prime} \mathrm{C}^{\prime}}=\mathrm{I}_{\mathrm{B}^{\prime} \mathrm{C}}=\mathrm{I}_{\mathrm{CC}}\right)=\frac{4}{3} \mathrm{~A} \\
& \quad \mathrm{I}_{\mathrm{DD}}\left(=\mathrm{I}_{\mathrm{AB}^{\prime}}=\mathrm{I}_{\mathrm{AD}^{\prime}}=\mathrm{I}_{\mathrm{DC}}=\mathrm{I}_{\mathrm{BC}}=\mathrm{I}_{\mathrm{BB}}\right)=\frac{2}{3} \mathrm{~A}
\end{aligned}
$$

Sl. No.	
Q15.	i) Reaso i) ii) Statin iii) Method
a) Reason :	

Both ε_{1} and ε have positive terminal connected at A whereas negative terminal of E_{2} is connected to A.
By interchanging the terminal of ε_{2}, the difficulty can be resolved
b) Resistance R protects the galvanometer by reducing the current flowing through it.

Null point position remains unaffected.
c) Sensitivity can be increased by :

Increasing the length of potentiometer / reducing the value of ε / increasing resistance of rheostat / reducing value of current / decreasing value of potential gradient. (Any one reason)
i) Derivation of $T=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mB}}}$
ii) Identification

$$
1+1
$$

a) Restoring torque $\tau=-\mathrm{mB} \sin \varphi=-\mathrm{mB} \varphi($ for $\operatorname{small} \varphi)$
$\tau=\mathrm{I} \frac{\mathrm{d}^{2} \varphi}{\mathrm{dt}^{2}}=-\mathrm{mB} \varphi$

$$
\frac{\mathrm{d}^{2} \varphi}{\mathrm{dt}^{2}}=\frac{-\mathrm{mB}}{\mathrm{I}} \varphi
$$

Comparing with equation of angular SHM

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \varphi}{\mathrm{dt}^{2}}=-\omega^{2} \varphi \\
& \omega=\sqrt{\frac{\mathrm{mB}}{\mathrm{I}}} \\
& \mathrm{~T}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mB}}}
\end{aligned}
$$

b) I) diamagnetic
ii) Para magnetic

i) Generation of Eddy Current	1
ii) Two examples of application	$1 / 2+1 / 2$
iii) Method of minimizing	1

a) When the magnetic flux linked with a conductor changes with time, induced currents are set up inside the conductor.
b) Induction furnace / Induction stove/Induction breaks/dead beat galvanometer (any two)
c) By lamination/cutting shots (any one) eddy current can be minimized.
1

$|$| $1 / 2$ |
| :--- |
| 3 |

\qquad

$$
1 / 2
$$

$$
1
$$

$$
1
$$

$$
1 / 2+1 / 2
$$

$$
1
$$

No.

$$
\text { Q18. } \begin{array}{|l}
\hline \text { i) Explanation using phasor diagram } \\
\text { ii) } \\
\text { iii) Calculation of impedance } \\
\text { Calculation of potential difference }
\end{array}
$$

a) From phasor diagram it is clear that V_{R} is in phase with I and V_{L} is ahead of I in phase by $\pi / 2$.
Hence the resultant voltage ($=$ voltage in the circuit) will lead V_{R} and, therefore, the current in the circuit.
b) Let V be the effective potential difference across L-R circuit, therefore

$$
\mathrm{V}=\sqrt{\mathrm{V}_{\mathrm{R}}^{2}+\mathrm{V}_{\mathrm{L}}^{2}}=\sqrt{(160)^{2}+(120)^{2}}=200 \mathrm{~V}
$$

\therefore Impedance of the circuit, $\mathrm{Z}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{200}{1}=200 \Omega$
c) For d.c. (constant voltage source) $V_{L}=0$, therefore

Potential difference in the circuit $=\mathrm{V}_{\mathrm{R}}=$ potential difference across the resistor (Alternatively, if the student takes the d.c. also as 1 A , the potential difference will be $=160 \mathrm{~V}=\mathrm{V}_{\mathrm{R}}$)

OR

i)	Naming the circuit element Y
ii) Calculation of r.m.s value of current	$1 / 2$
iii) Effect of replacing a.c source by d.c source	$11 / 2$

a) Y is a capacitor.
b) Phase angle, $\varphi=\pi / 4$, Also $\cos \varphi=\frac{\mathrm{R}}{\mathrm{Z}}$

$$
\begin{aligned}
& \Rightarrow \mathrm{Z}=\frac{\mathrm{R}}{\cos \phi}=\frac{\mathrm{R}}{\cos (\pi / 4)}=\frac{100}{1 / \sqrt{2}}=100 \sqrt{2}=141.4 \Omega \\
& \mathrm{I}_{\mathrm{r} \mathrm{~m} . \mathrm{s}}=\frac{\mathrm{V}_{\mathrm{rm} . \mathrm{s}}}{\mathrm{Z}}=\frac{141 \mathrm{~V}}{141.4 \Omega} \cong 1 \mathrm{~A}
\end{aligned}
$$

c) The current becomes zero.

i) Naming the three radiations	$1 / 2+1 / 2+1 / 2=11 / 2$
ii) Writing their frequency ranges	$1 / 2+1 / 2+1 / 2=11 / 2$

a) Microwaves
$v=10^{10} \mathrm{~Hz}$ to $10^{12} \mathrm{~Hz}$
b) x-rays
$v=10^{16} \mathrm{~Hz}$ to $10^{20} \mathrm{~Hz}$
c) Infrared
$y=10^{12} \mathrm{~Hz}$ to $10^{14} \mathrm{~Hz}$

SI.	Value Points / Expected Answers		
No.			
Q20.	i) Calculation of new image position ii) Ray diagram	2	
			1

a) $\mathrm{u}=20 \mathrm{~cm}, \mathrm{n}_{2}=1.5, \mathrm{n}_{1}=1, \mathrm{R}=5 \mathrm{~cm}$

$$
\begin{aligned}
\text { Using } \begin{aligned}
\frac{\mathrm{n}_{2}}{v}-\frac{\mathrm{n}_{1}}{\mathrm{u}} & =\frac{\mathrm{n}_{2}-\mathrm{n}_{1}}{\mathrm{R}} \\
\frac{1.5}{\mathrm{v}}-\frac{1}{20} & =\frac{1.5-1}{5}
\end{aligned}
\end{aligned}
$$

$$
\mathrm{v}=10 \mathrm{~cm}
$$

Formula - 1
substitution and calculation - 1
Ray diagram-1
$\frac{\mathrm{n}_{1}}{-\mathrm{u}}+\frac{\mathrm{n}_{2}}{\mathrm{v}}=\frac{\mathrm{n}_{2}-\mathrm{n}_{1}}{\mathrm{R}}$
$\frac{1.5}{20}+\frac{1}{\mathrm{v}}=\frac{1-1.5}{-10}$
$\mathrm{v}=-40 \mathrm{~cm}$

 reflected and partly refracted. If the reflected and refracted lights are perpendicular to each other, the reflected light gets polarized.
(Alternatively if the student explains using Brewster's law award full marks.)
(i) $i_{p}=90-r_{p}$

$$
\mathrm{i}_{\mathrm{p}}=90-30=60^{\circ}
$$

(ii) $\mu=\tan i_{\mathrm{p}}=\tan 60^{\circ}=\sqrt{3}$
a) Graph showing variation of stopping potential with frequency - 1
b) Showing the determination of
(i) Threshold frequency - 1
(ii) Planck's constant (from the graph) - 1
a.

b. From Einstein's Equation

$$
\begin{aligned}
& \mathrm{eV}=\mathrm{h} v-\mathrm{h} v_{\mathrm{o}} \\
& \mathrm{~V}_{\mathrm{o}}=\frac{\mathrm{h}}{\mathrm{e}} v-\frac{\mathrm{h}}{\mathrm{e}} v_{\mathrm{o}}
\end{aligned}
$$

| Sl. |
| :--- | :--- |
| No. |\quad Value Points / Expected Answers

a. When a photon of the energy $\mathrm{h} v$ is absorbed by an electron in the photosensitive material, a part of the energy absorbed is used up in liberating it from the surface (the work function). The remaining energy appears as KE of the photoelectron.

Alternatively:
$K_{\max }=\mathrm{h} v-\phi_{0}$
if $\mathrm{h} v \geq \phi_{o}, \mathrm{k}_{\text {max }}$ is positive and electron is emitted
b. Emission of electron will not take place.

Energy $h \nu$, of a single photon, is less than the work function ϕ_{o}
(Alternatively $-\mathrm{k}_{\text {max }}=\mathrm{h} v-\phi_{0}$

$$
\mathrm{~h} \nu<\phi_{0} \text { so } \mathrm{k}_{\text {max }} \text { is negative; Hence no emission will take place.) }
$$

c. $\mathrm{V}_{\mathrm{o}}=1.5 \mathrm{~V}$
$\mathrm{k}_{\max }=\mathrm{eV}_{\mathrm{o}}=1.6 \times 10^{-19} \times 1.5=2.4 \times 10^{-19} \mathrm{~J}$
[If a student just writes, $\mathrm{k}_{\max }=1.5 \mathrm{eV}$ award $1 / 2$ mark]
a. (i) Truth tables for P and $\mathrm{Q}-1 / 2+1 / 2$
(ii) Truth tables for circuit - 1
b. Explanation for why NOR gates are considered as universal gates - 1

b. All basic logic gates can be realized by using NOR gates
(Also accept if the student draws the diagrams for getting OR \& AND gates using NOR gates.)

OR

a. Formation of potential barrier (with diagram) - $1 \frac{1}{2}$
b. Circuit diagram and plotting graph $-1 / 1 / 2$
a.

During the formation of $\mathrm{p}-\mathrm{n}$ junction diode: due to the concentration gradient across p and n sides of a diode, holes diffuse from p side to n side and electrons diffuse from n side to p side giving rise to development of immobile positive charges on the n side and the negative charges on the p side across the junction. Thus a potential barrier is formed at the junction.

Alternatively: if a student explains with depletion region,award this 1 mark.

c.

a. Meaning of bandwidth and importance - 1
b. Differentiation between analog \& Digital signal - 1
c. Functions of transducers and repeaters - 1
a. Bandwidth of a signal is the range over which the frequencies in that signal vary.
(Also accept bandwidth is the frequency range over which an equipment/device operates)

The knowledge of bandwidth helps in designing equipment used in communication/essential for communication.
b. In digital communication, digital signals are used which have two discrete current or voltage values in a signal.
Analog signals are used which have continuous current or voltage values in a signal.

Alternatively, if a student draws the diagram of the digital signals and analog signals give these $(1 / 2+1 / 2)$ mark.

(a)

| Sl. |
| :--- | :---: | :---: |
| No. |\quad Value Points / Expected Answers

(b)

	c. A transducer converts one from of energy into another. A repeater enhances the range of a communication system.
Q25.	SECTION - D
a. Statement of the law and expression for the magnetic field $-1+2$ b. Finding the magnitude and direction of magnetic field $-11 / 2+1 / 2$	

a. According to Biot Savart law, the magnetic field due to a current element is given by

$$
\overrightarrow{d B}=\frac{\mu_{\mathrm{o}}}{4 \pi} I \frac{\overrightarrow{d l} \times \vec{r}}{[\vec{r}]^{3}}
$$

Alternatively award this 1 mark if a student makes statement of Biot Savart law.

Derivation of magnetic field

Magnetic field due to current element dl

$$
\begin{aligned}
\overrightarrow{d B} & =\frac{\mu_{\mathrm{o}}}{4 \pi} I \frac{\overrightarrow{d l} \times \hat{r}}{[\vec{r}]^{2}} \quad \text { where } \hat{r} \text { is a unit vector along } \vec{r} \\
\vec{r} & \perp \overrightarrow{d l}
\end{aligned}
$$

Direction of $\overrightarrow{d B}$ is perpendicular, pointing outward.
\therefore Field due to the whole loop

$$
\begin{aligned}
& |\vec{B}|=\int d B=\frac{\mu_{o} I}{4 \pi r^{2}} \int d l=\frac{\mu_{o} I}{4 \pi r^{2}} \times 2 \pi r \\
& |\vec{B}|=\frac{\mu_{o} I}{2 r}
\end{aligned}
$$

b.

$$
\begin{aligned}
& |\overrightarrow{d B}|=\frac{\mu_{0} I}{4 \pi} \frac{d l \sin \theta}{[\vec{r}]^{2}} \\
& =\frac{4 \pi \times 10^{-7}}{4 \pi} \times \frac{10 \times\left(1 \times 10^{-2}\right) \times \sin 90^{0}}{(0.5)^{2}} \\
& =4 \times 10^{-8} T
\end{aligned}
$$

OR
a) Derivation of expression with diagram

3
b) Calculation of magnitude of magnetic field at the center of the arc. $1 \frac{1}{2}$ Direction of field

According to Biot Savart law

$$
|\overrightarrow{\mathrm{dB}}|=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{I} \mathrm{dl} \sin 90^{\circ}}{\left|\overrightarrow{\mathrm{r}_{1}}\right|^{2}}
$$

Where $\mathrm{r}_{1}=\sqrt{x^{2}+\mathrm{r}^{2}}$

$$
|\overrightarrow{\mathrm{dB}}|=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{I} \mathrm{dl}}{\left(x^{2}+\mathrm{r}^{2}\right)^{\frac{1}{2}}}
$$

Direction of $\overrightarrow{\mathrm{dB}}$ is perpendicular to $\overrightarrow{\mathrm{dl}}$ and $\overrightarrow{\mathrm{r}}_{1}$.

It has components dB_{x} and dB_{\perp}. The components dB_{\perp} due to the whole coil cancel
out in pairs.
Net field $B=\int \mathrm{dB}_{x}=\int \mathrm{dB} \cos \theta$

S. No.	
	$\vec{B}=\frac{\mu_{0} I r^{2}}{2\left(r^{2}+x^{2}\right)^{\frac{1}{2}}} \hat{i}$

b) $\quad B=\frac{\mu_{0} I}{4 \mathrm{r}}$

$$
\begin{aligned}
& =\frac{4 \pi \times 10^{-7} \times 5}{4 \times 2 \times 10^{-2}} \\
& =7.85 \times 10^{-5} \mathrm{~T}
\end{aligned}
$$

i)	Production of Interference pattern and explanation.	$1+1$
ii)	Obtaining expression for intensity at the point P	$11 / 2$
iii)	Calculating wavelength of light	$11 / 2$

a) No. Sustained interference pattern cannot be obtained

Light waves emitted from a source undergoes abrupt phase changes in times of the
order of $10^{-10} \mathrm{~s}$. So light from two independent sources will not have fixed phase relationship and will be incoherent.
b)

$$
\begin{aligned}
& x=\frac{\beta}{3}, \text { path difference }=\frac{\lambda}{3} \\
& \text { phase diff }=\frac{2 \pi}{3} \\
& I=I_{0} \cos ^{2} \frac{\phi}{2} \\
& I=I_{0} \cos ^{2}\left(\frac{2 \pi}{3 \times 2}\right)=I_{0} \cos ^{2}\left(\frac{\pi}{3}\right) \\
& I=I_{0}\left(\frac{1}{4}\right)=\frac{I_{0}}{4}
\end{aligned}
$$

c) Distance of $5^{\text {th }}$ bright fringe from $2^{\text {nd }}$ dark fringe

$$
\begin{aligned}
& x=\frac{5 \lambda \mathrm{D}}{\mathrm{~d}}-\frac{3 \lambda \mathrm{D}}{2 \mathrm{~d}}=\frac{7}{2} \frac{\lambda \mathrm{D}}{\mathrm{~d}} \\
& \lambda=\frac{2 x \mathrm{~d}}{7 \mathrm{D}}=\frac{2 \times 4.13 \times 10^{-3} \times 0.5 \times 10^{-3}}{7 \times 1} \\
& \lambda=0.59 \times 10^{-6} \mathrm{~m}=5900 \AA
\end{aligned}
$$

OR
i) Derivation of relation
ii) Effect on linear width of central maximum
iii) Determination of slit width
$\xrightarrow{\text { S. }} \xrightarrow{\text { S.) }}$

From diagram path difference between the waves from L and N

$$
=a \sin \theta
$$

When first minimum is obtained at P then path difference $=\lambda$
[imagine the slit be divided into two halves, for each wavelets from first half of the slit has a corresponding wavelet from second half of the slit differing by a path of
$\frac{\lambda}{2}$ and cancel each other]
Condition for first minimum
$\therefore \lambda=\mathrm{a} \sin \theta$
b.) $\beta_{\mathrm{cm}}=\frac{2 \lambda \mathrm{D}}{\mathrm{d}}$
(i) increases
(ii) increases
c.) $10 \frac{\lambda}{\mathrm{~d}}=2 \frac{\lambda}{a}$
$\mathrm{a}=\frac{\mathrm{d}}{5}=0.2 \mathrm{~mm}$
a. Circuit diagram and its working - 2

Explanation of low and high resistance at input and output respectively - 1
b. Derivation of voltage gain - $1 \frac{1}{2}$

Input and output phase relation. - $1 / 2$
a.

(Also accept the following circuit diagram.

When Emitter Base junction is forward biased, electron from emitter enter the base where a few free charge carriers combine with the holes present in the base.
As base is thin, most of the electron go into the collector, since collector junction is reverse biased, it gives rise to a collector current.
Since Emitter-Base junction is forward biased, input resistance is low and base-collector is reversed biased, so output resistance is high.
b.

Applying Kirchoff's loop rule to input loop and taking variation

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{BE}}=\Delta \mathrm{I}_{\mathrm{B}}\left(\mathrm{R}_{\mathrm{B}}+\mathrm{r}_{\mathrm{i}}\right) \tag{1}
\end{equation*}
$$

Output loop and taking variations

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{CE}}=-\mathrm{R}_{\mathrm{L}} \Delta \mathrm{I}_{\mathrm{C}} \tag{2}
\end{equation*}
$$

Voltage gain, $\mathrm{A}_{\mathrm{V}}=\frac{\mathrm{v}_{0}}{\mathrm{~V}_{\mathrm{i}}}=\frac{\Delta \mathrm{V}_{\mathrm{CE}}}{\Delta \mathrm{V}_{\mathrm{BE}}}-\frac{\mathrm{R}_{\mathrm{L}} \Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{B}}\left(\mathrm{R}_{\mathrm{B}}+\mathrm{r}_{\mathrm{i}}\right)}=-\beta_{\mathrm{ac}} \frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{r}}$
Where, $\mathrm{R}_{\mathrm{B}}+\mathrm{r}_{\mathrm{i}}=\mathrm{r}$ \qquad
and $\beta_{\text {a.c }}=$ Current gain in C.E. $=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{B}}}$
The negative sign in equation (3) indicates that the input and output voltages are in opposite phase.

OR
a) Two considerations for fabricating $\mathrm{p}-\mathrm{n}$ junction diode used as LED
Order of band gap 1
Circuit diagram and action
b) V-I characteristics of LED

Two advantages of LED lamps over conventional lamps

	a) Important fabricating consideration

i) Heavily doped
ii) Encapsulated with transparent cover.

For visible light:
order of band gap for $\mathrm{LED}=1.8 \mathrm{eV}$ to 3 eV

When the diode is forward biased, electron are sent from n side to p side and holes are sent from p side to n side and at the junction boundary, the excess minority carrier recombines with the majority carriers releasing energy in the form of photons.

Two advantage of LED over ordinary Lamps
Low operational voltage/Less power consumption / fast action / No warm up time required / Nearly monochomatic / Long life / ruggedness / fast switching capacity (Any two)

