Value Points / Expected Answers	Marks	Total
SECTION - A		
Repulsive	1	1
OR		
Surface charge density on inner surface = $-\frac{Q}{4\pi R_1^2}$	1/2	1
Surface charge density on Outer surface = $+\frac{Q}{4\pi R_2^2}$	1/2	1
When R+nr = nR+r Alternatively r = R	1	1
The ozone layer absorbs the UV radiations.	1	1
OR		
illustrates that the e.m waves have energy and momentum. Alternatively When the sun shines on your hand, you feel energy being absorbed from the e.m waves Alternatively The radio & TV signals carry energy from one place to another (Give full marks if student explains on the basis of any one of above example) Example – photo electric effect		
Metal Q has smaller threshold wavelength.	1/2	
Since $\lambda_0 = \frac{c}{v_0}$	1/2	1
The attenuation of ground waves increases very rapidly with increase in frequency and becomes quite high above 1500 kHz frequency Alternatively To overcome the weakening of ground waves due to absorption of energy by the earth surface (since energy loss increases with increase in frequency) (Any one of above)	1	1
SECTION - B		
i) Labelled diagram ii) Flux through Gaussian surface iii) Calculation & Result 1/2 1/2 1/2 1/2+1/2		
Gaussian charge density σ Gaussian surface	1/2	
	Repulsive OR Surface charge density on inner surface = $-\frac{Q}{4\piR_1^{-3}}$ Surface charge density on Outer surface = $+\frac{Q}{4\piR_2^{-3}}$ When R+nr = nR+r Alternatively r = R The ozone layer absorbs the UV radiations. OR When e.m. waves falls on charged particles, they set the charges into motion. This illustrates that the e.m waves have energy and momentum. Alternatively When the sun shines on your hand, you feel energy being absorbed from the e.m waves Alternatively The radio & TV signals carry energy from one place to another (Give full marks if student explains on the basis of any one of above example) Example – photo electric effect Metal Q has smaller threshold wavelength. Since $\lambda_o = \frac{c}{v_o}$ The attenuation of ground waves increases very rapidly with increase in frequency and becomes quite high above 1500 kHz frequency Alternatively To overcome the weakening of ground waves due to absorption of energy by the earth surface (since energy loss increases with increase in frequency) (Any one of above) SECTION - B i) Labelled diagram ii) Flux through Gaussian surface iii) Calculation & Result	Repulsive OR Surface charge density on inner surface $= -\frac{Q}{4\pi R_i^2}$ Surface charge density on Outer surface $= +\frac{Q}{4\pi R_i^2}$ When $R \ln r = nR \ln r$ Alternatively $r = R$ The ozone layer absorbs the UV radiations. OR When e.m. waves falls on charged particles, they set the charges into motion. This illustrates that the c.m waves have energy and momentum. Alternatively When the sun shines on your hand, you feel energy being absorbed from the e.m waves Alternatively The radio & TV signals carry energy from one place to another (Give full marks if student explains on the basis of any one of above example) Example – photo electric effect Metal Q has smaller threshold wavelength. Since $\lambda_{ij} = \frac{c}{v_0}$ The attenuation of ground waves increases very rapidly with increase in frequency and becomes quite high above 1500 kHz frequency Alternatively To overcome the weakening of ground waves due to absorption of energy by the earth surface (since energy loss increases with increase in frequency) (Any one of above) SECTION - B i) Labelled diagram ii) Flux through Gaussian surface iii) Calculation & Result

Sl. No.	Value Points / Expected Answers	Marks	Total
	Flux through the small section of Gaussian surface		
	$\phi = \oint \vec{E} . d\vec{s}$		
	$\therefore \phi = \oint E ds \cos\theta$		
	$\therefore E \parallel \vec{ds}, \ \theta = 0$		
	$\therefore \phi = E.4\pi R^2 \qquad (1)$	1/2	
	Applying Gauss's theorem		2
	$\phi = \frac{q}{\varepsilon_0} \qquad (2)$		
	from equations 1 and 2		
	$E = \frac{1}{4\pi \varepsilon_0} \cdot \frac{\mathbf{q}}{R^2}$	1/2	
	OR		
	i) Electric field at a point due to a plane sheet of charge ii) Diagram with direction of field iii) Electric field between the sheets iv) Electric field outside the sheets 1/2 1/2		
	$E_{A} \xrightarrow{P} E_{B}$ $Q \xrightarrow{E_{A}} E_{B}$ $E_{B} \xrightarrow{R} E_{A}$	1/2	
	Now Electric field Intensity due to a plane sheet of charge		
	$E = \frac{\sigma}{2\epsilon_0}$	1/2	
	Here $2arepsilon_0$	/2	
	$E_A = \frac{+\sigma}{2\epsilon_0}$ and $E_B = \frac{-\sigma}{2\epsilon_0}$		
	(i) Electric field at Point Q (In between the sheets)		
	$\vec{E} = \vec{E}_A + \vec{E}_B = \frac{\sigma}{2\epsilon_0} + \frac{\sigma}{2\epsilon_0} = \frac{\sigma}{\epsilon_0}$	1/2	

	4/
ks	Tota
\top	
	2
;	
	2
+	
/2	/2

Set-	MARKING SCHEME - PHYSICS	33	/ / / 1
Sl. No.	Value Points / Expected Answers	Marks	Total
	Also, Conduction current i_c leads the voltage by $\pi/2$ $\therefore \qquad i_c = \frac{V_0}{(1/\omega C)} \sin{(\omega t + \pi/2)}$ $= \omega C V_0 \sin{\omega t}$ Hence $i_d = i_c$	1/ ₂ 1/ ₂	2
	 Note 1: Award two marks even if the student just writes "with an a.c. source, the conduction current, as well as the displacement current, are present at all instants. As per Maxwell's explanation instantaneous displacement current = instantaneous conduction current" Note 2: Award 2 marks if even if the student just writes "As per Maxwell's explanation, displacement current = conduction current, at all instants" Note 3: Award 2 marks if the student proves conduction current = displacement current, with a d.c source. 		
Q9.	i) Ray diagram ii) Lens formula iii) Substitution of values with sign convention iv) Calculation and Result L		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2	
	$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$ (lens formula)	1/2	2
	Here $u = +15 \text{cm}$; $f = +10 \text{ cm}$ $\therefore \frac{1}{v} = \frac{1}{f} + \frac{1}{u} = \frac{1}{10} + \frac{1}{15}$	1/2	
	\Rightarrow v = 6 cm OR	1/2	
	I) Formula for magnification ii) Mirror formula iii) Substitution of values with sign convention iv) Calculation and Result 1/2 1/2 1/2		

CI	MARKING SCHEME - PHYSICS		
Sl. No.	Value Points / Expected Answers	Marks	Total
	Here, $m = +3$ and $f = -15$ cm		
	$m = \frac{v}{u} = 3 \therefore v = 3u$	1/2	
	$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$	1/2	2
		/2	2
	$\frac{1}{-15} = \frac{1}{3u} + \frac{1}{u}$	1/2	
	\Rightarrow u = -20 cm	1/2	
Q10.	i) Dependance of Resolving Power on frequency with reason 1 ii) Dependance of Resolving Power on the focal length of the objective lens with reason 1		
	Resolving power of a compound microscope $= \frac{2\mu \sin\theta}{1.22\lambda}$	1/2	
	Therefore, it is clear that the resolving power = $\frac{2\mu \sin\theta \times v}{1.22 \text{ c}}$		
	a) increases with the frequency of incident light, and	1/2	2
	b) Resolving power of the compound microscope is not independent of the focal length of objective lens, instead it varies inversely with focal length of objective lens.	9	
	As per the formula	1/2	
	$ m d_{min} = rac{1.22 f \lambda}{D},$	1/2	
	$R.P. = \frac{1}{d_{min}}$ Resolving power is inversely proportional to focal length	/2	
Q11.	i) Calculation of path difference ii) Condition for constructive interference iii) Expression for fringe width 1		
	The path difference $S_2P - S_1P = \left(\frac{y_nd}{D} + \frac{\lambda}{4}\right)$	1/2	
	For constructive interference		
	Path difference = n λ where n=0,1,2,3	1/2	
	$\frac{y_n d}{D} + \frac{\lambda}{4} = n\lambda$		2
	Position of n th bright fringe	1/2	
	$y_n = (n - \frac{1}{4}) \frac{\lambda D}{d}$		
	Fringe width $\beta = y_n - y_{n-1}$		
	$\beta = \frac{\lambda D}{d}$	1/2	
	Note: If the student solves the question by taking the path difference $S_2P - S_1P = \frac{\lambda_n d}{D}$; 1 Mark may be awarded		

Sl. No.	Value Points / Expected Answers	Marks	Total
Q12.	i) Relation between I_2 , I_b & I_c ii) Calculation of emitter current iii) Formula for current gain iv) Calculation of current gain $\frac{1}{2}$		
	a) Since $I_e = I_b + I_c$	1/2	
	= 60 mA + 6 mA		
	$= 6.06 \mathrm{mA}$	1/2	
	$\beta = \frac{I_c}{I}$	1/2	
	$= \frac{6 \times 10^{-3}}{60 \times 10^{-6}} = 100$	1/2	
	SECTION - C		
Q13.	a) Graph between V and I with external resistance R b) Behaviour of Hg at 4K c) Identification and result	a	
	a) Note: Award this 1 mark even if the student draw the following or some other non linear graph		
		1	
	OR V		
	 b) At a temperature of 4 K, the Resistance of Hg becomes zero. Note - Award this 1 mark if the student writes that Hg becomes a super conductor at temperature of 4 K c) Region BC; since current is decreasing with increasing voltage Alternately: The graph has negative slope for this region. 	1	3
Q14.	a) i) Effect on balancing length with decrease in R ₁ with justification ii) Effect on balancing length with increase in R ₂ with justification b) Reason for preferring Potentiometer over voltmeter.		
	a) i) When R ₁ is decreased, the balancing length decreases. Justification - When R is decreased, I through the potentiometer increases. Hence potential gradient increases. Therefore balancing length decreases.	1/2	
	ii) When R ₂ is increased, balancing length decreases	1/2	
	Justification: When R_2 is increased, current $I = \frac{E}{r + R_2}$ decreases. This increases V (= E–Ir) hence balancing length increases. At balance, Potentiometer draws no current from the voltage source, measurement of emf/potential difference will be more accurate or any suitable justification. OR	1	
	i) Principle of meter bridge1ii) Circuit diagram1iii) Determination of unknown resistance1		

Set-	1 MARKING SCHEME - PHYSICS	33	<u>/4/1</u>
Sl. No.	Value Points / Expected Answers	Marks	Total
	Principle of meter bridge: - It works on the principle of balance condition of	1	
	wheatstone bridge i.e $\frac{P}{Q} = \frac{R}{S}$		
	Circuit diagram		
	A I_1 I_2 I_3 I_4 I_5 I_5 I_6 I_6 I_8 $I_$	1	3
	When the jockey is moved along the wire, at one position of jockey, the galvanometer will show no deflection. Let the distance of the jockey from the end A at the balanced point be l_1 then $\frac{R}{S} = \frac{l_1}{100 - l_1}$	1	
	$R = S\left(\frac{l_1}{100-l_1}\right)$		
Q15.	i) Relation between K.E. and accelerating potential ii) Comparison of Kinetic Energies iii) Determination of radii of path of deuteron and alpha particle 1½		
	i) Since $qV = \frac{1}{2}$, mv^2	1/2	
	for proton $\frac{1}{2} m_p v_1^2 = qV$		
	For deuteron $\frac{1}{2} m_d v_2^2 = qV$		
	For alpha particle $\frac{1}{2}$ $m_{\alpha}v^{2}=2qV$		
	$(K.E.)p: (K.E.)_{d_2}: (K.E.)\alpha: 1: 1: 2$	1	3
	ii) $Bqv = \frac{mv^2}{r}$	1	3
	so $r = \frac{mv}{Bq} = 5 \text{ cm};$	1/2	
	$r_1 : r_2 : r_3 = 5 : 5\sqrt{2} : 5\sqrt{2} \text{ OR } 1 : \sqrt{2} : \sqrt{2}$	1	
		1	
Q16.	i) Conversion of a galvanometer into an ammeter ii) Formula for shunt iii) Calculation and Result 1½ 1 1		
	a) By connecting a small resistance called shunt (S) in parallel to coil of the galvanometer. The value of S is related to the maximum current (I) to be measured as $S=I_g$ G/I- I_g . (Note: If the student just draws the diagram, full marks may be awarded). b) $G=15 \Omega$ $I_g=4\times 10^{-3} A$	11/2	

Set-	1	MARKING SCHEME - PHYSICS	55	/4/ [
Sl. No.		Value Points / Expected Answers	Marks	Total
1100		$I = 6A$ $I_g G = (I-I_g)S$	1/2	3
		$S = \frac{I_g G}{I - I_g} = \frac{4 \times 10^{-3} \times 15}{6 - 4 \times 10^{-3}}$	1/2	
		$= 0.01\Omega$	1/2	
	1	OR		
		i) Conversion of a galvanometer into a voltmeter ii) Formula iii) Calculation and results 1½ 1½ 1/2 1/2		
	a)	A galvanometer may be converted into voltmeter by connecting a high value		
		resistance R in series with coil of the galvanometer. The value of (R) is related to the maximum voltage (V) to be measured as $R = \frac{V}{I_a} - G$	1½	
		Note - Award full marks if a student just draws the labelled diagram.		
	b)	$I_{g} = \frac{V}{R_{g} + R}$	1/2	3
		$\frac{V}{R_{g} + 980} = \frac{V}{2(R_{g} + 470)}$	1/2	
		$2R_g + 940 = R_g + 980$ $R_g = 40\Omega$	1/2	
		g · · · · · · · · · · · · · · · · · · ·	72	
Q17.		I) Expression for Force and its direction 1½+½ ii) Expression/Calculation of Power 1		
	a)	The induced emf in the moving conductor MNOP $e = Blv$	1/2	
		The induced current, $i = \frac{e}{R} = \frac{Blv}{R}$		
		Force on the arm 'ON', $F = Bil$	1/2	3
		$=\frac{\mathbf{B}^2\mathbf{l}^2\mathbf{v}}{\mathbf{R}}$	1/2	
	1.	The force is directed in the direction opposite to velocity of rod (v) Note: Award the last half mark if the student write $F = 0$ as $B = 0$ in the position shown	1/2	
	b)	Power $P = F \times V$ = $\frac{B^2 l^2 V}{R}$	1/2	
		Note: Award the last half mark if the student write $P = 0$ as $B = 0$ in the position shown	1/2	
Q18.		i) Labelled ray diagram ii) Formula for angular magnification 1½ 1½		
		iii) Importance and limitations 1		
		Objective Jo Eyepiece		
		B B B	1½	

et-1	MARKING SCHEME - PHYSICS	22	/ 4 /
).	Value Points / Expected Answers	Marks	Total
	Angular magnification $m = \frac{-f_0}{f_c}$ or $\frac{f_0}{f_c}$	1/2	3
	Important considerations: For achieving large resolution, the objective of large aperture is required. Consequent Limitation: Heavy, hence difficult to make and support by their edge / suffers with chromatic aberrations (any one of above) OR	1/ ₂ 1/ ₂	
	 i) Graph between δ and I ii) Derivation of expression for refractive index 		
	a)		
	$\begin{array}{c} 60^{\circ} \\ \hline 80^{\circ} \\ \hline 90^{\circ} \\ \hline 0^{\circ} \\ \hline 20^{\circ} \\ \hline 40^{\circ} \\ \hline 0^{\circ} \\ 0^{\circ} \\ \hline 0^{\circ} \\ \hline 0^{\circ} \\ \hline 0^{\circ} \\ 0^{\circ} \\ 0^{\circ} \\ \hline 0^{\circ} \\ 0^$	1	
	M 8 N R S	1/2	
	Since $n_{21} = \frac{\sin i}{\sin r}$	1/2	3
	From the figure and calculations		
	$r_1 + r_2 = A$ At minimum deviation i.e. $\delta = \delta m$, $i = e$ and $r_1 = r_2 = r$		
	$\therefore \qquad r = A/2 \dots (eq^{n} 1)$ From the figure		
	$\delta = (i - r_1) + (e - r_2)$		
	$\therefore \qquad \delta_{\rm m} = (i + e) + (r_1 + r_2)$	1/2	
	$i = \frac{A + o_m}{2} \dots (eq^n 2)$		
	$i = \frac{A + \delta_{m}}{2} \qquad (eq^{n} 2)$ $\therefore \qquad n_{21} = \frac{\sin i}{\sin r} = \frac{\sin \frac{A + \delta_{m}}{2}}{\sin A/2}$	1/2	
	$\sin \frac{\pi}{2} = \sin \frac{\pi}{2} = \sin \frac{A}{2}$	/2	
1		1	

Set-	t-1 MARKING SCHE	EME - PHYSICS	55	<u>/4/1</u>
Sl. No.	Value Points / Ex	pected Answers	Marks	Total
Q19	a) Purpose and inference b) Ratio of accelerating potential	1½ 1½		
	a) Purpose of Davisson Germer Experiment was It confirms the de Broglie relations for matter beams from crystal		1 1/2	
	b) de Broglie wavelength $\lambda = \frac{h}{\sqrt{2mqV}}$		1/2	
	$\therefore \frac{h}{\sqrt{2m_{p}eV_{p}}} = \frac{h}{\sqrt{2m_{\alpha}eV_{\alpha}}}$		1/2	3
	$\therefore \frac{V_{p}}{V\alpha} = \frac{8}{1}$.,65	1/2	
	OF		5	
	 a) i) de Broglie wavelength associated with with justification ii) Momentum associated with e & p and j b) i) Relation between momentum and de B 	ustification ½+½		
	a) i) Since $\lambda = \frac{h}{\sqrt{2mqV}}$	S.S.		
	$\lambda \propto \frac{1}{\sqrt{m}}$ (For oth $m > m_e$	ner variables constant)	1/2	
	Therefore $\lambda_{ ext{electron}} > \lambda_{ ext{proton}}$		1/2	
	ii) momentum $p = h$ $\therefore \lambda_{\text{electron}} > \lambda_{\text{proton}}$		1/2	
	∴ momentum of electron is lesser.		1/2	3
	b) $\lambda = h$ Graph between p & λ		1/2	
			1/2	
	p			

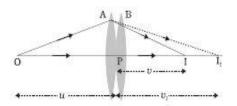
Set-1	Value Points / Expected Answers	Marks	7 4 / 1 / 1 / Total
No.		IVIAI NS	1014
Q20	i) Derivation of expression for the orbital period 2 ii) Rydberg's formula and name of the series of H_{α} line $\frac{1}{2}+\frac{1}{2}$		
a)	Orbital Period of electron in hydrogen atom		
	$T = \frac{2\pi r_n}{v_n} \qquad \qquad$	1/2	
	From Bohr's postulates		
	$mv_{n}r_{n} = \frac{-nh}{2\pi}$		
	We have $r_n = \frac{n^2 h^2 \epsilon_0}{\pi me^2}$	1/2	
	and velocity of electron in n th orbital		3
	$v_{n} = \frac{e^{2}}{2\epsilon_{0}nh}$	1/2	
	On substituting the values of r_n and v_n in equation (1) we have		
	$T = \frac{4n^2h^2\varepsilon_0}{me^4}$	1/2	
b)	me		
	$\frac{1}{\lambda} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$	1/2	
	H_{α} belongs to Balmer series .	1/2	
221	i) B.E / nucleon graph ii) Salient features of graph iii) Explanation of Fission and Fusion 1 1/2+1/2		
	10 30 S 56 Fe 100 Mo 12 I		
	Panilding and variety of the law	1	
		1	
	Ag 4		
	5 2 * H		
	Ping 0		
	0 50 100 150 200 250 Mass number (A)		
$ _{\mathbf{S}}$	alient feature of B.E. curve		
i)	B.E/nucleon is pratically constant i.e. independent of the atomic number for nuclei	1/2	
	of middle mass number (30 <a<17)< td=""><td></td><td></td></a<17)<>		

Set-	MARKING SCHEME - PHYSICS		<u>/ 4/ 1</u>
Sl. No.	Value Points / Expected Answers	Marks	Total
	ii) Binding energy per nucleon is lower for both light nuclei (A<30) and heavy nuclei (A>170)	1/2	
	Very heavy nucleus has lower B.E./nucleon will undergo fission and split into two medium sized nuclei with large B.E./nucleon and release tremendous amount of energy (Fission process)	1/2	3
	When two very light nuclei, having low binding energy per nucleon combine together and form a medium sized nuclei of higher B.E. per nucleon releases enormous amount of energy (Fusion process)	1/2	
Q22	i) Energy band diagram (i) n type and (ii) p type ii) Role of Acceptor and Donor energy level 1+1 1		
	E_C	2	3
	The donor energy level decreases the energy gap between conduction band and valence band. As a result the conduction band will get more electrons from the donor impurity with very small supply of energy. Whereas in p type semiconductor the holes from acceptor level sinks down into valence band	1/2	
Q23	i) Point of consideration in fabrication of Photodiode ii) Working of photodiode with diagram 1½ iii) VI graph - Role of photodiode in detecting the optical signal ½+½		
	A photodiode is fabricated with a transparent window to allow light to fall on the diode. and the generation of e-h pairs takes place in or near the depletion region of the diode.	1/2	
	Working of photodiode - When photodiode is illuminated with light of suitable frequency, the electron hole pairs are generated near depletion region due to its specific fabrication. The junction potential separates electrons and holes before their recombination and e releases to n side and holes reaches to p side to the direction of electric field and hence current flows across the photodiode when connected with load.	1	

Set-1	MARKING SCHEME - PHYSICS		<u>/4/ </u>
Sl. No.	Value Points / Expected Answers	Marks	Tota
I	Reverse bias I_1 volts I_2 I_3 I_4 I_4 I_4 I_4 I_4 I_5	1 1/2	3
Q24	a) i) Definition of Amplitude modulation ii) Figure b) i) Modulation index ii) Definition of side bands iii) Significance of side bands	Ó	
a	Amplitude modulation - The amplitude of carrier is varied in accordance with information signal.	1	
	$c_{(i)}$ of $c_{$	1/2	3
b	(Credit may be given if a student draws only the modulated signal.) Modulation Index - i) Ratio of amplitude of message signal to the amplitude of carrier signal is modulation Index. or $m = \frac{A_m}{A_n}$	1/2	
	 ii) The two sinusoidal waves in amplitude modulated wave having frequencies slightly different from frequency of carrier wave are called sidebands. Significance of sidebands: It helps different broadcast stations to operate 	1/2	
	separately or individually.	/2	
Q25	a) Explanation of charging of capacitor with DC battery b) i) Effect on electric field with justification ii) Effect on energy stored in capacitor with justify. c) Graph between E & x 1 1/2 1/2 1 1/2		
a	 Charging of capacitor with dc battery whenever parallel plate capacitor is connected with dc source, plates start acquiring charge in accordance with the terminals of the battery till potential difference across the plate becomes equal to terminal potential of dc battery. Note: Any other relevant explanation may also be accepted. 	1	
	13		

261-	IMARKING SCHEME - FH I SICS		<u>/ T/ 1</u>
Sl. No.	Value Points / Expected Answers	Marks	Total
	b) i) The electric field between the plates of parallel plate capacitor		
	$E_0 = \frac{\sigma}{\varepsilon_0} = \frac{Q}{\varepsilon_0 A}$	1/2	
	If dielectric is inserted		
	$E' = \frac{Q}{\varepsilon_0 A.K} = \frac{\varepsilon_0}{K}$	1/2	
	So, the electric field intensity decreases to 1/K times.	1/2	
	ii) Since Energy stores in the capacitor		
	$U = \frac{Q^2}{2C} = \frac{Q^2 d}{2\varepsilon_0 A} \qquad (1)$	1/2	
	Similarly		
	$U' = \frac{Q^1}{2C'} = \frac{Q^2 d_1}{2K\epsilon_0 A}$		5
	$= \frac{2}{K} \left(\frac{Q^2 d_1}{2\epsilon_0 A} \right)$	ò	
	$=\frac{2U}{K}$	1/2	
	i <k<2< td=""><td></td><td></td></k<2<>		
	Therefore energy stored between the plates increases	1/2	
	iii) E ↑		
		1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	OR		
	i) Derivation of Potential energy of an electric dipole.		
	ii) Condition for stable and unstable equilibrium 2 iii) Possibility and example		
	a) -		
	E		
	lack q		
	$-a\cos\theta$ 0 $a\cos\theta$ x	1/2	
	P		
	20		
	→		

Sl. No.	a) Since torque acting on dipole	Marks	Total
	a) Since torque acting on dipole		
	work done $d\omega = \tau . d\theta$ $= pE \sin\theta d\theta$ $= pE\sin\theta d\theta$	1/2	
	$w = \int_{\theta_1}^{\theta_2} dw pE \int_{\theta_1}^{\theta_2} \sin\theta d\theta$ $w = pE[-\cos\theta] \theta_2$ θ_1 $= pE[\cos\theta_1 - \cos\theta_2]$	1/2	
	if $\theta_1 = 0$, $\theta_2 = \theta$ $w = pE (1-cos\theta)$ Conditions- For stable equilibrium - When electric dipole is parallel to electric field. For unstable equilibrium - Anti Parallel to electric field.	1/ ₂ 1 1 1	5
	b) No. Inside equipotential surface	1/ ₂ 1/ ₂	
Q26	a) Sharpness of resonance Relation of sharpness with Q factor Factor affecting the sharpness Identification of graph Finding of the frequency Calculation of maximum current Calculation of inductive and capacitance reactance		
	a) The circuit would be set to have a high Sharpness of Resonance, if the current in the circuit drops rapidly as the frequency of the applied AC source shifts from its resonant value. (Also accept Sharpness of Resonance = $\omega_0/2\Delta\omega$). Sharpness of Resonance is measured by the quality factor $Q = \frac{1}{R}\sqrt{\frac{L}{C}}$ Note: Accept the answer if the student write sharpness of resonance = Q- factor	1/2	
	Sharpness of resonance for given value L and C / value of ω_r depends on R. R is minimum for circuit C b) $v = \frac{1}{2\pi\sqrt{LC}}$	1/ ₂ 1/ ₂ 1/ ₂	
	$= \frac{1}{2 \times 3.14 \sqrt{8 \times 2 \times 10^{-6}}}$ $= \frac{1000}{8 \times 3.14}$ $= 39.81 \text{ or } 40 \text{ Hz (Approximately)}$	1/2	


Set-	MARKING SCHEME - PHYSICS	33,	/ 4 / I
Sl. No.	Value Points / Expected Answers	Marks	Total
1.00	$V_0 = 200 \text{ V}$ $i_0 = \frac{V_0}{Z} = \frac{V_0}{R} (\because Z=R \text{ at resonance})$ $= \frac{200}{100}$	1/2	
	= 2 Ampere At resonance	1/2	
	$X_{L} = X_{C}$ $X_{L} = \omega L = 2\pi \nu L$	1/2	
	$= 2\pi \times 39.81 \times 8$		
	$= 2000 \Omega$	1/2	5
	OR		
Q26	a) Schematic Diagram of AC Generator Working Expression for emf Graphical representation b) i) Calculation of max and average induced emf ii) Calculation of max. current and average power loss Coil Axle Carbon brushes	1	
	Working of AC Generator - Whenever coil placed in uniform magnetic field is rotated, flux linked with it changes, and an emf induces in the coil. The ends of the coil are connected to an external circuit by means of slip rings and brushes. Flux linked with the coil of Area a, placed in uniform magnetic field 'B'	1/2	

Set-	MARKING SCHEME - PHYSICS	33	<u>/4/1</u>
Sl. No.	Value Points / Expected Answers	Marks	Total
	$\phi_{\scriptscriptstyle B} = BA\cos\theta$		
	or $\phi_B = BA \cos\omega t \dots (eq^n 1)$		
	∴ From Faraday's law		
	e.m.f induced in the coil		
	$\varepsilon = -N \frac{d\phi_{B}}{dt}$	1/2	
	$-NBA \frac{d}{dt} \cos \omega t$		
	$\varepsilon = NBA\omega \sin\omega t$		
	or $\varepsilon = \varepsilon_0 \sin \omega t$ where $\varepsilon_0 = NBA\omega$	1/2	
	Note Award full marks if student explains theoretically)		
	b) i) $r = 10 \text{ cm}, N = 20 \text{ turns}, \omega = 50 \text{ rad s}^{-1}$		
	$B = 3.0 \times 10^{-2} \mathrm{T}$		
	$\varepsilon_0 = NBA\omega$		
	$= 20 \times 3 \times 10^{-2} \times \pi \left(10 \times 10^{-2}\right)^{2} \times 50$		
	= 0.942 volt	1/2	
	$\varepsilon_{AV} = 0$, over a cycle		
		1/2	
	ii) $i_0 = \frac{e_0}{R} = \frac{0.942}{10}$		
	$= 0.094 \mathrm{A}$	1/2	
	$P = \frac{1}{2} \ \epsilon_{\scriptscriptstyle 0} \times I_{\scriptscriptstyle 0}$	1/	
	$=\frac{1}{2}\times0.942\times0.094$	1/2	
	= 0. 045 watt.	1/2	

 $\frac{1}{2}$

Sl. No.	Value Points / Expected Answ	wers	Marks	Total
Q27.	a. Relation for combined focal Length	21/2		
	equivalent Power	21/2		
	b. Calculation for Positive of image frame.	2		

a.

For less A

$$\frac{1}{f_1} = \frac{1}{v_1} - \frac{1}{u}$$

eg. (I)

For less B

$$\frac{1}{f_2} = \frac{1}{v} - \frac{1}{v_1}$$

eg. (ii)

$$\frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{v_1} - \frac{1}{u} + \frac{1}{v} - \frac{1}{v_1}$$

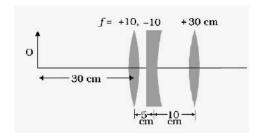
Adding eqn. (i) & eqn. (ii)

$$\frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{v} - \frac{1}{u}$$

 $\frac{1}{2}$

$$\frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{F}$$

 $\frac{1}{2}$


$$\mathbf{P} = \mathbf{P}_2 + \mathbf{P}_2$$

 $\frac{1}{2}$

b) Image formed by lense of
$$f = +10$$
 cm

$$\frac{1}{v_1} - \frac{1}{u_1} = \frac{1}{f_1}$$

$$\frac{1}{v_1} - \frac{1}{30} = \frac{1}{10}$$

<u>Set-1</u>	MARKING SCHEME - PHYSICS	33	<u>/ 4/ 1</u>
Sl. No.	Value Points / Expected Answers	Marks	Total
	$v_1 = 15 \text{ cm}$	1/2	
	This image formed by the lens act as object from concave lens	/2	
	$\therefore u_2 = 15-5=10 \text{ cm}$		
	$\frac{1}{f_2} + \frac{1}{v_2} = \frac{1}{u_2}$		
	-	1/	
	$\frac{1}{-10} = \frac{1}{v} - \frac{1}{10}$	1/2	
	$V = \infty$		
	Therefore virtual image forms at right of concave lens at $v = \infty$ and act as convex lens. (f = +30 cm)		
	$u_2 = 15 - 5 = 10 \text{ cm}$	1/2	5
	$\frac{1}{v_3} = \frac{1}{4} - \frac{1}{f_3}$		
	$\frac{1}{v_3} - \frac{1}{4} - \frac{1}{f_3}$		
	1 1 1	Q.	
	$\frac{1}{v_3} = \frac{1}{\infty} = \frac{1}{30}$		
	V 20		
	$v_3 = 30 \text{ cm}$	1/2	
((If student calculate upto $v = \infty$, give full marks)		
	OR		
	i) Diagram 1 Explanation 2		
	ii) Variation of Intensity		
	Graph ½		
	No. of maxima and minima		
	Incident Sunlight (Unpolarised)		
	(Unpolarised)		
	•		
	Scattered Light	1	
	(Polarised)		
	↓		
	To Observer		
	When light encounters the molecules of the atmosphere, the electrons in molecules		
	acquire components of motion under the influence of electric field. Charges	2	
	accelerated parallel to the double arrows do not radiate energy towards the observer since their acceleration has no transverse component. The radiation scattered by the		
	molecules are thus polarized light.		

MARKING SCHEME - PHYSICS	33	/ 4 / I
Value Points / Expected Answers	Marks	Total
Suppose I_0 be the intensity of polarised light after passing through polarized P_1 . Therefore intensity of polarised light after passing through P_2 $I = I_0 \cos^2 \theta$		
Since Polarised P_1 and P_2 are crossed, the angle between their pass axes will be (90- θ)	1/2	
$I = I_0 \cos^2\theta \cdot \cos^2(90-\theta)$ $= I_0 \cos^2\theta \cdot \sin^2$		
$I = \frac{L_0}{4} \sin^2 2\theta$ 1) When $\theta = 0$		
$I = \frac{I_0}{4} \sin^2 2.0 = 0$		
$I = \frac{I_0}{4} \sin^2 2\pi/2$	Ó	
3) When $\theta = \frac{\pi}{2}$		
I = 0		
$I = \frac{I_0}{4} \sin^2 2 \times 3\pi/4 = +\frac{I_0}{4}$		
$I = \frac{I_0}{4} \sin 2\pi$		
$ \frac{I_0}{4} OR \frac{I_0}{8} $ $ 0 \frac{\pi}{4} \frac{\pi}{2} \frac{3\pi}{4} \pi $	1/2	
Two maxima and two minima		
T O		
(Accept both answers)	1/2+1/2	
	Suppose I_a be the intensity of polarised light after passing through polarized P_i . Therefore intensity of polarised light after passing through P_2 $I = I_o \cos^2\theta$. Since Polarised P_i and P_2 are crossed, the angle between their pass axes will be $(90-\theta)$. $I = I_o \cos^2\theta \cdot \cos^2(\theta - \theta) = I_o \cos^2\theta \cdot \sin^2\theta \cdot \sin^2\theta = I_o \cos^2\theta \cdot \sin$	